Startseite Fluorine prefers hydrogen bonds over halogen bonds! Insights from crystal structures of some halofluorobenzenes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fluorine prefers hydrogen bonds over halogen bonds! Insights from crystal structures of some halofluorobenzenes

  • Amol G. Dikundwar , Ranganathan Sathishkumar und Tayur N. Guru Row EMAIL logo
Veröffentlicht/Copyright: 4. September 2014

Abstract

Crystal structures of a series of isomers of chlorofluorobenzene, bromofluorobenzene and iodofluorobenzene, all of which are liquids under ambient conditions, are determined by a technique of in situ cryocrystallography. These simple dihalo substituted benzenes provide clear insights into subtle interplay of packing interactions preferred by fluorine and heavier halogens for example, C–H···X hydrogen bonds vs. X···X halogen bonds (X=F, Cl, Br, I). The interaction patterns noted here are purely characteristic of halogens, having not been influenced by other stronger interactions. Variability of principal supramolecular synthons among the isomers highlights the importance of molecular shape and relative position of interacting atoms while preserving the basic intermolecular bonds. Mutually exclusive occurrence of homo (I···I) and hetero (I···F) halogen bonds in polymorphs of 4-iodofluorobenzene questions the robustness and reliability of these interactions.


Corresponding author: Tayur N. Guru Row, Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India, Phone: +91 80-23932796, Fax: +91 80-23601310, E-mail:

Acknowledgments

AGD thanks Council of Industrial and Scientic Research, New Delhi, India for Senior Research Fellowship. TNG thanks Department of Science and Technology, Goverment of India for J. C. Bose Fellowship.

References

[1] H. S. Kaufman, I. Fankuchen, A Low temperature single crystal X-ray diffraction technique. Rev. Sci. Instr.1949, 20, 733.Suche in Google Scholar

[2] S. C. Abrahams, R. L. Collin, W. N. Lipscomb, T. B. Reed, Further techniques in single-crystal X-ray diffraction studies at low temperatures. Rev. Sci. Instr. 1950, 21, 396.Suche in Google Scholar

[3] M. A. Viswamitra, A low-temperature Weissenberg camera. J. Sci. Inst. 1962, 39, 381.Suche in Google Scholar

[4] M. A. Viswamitra, K. K. Kannan, Simple gas-cooling device for low temperature investigations with Weissenberg cameras. J. Sci. Inst. 1962, 39, 318.Suche in Google Scholar

[5] R. Boese, M. Nussbaumer, In situ crystallization techniques. in In Organic Crystal Chemistry, (Eds. D. W. Jones) Oxford University Press: Oxford, UK, pp. 20–37, 1994. www.sci-ohcd.eu.Suche in Google Scholar

[6] D. Chopra, T. N. Guru Row, In situ Cryocrystallization: pathways to study intermolecular interactions. J. Ind. Ins. Sci. 2007, 87, 167.Suche in Google Scholar

[7] E. V. Boldyreva, High-pressure diffraction studies of molecular organic solids. A personal view. Acta Cryst.2008, A64, 218.Suche in Google Scholar

[8] A. Katrusiak, High-pressure crystallography. Acta Cryst. 2008, A64, 135.Suche in Google Scholar

[9] W. N. Lipscomb, The boranes and their relatives. Science1977, 196, 1047.10.1126/science.196.4294.1047Suche in Google Scholar

[10] W. N. Lipscomb, Boron Hydrides. W. A. Benjamin Inc., New York, 1963.Suche in Google Scholar

[11] M. M. Viswamitra, K. K. Kannan, Molecular dimensions and crystal structure of dimethyl sulphoxide at –60° C. Nature1966, 209, 1016.10.1038/2091016a0Suche in Google Scholar

[12] R. Boese, M. T. Kirchner, W. E. Billups, L. R. Norman, Cocrystallization with acetylene: molecular complexes with acetone and dimethyl sulfoxide. Angew. Chem. Int. Ed.2003, 42, 1961.Suche in Google Scholar

[13] J. E. Davis, A. D. Bond, Quinoline. Acta Crystallogr. 2001, E57, o947.Suche in Google Scholar

[14] A. D. Bond, In situ co-crystallisation as a tool for low-temperature crystal engineering. Chem. Commun.2003, 250.Suche in Google Scholar

[15] R. Boese, H. C. Weiss, D. Bläser, The melting point alternation in the short-chain n-alkanes: single-crystal X-ray analyses of propane at 30 K and of n-Butane to n-Nonane at 90 K. Angew. Chem. Int. Ed. Engl. 1999, 38, 988.Suche in Google Scholar

[16] V. R. Thalladi, R. Boese, Why is the melting point of propane the lowest among n-alkanes?. New J. Chem.2000, 24, 579.Suche in Google Scholar

[17] V. R. Thalladi, H. C. Weiss, R. Boese, The melting point alternation in alpha,omega-alkanediols and alpha,omega-alkanediamines: interplay between hydrogen bonding and hydrophobic interactions. Angew. Chem. Int. Ed. Engl. 2000, 39, 918.Suche in Google Scholar

[18] V. R. Thalladi, R. Boese, H. C. Weiss, The melting point alternation in alpha,omega-alkanedithiols. J. Am. Chem. Soc.2000, 122, 1186.Suche in Google Scholar

[19] A. D. Bond, Inversion of the melting point alternation in n-alkyl carboxylic acids by co-crystallization with pyrazine, CrstEngComm.2006, 8, 333.Suche in Google Scholar

[20] R. Boese, D. Blaser, O. Heinemann, Y. Abramov, V. Tsirelson, P. Blaha, K. Schwarz, Evidence for electron density features that accompany the noble gases solidification. J. Phys. Chem. A1999, 103, 6209.10.1021/jp984452ySuche in Google Scholar

[21] A. A. Yakovenko, M. Y. Antipin, T. V. Timofeeva, Molecular and crystal structure of low melting nitrotoluene isomers cryst. Growth Des.2009, 9, 57.Suche in Google Scholar

[22] V. R. Thalladi, H. C. Weiss, D. Blaser, R. Boese, A. Nangia, G. R. Desiraju, C-H...F Interactions in the crystal structures of some fluorobenzenes. J. Am. Chem. Soc.1998, 120, 8702.Suche in Google Scholar

[23] J. D. Dunitz, R. Taylor, Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J.1997, 3, 89.Suche in Google Scholar

[24] J. D. Dunitz, Organic fluorine: odd man out. ChemBioChem2004, 5, 614.10.1002/cbic.200300801Suche in Google Scholar

[25] L. Shimoni, J. P. Glusker, The geometry of intermolecular interactions in some crystalline fluorine containing organic compounds. Struct. Chem.1994, 5, 383.Suche in Google Scholar

[26] J. A. K. Howard, V. J. Hoy, D. O’Hagan, G. T. Smith, How good is fluorine as a hydrogen bond acceptor?. Tetrahedron1996, 52, 12613.10.1016/0040-4020(96)00749-1Suche in Google Scholar

[27] K. Reichenbacher, H. I. Suss, J. Hulliger, Fluorine in crystal engineering – “the little atom that could”. Chem. Soc. Rev.2005, 34, 22.Suche in Google Scholar

[28] D. Chopra, T. N. Guru Row, Role of organic fluorine in crystal engineering. CrystEngComm2011, 13, 2175.10.1039/c0ce00538jSuche in Google Scholar

[29] R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem. Soc. Rev.2011, 40, 3496.Suche in Google Scholar

[30] V. R. Hathwar, T. N. Guru Row, Nature of Cl···Cl intermolecular interactions via experimental and theoretical charge density analysis: correlation of polar flattening effects with geometry. J. Phys. Chem. A, 2010, 114, 13434.10.1021/jp1100413Suche in Google Scholar PubMed

[31] N. Ramasubbu, R. Parthasarathy, P. Murray-Rust, Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond. J. Am. Chem. Soc.1986, 108, 4308.Suche in Google Scholar

[32] T. Sakurai, M. Sundaralingam, G. A. Jeffrey, A nuclear quadrupole resonance and X-ray study of the crystal structure of 2,5-dichloroaniline. Acta Crystallogr. 1963, 16, 354.Suche in Google Scholar

[33] T. Clark, M. Hennemann, J. S. Murray, P. Politzer, Halogen bonding: the σ-hole. J. Mol. Model.2007, 13, 291.Suche in Google Scholar

[34] P. Politzer, J. S. Murray, T. Clark, Halogen bonding and other σ-hole interactions: a perspective. Phys. Chem. Chem. Phys.2013, 15, 11178.Suche in Google Scholar

[35] P. Politzer, J. S. Murray, Halogen bonding: an interim discussion. ChemPhysChem2013, 14, 278.10.1002/cphc.201200799Suche in Google Scholar PubMed

[36] D. Chopra, T. S. Cameron, J. D. Ferrara, T. N. Guru Row, Pointers toward the occurrence of C-F...F-C interaction: Experimental charge density analysis of 1-(4-fluorophenyl)-3,6,6-trimethyl-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one and 1-(4-fluorophenyl)-6-methoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline. J. Phys. Chem. A,2006, 110, 10465.10.1021/jp0625309Suche in Google Scholar PubMed

[37] V. R. Hathwar, T. N. Guru Row, Charge density analysis of hetero-halogen (Cl···F) and homo-halogen (F···F) intermolecular interactions in molecular crystals: Importance of the extent of Polarizability. Cryst. Growth Des.2011, 11, 1338.Suche in Google Scholar

[38] A. G. Dikundwar, T. N. Guru Row, Evidence for the “amphoteric” nature of fluorine in halogen bonds: an instance of Cl...F contact. Cryst. Growth Des.2012, 12, 1713.Suche in Google Scholar

[39] M. S. Pavan, K. D. Prasad, T. N. Guru Row, Halogen bonding in fluorine: experimental charge density study on intermolecular F…F and F…S donor–acceptor contacts. ChemComm2013, 49, 7558.10.1039/c3cc43513jSuche in Google Scholar PubMed

[40] P. Garca, S. Dahaoui, C. Katan, M. Souhassou, C. Lecomte, On the accurate estimation of intermolecular interactions and charge transfer: the case of TTF-CA. Faraday Discuss.2007, 135, 217.Suche in Google Scholar

[41] T. T. T. Bui, S. Dahaoui, C. Lecomte, G. R. Desiraju, E. Espinosa, The nature of halogen halogen interactions: a model derived from experimental charge-density analysis. Angew. Chem. Int. Ed.2009, 48, 3838.Suche in Google Scholar

[42] P. Politzer, J. S. Murray, M. C. Concha, σ-hole bonding between like atoms: a fallacy of atomic charges. J. Mol. Model.2008, 14, 659.Suche in Google Scholar

[43] R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem.2013, 56, 1363.Suche in Google Scholar

[44] V. R. Pedireddi, D. S. Reddy, B. S. Goud, D. C. Craig, A. D. Rae, G. R. Desiraju, The nature of halogen…halogen interactions and the crystal structure of 1,3,5,7-tetraiodoadamantane. J. Chem. Soc. Perkin Trans.1994, 2, 2353.Suche in Google Scholar

[45] Bruker 2004, SMART (V 5.628), SAINT (V 6.45a), RLATT (V 3.0), XPREP, SHELXTL; Bruker AXS Inc., Madison, Wisconsin, USA.Suche in Google Scholar

[46] S. L. Masters, I. D. Mackie, D. A. Wann, H. E. Robertson, D. W. H. Rankin, S. Parsons, Unusual asymmetry in halobenzenes, a solid-state, gas-phase and theoretical investigation. Struct. Chem. 2011, 22, 279.Suche in Google Scholar

[47] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr.2008, 64, 112.Suche in Google Scholar

[48] L. Farrugia, WinGX and ORTEP for windows: an update. J. Appl. Crystallogr.2012, 45, 849.Suche in Google Scholar

[49] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst.2009, 42, 339.Suche in Google Scholar

[50] M. Nardelli, PARST95-an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Cryst.1995, 28, 659.Suche in Google Scholar

[51] A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr.2003, 36, 7.Suche in Google Scholar

[52] D. J. Watkin, C. K. Prout, L. J. Pearce, CAMERON. Chemical crystallography laboratory, Oxford, England, 1996.Suche in Google Scholar

[53] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. Van de Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Cryst.2006, 39, 453.Suche in Google Scholar

[54] S. G. Biswas, Crystal structure of chlorobenzene and bromobenzene at –180°C. Acta Crystallogr.1958, 11, 882.Suche in Google Scholar

[55] K. Merz, Substitution effect on crystal packings of iodobenzonitriles and iodophenols. Cryst. Growth Des. 2006, 6, 1615.Suche in Google Scholar

Received: 2014-3-16
Accepted: 2014-7-18
Published Online: 2014-9-4
Published in Print: 2014-9-1

©2014 by De Gruyter

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2014-1750/html
Button zum nach oben scrollen