Abstract
“In situ crystallization” is a technique, which is used to crystallize the materials, which are liquid at ambient conditions, on the single crystal X-ray diffractometer. This technique has been utilized to study crystal structures of a number of liquids, gases and mixtures of liquids and gases in the past. In this manuscript, we describe the formation of cocrystals of a few cresols with aniline and fluoroanilines using this technique. Different pairs of cresol and aniline/fluoroaniline resulted into various cocrystals, which display different crystalline motifs involving strong O–H···N, N–H···O hydrogen bonds along with weak C–H···O and C–H···F hydrogen bonds. The observed differences in crystal packing indicate that the role of weak hydrogen bonds in these systems is significant and need to be considered.
Acknowledgments
ARC thanks the Royal Society of Chemistry for funding for the international travel and local expenses for the period of two months for conducting the experimental work at the Chemistry Department, Durham University during June-July, 2010 with Prof. Judith A. K. Howard. Ms. Indu Verma of IISER Mohali is acknowledged for her help in revising the manuscript.
References
[1] A. I. Kitaigorodskii, Mixed Crystals. Springer-Verlag, New York, 1984.10.1007/978-3-642-81672-7Suche in Google Scholar
[2] N. Shan, A. D. Bond, W. Jones, Tet. Lett.2002, 43, 3101.Suche in Google Scholar
[3] G. R. Desiraju, CrystEngComm.2003, 5, 466.Suche in Google Scholar
[4] J. D. Dunitz, CrystEngComm.2003, 5, 506.Suche in Google Scholar
[5] P. Vishweshwar, J. A. McMahon, J. A. Bis, M. J. Zaworotko, J. Pharm. Sci.2006, 95, 499.Suche in Google Scholar
[6] A. V. Trask, W. D. S. Motherwell, W. Jones, Cryst. Growth Des.2005, 5, 1013.Suche in Google Scholar
[7] M. J. Zaworotko, Cryst. Growth Des.2007, 7, 4.Suche in Google Scholar
[8] J. McMahon, M. Peterson, M. J. Zaworotko, T. Shattock, M. B. Hickey, WO patent, WO 2006/007448 A2, 2006.Suche in Google Scholar
[9] J. Kastelic, I. Hodnik, P. Ket, J. Plavec, N. Lah, I. Leban, M. Pajk, O. Planinek, D. Kikelj, Cryst. Growth Des.2010, 10, 4943.Suche in Google Scholar
[10] M. Karanam, A. R. Choudhury, Cryst. Growth Des.2012, 12, 240.Suche in Google Scholar
[11] M. Karanam, A. R. Choudhury, Cryst. Growth Des.2013, 13, 1626.Suche in Google Scholar
[12] N. J. Babu, A. Nangia, Cryst. Growth Des.2011, 11, 2662.Suche in Google Scholar
[13] M. L. Cheney, D. R. Weyna, N. Shan, M. Hanna, L. Wojtas, M. J. Zaworotko, J. Pharm. Sci.2011, 100, 2172.Suche in Google Scholar
[14] V. R. Vangala, P. S. Chow, R. B. H. Tan, CrystEngComm.2011, 13, 759.Suche in Google Scholar
[15] N. Shan, M. J. Zaworotko, Drug Discovery Today2008, 13, 440.10.1016/j.drudis.2008.03.004Suche in Google Scholar PubMed
[16] I. D. H. Oswald, W. D. S. Motherwell, S. Parsons, E. Pidcock, C. R. Pulham, Crystallogr. Rev.2004, 10, 57.Suche in Google Scholar
[17] J. F. Remenar, S. L. Morisette, M. L. Peterson, B. Moulton, J. M. MacPhee, H. R. Guzman, Ö. Almarsson, J. Am. Chem. Soc.2003, 125, 8456.Suche in Google Scholar
[18] M. Karanam, S. Dev, A. R. Choudhury, Cryst. Growth Des.2012, 12, 240.Suche in Google Scholar
[19] V. R. Thalladi, H.-C. Weiss, D. Bläser, R. Boese, A. Nangia, G. R. Desiraju, J. Am. Chem. Soc.1998, 120, 8702.Suche in Google Scholar
[20] R. Boese, H.-C. Weiss, D. Bläser, Angew. Chem. Int. Ed.1999, 38, 988.Suche in Google Scholar
[21] V. R. Thalladi, R. Boese, New J. Chem.2000, 24, 579.Suche in Google Scholar
[22] V. R. Thalladi, H.-C. Weiss, R. Boese, Angew. Chem., Int. Ed.2000, 39, 918.Suche in Google Scholar
[23] A. D. Bond, Chem. Commun.2002, 1664.10.1039/B204261DSuche in Google Scholar
[24] A. D. Bond, Chem. Commun.2003, 250.Suche in Google Scholar
[25] A. D. Bond, S. Parsons, Acta Cryst. E2002, 58, o550.10.1107/S160053680200692XSuche in Google Scholar
[26] D. Chopra, V. Thiruvenkatam, T. N. Guru Row, Cryst. Growth Des.2006, 6, 843.Suche in Google Scholar
[27] A. R. Choudhury, K. Islam, M. T. Kirchner, G. Mehta, T. N. Guru Row, J. Am Chem. Soc.2004, 126, 12274.Suche in Google Scholar
[28] D. S. Yufit, J. A. K. Howard, CrystEngComm.2010, 12, 737.Suche in Google Scholar
[29] D. S. Yufit, J. A. K. Howard, Acta Crystallogr.2011, C67, o104.Suche in Google Scholar
[30] V. R. Thalladi, H.-C. Weiss, R. Boese, J. Am. Chem. Soc.2000, 120, 1186.Suche in Google Scholar
[31] R. Boese, M. T. Kirchner, W. E. Billups, L. R. Norman, Angew. Chem. Int. Ed.2003, 42, 1961.Suche in Google Scholar
[32] A. R. Choudhury, N. Winterton, A. Steiner, A. I. Cooper, K. A. Johnson, J. Am. Chem. Soc.2005, 127, 16792.Suche in Google Scholar
[33] A. R. Choudhury, N. Winterton, A. Steiner, A. I. Cooper, K. A. Johnson, CrystEngComm.2006, 8, 742.Suche in Google Scholar
[34] G. Kaur, P. Panini, D. Chopra, A. R. Choudhury, Cryst. Growth Des.2012, 12, 5096.Suche in Google Scholar
[35] http://www.sci-ohcd.eu/.Suche in Google Scholar
[36] SMART, XPREP, SADABS and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Suche in Google Scholar
[37] D. S. Yufit, J. A. K. Howard, J. Appl.Cryst.2005, 38, 583.Suche in Google Scholar
[38] G. M. Sheldrick, Acta Crystallogr. A.2008, 64, 112.Suche in Google Scholar
[39] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr.2009, 42, 339.Suche in Google Scholar
[40] M. Nardelli, J. Appl. Cryst.1995, 28, 659.Suche in Google Scholar
[41] A. Kálmán, L. Párkányi, G. Argay, Acta. Crystallogr.1993, B49, 1039.Suche in Google Scholar
Supplemental Material
The online version of this article (DOI: 10.1515/zkri-2014-1729) offers supplementary material, available to authorized users.
©2014 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Preface
- Special issue on In Situ Crystallization
- Original Papers
- Crystal architecture of the low melting nitrogen heterocycles tetrafluoropyrimidine and trifluorotriazine
- Fluorine prefers hydrogen bonds over halogen bonds! Insights from crystal structures of some halofluorobenzenes
- In situ co-crystallization of cresols with aniline and fluoroanilines: subtle interplay of strong and weak hydrogen bonds
- In situ Crystallization of N(SiMe3)3 and As(SiMe3)3: Trigonal planar or pyramidal coordination of the central atoms?
- Low-melting molecular complexes. Part 5. Co-crystals of tetrahydrofuran and diethyl ether with methyl halides
- Comparison of intermolecular interactions in two phases of MeNSOF2
- In situ crystallization of the linear alkynes Cn H2n–2 (n=7, 8, 9, 10)
- A high-pressure polymorph of propionamide from in situ high-pressure crystallisation from solution
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Preface
- Special issue on In Situ Crystallization
- Original Papers
- Crystal architecture of the low melting nitrogen heterocycles tetrafluoropyrimidine and trifluorotriazine
- Fluorine prefers hydrogen bonds over halogen bonds! Insights from crystal structures of some halofluorobenzenes
- In situ co-crystallization of cresols with aniline and fluoroanilines: subtle interplay of strong and weak hydrogen bonds
- In situ Crystallization of N(SiMe3)3 and As(SiMe3)3: Trigonal planar or pyramidal coordination of the central atoms?
- Low-melting molecular complexes. Part 5. Co-crystals of tetrahydrofuran and diethyl ether with methyl halides
- Comparison of intermolecular interactions in two phases of MeNSOF2
- In situ crystallization of the linear alkynes Cn H2n–2 (n=7, 8, 9, 10)
- A high-pressure polymorph of propionamide from in situ high-pressure crystallisation from solution