Home Physical Sciences Oxidation of l-tyrosine by diperiodatocuprate(III) in CPC micellar medium, facilitated by Ru(III)
Article
Licensed
Unlicensed Requires Authentication

Oxidation of l-tyrosine by diperiodatocuprate(III) in CPC micellar medium, facilitated by Ru(III)

  • Abhishek Srivastava

    Abhishek Srivastava has completed his M.Sc. and Ph.D. form University of Lucknow, Lucknow, U.P. India. He has expertise in Chemical Kinetics and Nanochemistry. Till now he has published more than 80 research articles in various Journals of international repute.

    EMAIL logo
    , Neetu Srivastava

    Neetu Srivastava has completed her M.Sc. and Ph.D. form University of Gorakhpur, Gorakhpur, U.P. India. He has expertise in inorganic Nanochemistry and Chemical Kinetics. Till now she has published around 30 research articles in various Journals of international repute.

    and Vinay Kumar Singh

    Vinay Kumar Singh has completed her Ph.D. form University of Lucknow, Lucknow, U.P. India. Till now he has published 40 research articles in various Journals of international repute

Published/Copyright: April 8, 2025
Become an author with De Gruyter Brill

Abstract

The oxidation of amino acids is interesting due to the different molecules generated by different oxidants. This research is crucial to understand the role of amino acids in redox processes and to identify the active species of Ru(III) and diperiodatocuprate(III) (DPC). The purpose of the present research is to analyze the effect of cationic surfactant on the Ru(III) catalysed oxidation of l-tyrosine (l-Tyr) by DPC. The progression of the reaction was evaluated using the pseudo-first-order scenario as a metric for [OH], [DPC], ionic strength, [l-Tyr], [Ru(III)], [IO4], [surfactant], and temperature. Over the range of concentrations studied, the observed reaction exhibits a kinetic order less than one with respect to both [OH] and [l-Tyr], a negative fractional order with respect to [IO4], and a first-order dependence on [Ru(III)] and [DPC]. The observed constancy of the oxidation rate with electrolyte addition suggests a zero salt effect. The oxidation rate is markedly increased by Ru(III) solution acting as a catalyst at ppm concentration. The micellar media of cetylpyridinium chloride (CPC) significantly accelerates the rate of the desired reaction, achieving a fourfold increase. The compatibility of CPC with Ru(III) for the oxidation of l-Tyr using DPC is particularly noteworthy.


Corresponding author: Abhishek Srivastava, Department of Chemistry, GLA University, Mathura, 281406, UP, India, E-mail:

About the authors

Abhishek Srivastava

Abhishek Srivastava has completed his M.Sc. and Ph.D. form University of Lucknow, Lucknow, U.P. India. He has expertise in Chemical Kinetics and Nanochemistry. Till now he has published more than 80 research articles in various Journals of international repute.

Neetu Srivastava

Neetu Srivastava has completed her M.Sc. and Ph.D. form University of Gorakhpur, Gorakhpur, U.P. India. He has expertise in inorganic Nanochemistry and Chemical Kinetics. Till now she has published around 30 research articles in various Journals of international repute.

Vinay Kumar Singh

Vinay Kumar Singh has completed her Ph.D. form University of Lucknow, Lucknow, U.P. India. Till now he has published 40 research articles in various Journals of international repute

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: A.S.: Supervision, Conceptualization, Statistical analysis, Writing original draft. N. S.: Methodology, Investigation, Experimental, Graphical Work. V. K. S.: Investigation, Formal Analysis, Writing original draft.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Lopez, M. J.; Mohiuddin, S. S. Biochemistry; Essential Amino Acids; Treasure Island; StatPearls Publishing: St. Petersburg; Florida, 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557845.Search in Google Scholar

2. Massey, K. A.; Blakeslee, C. H.; Pitkow, H. S. A Review of Physiological and Metabolic Effects of Essential Amino Acids. Amino Acids 1998, 14, 271–230. https://doi.org/101007/BF01318848.10.1007/BF01318848Search in Google Scholar PubMed

3. Elango, R. Tolerable Upper Intake Level for Individual Amino Acids in Humans: A Narrative Review of Recent Clinical Studies. Adv. Nutr. 2023, 14, 885–894. https://doi.org/101016/jadvnut202304004.10.1016/j.advnut.2023.04.004Search in Google Scholar PubMed PubMed Central

4. Patience, J. F. A Review of the Role of Acid-Base Balance in Amino Acid Nutrition. J. Anim. Sci. 1990, 68, 398–408. https://doi.org/102527/1990682398x.10.2527/1990.682398xSearch in Google Scholar PubMed

5. Yun, J.; Yongqing, H.; François, B.; Zhenlong, W. Amino Acids in Intestinal Growth and Health. Front. Nutr. 2023, 10, 1172548. https://doi.org/103389/fnut20231172548.10.3389/fnut.2023.1172548Search in Google Scholar PubMed PubMed Central

6. Yandri, Y.; Ropingi, H.; Suhartati, T.; Irawan, B.; Hadi, S. Immobilization of Aspergillus fumigatus α-Amylase via Adsorption onto Bentonite/Chitosan for Stability Enhancement. Emerg. Sci. J 2023, 7, 1811–1826. https://doi.org/10.28991/ESJ-2023-07-05-023.Search in Google Scholar

7. Srivastava, A.; Srivastava, N.; Singh, R.; Srivastava, K. Cu(II) Promoted Oxidation of L-Valine by Hexacyanoferrate(III) in Cationic Micellar Medium. J. Ind. Chem. Soc. 2023, 100, 101058. https://doi.org/101016/jjics2023101058.10.1016/j.jics.2023.101058Search in Google Scholar

8. Lan, N. T. H.; Hieu, T. D.; Chinh, N. T.; Le Anh, N. T.; Nhi, P. T. Y.; Quang, D. D. HO● – Initiated Oxidation of Isoleucine Amino Acid in the Aqueous Phase. Vietnam J. Chem. 2023, 61, 37–44. https://doi.org/10.1002/vjch.202200210.10.1002/vjch.202200210Search in Google Scholar

9. Srivastava, A.; Goswami, M. K.; Dohare, R. K.; Srivastava, N.; Srivastava, K. Effect of Cationic Surfactant on Ru(III) Catalyzed L-Glutamic Acid Oxidation by Hexacyanoferrate(III). Int. J. Chem. Kinet. 2023, 55, 431–440. https://doi.org/101002/kin21646.10.1002/kin.21646Search in Google Scholar

10. Srivastava, A.; Manjusha; Srivastava, N.; Naik, R. M. Kinetic Study of Ru(III) Promoted Oxidation of L-Tryptophan in an Anionic Surfactant Medium by Hexacyanoferrate(III). J. Mex. Chem. Soc. 2023, 67, 46–59. https://doi.org/1029356/jmcsv67i11829.10.29356/jmcs.v67i1.1829Search in Google Scholar

11. Slominski, A.; Zmijewski, M. A.; Pawelek, J. L-Tyrosine and L-Dihydroxyphenylalanine as Hormone-like Regulators of Melanocyte Functions. Pigment Cell Melanoma Res. 2012, 25, 14–27. https://doi.org/10.1111/j.1755-148X.2011.00898.x.Search in Google Scholar PubMed PubMed Central

12. Jongkees, B. J.; Hommel, B.; Kühn, S.; Colzato, L. S. Effect of Tyrosine Supplementation in Clinical and Healthy Populations under Stress or Cognitive Demands – A Review. J. Psychiatr. Res. 2015, 70, 50–57. https://doi.org/10.1016/j.jpsychires.2015.08.014.Search in Google Scholar PubMed

13. Young, S. N. L-Tyrosine to Alleviate the Effects of Stress. J. Psychiatry Neurosci. 2007, 32, 224.Search in Google Scholar

14. Chowdhury, S.; Rakshit, A.; Acharjee, A.; Ghosh, A.; Mahali, K.; Saha, B. Ru(III) Catalysed Oxidation of 2-propanol by Cr(VI) in Micellar Media. J. Mol. Liq. 2019, 290, 111247. https://doi.org/101016/jmolliq2019111247.10.1016/j.molliq.2019.111247Search in Google Scholar

15. Srivastava, A.; Srivastava, N.; Srivastava, K. Kinetic and Mechanistic Investigation of Os(VIII) – Catalyzed L-Tryptophan Oxidation by Hexacyanoferrate(III) in CTAB Micellar Medium. Russ. J. Phys. Chem. 2023, 97, 2932–2941. https://doi.org/101134/S0036024423130022.10.1134/S0036024423130022Search in Google Scholar

16. Srivastava, A.; Srivastava, N.; Singh, R. Oxidative Decolorization of Mordant Black 17 by Peroxydisulfate Facilitated by Fe2+. Indian J. Chem. 2024, 63, 325–331. https://doi.org/1056042/ijcv63i36996.10.56042/ijc.v63i3.6996Search in Google Scholar

17. Srivastava, A.; Singh, R.; Srivastava, N.; Naik, R. M. Kinetic Study of Ru(III) – Catalyzed Oxidation of L-Phenylalanine by Hexacyanoferrate(III) in an Anionic Surfactant Medium. Tenside Surfactant. Det 2023, 60, 376–386. https://doi.org/101515/tsd-2022-2477.10.1515/tsd-2022-2477Search in Google Scholar

18. Konnur, S. B.; Nandibewoor, S. T. Autocatalyzed Oxidation of Amino acid; L-Citrulline by Diperiodatocuprate(III) Complex in Aqueous Alkaline Medium: A Kinetics and Mechanistic Approach. J. Chem. Sci. 2020, 132, 17. https://doi.org/101007/s12039-019-1718-2.10.1007/s12039-019-1718-2Search in Google Scholar

19. Bagoji, A. M.; Magdum, P. A.; Nandibewoor, S. T. Oxidation of Acebutolol by Copper(III) Periodate Complex in Aqueous Alkaline Medium: A Kinetic and Mechanistic Approach. J. Solution Chem. 2016, 45, 1715–1728. https://doi.org/101007/s10953-016-0539-x.10.1007/s10953-016-0539-xSearch in Google Scholar

20. Gowda, J. I.; Nayak, S. S.; Langote, S. R.; Joshi, P. S.; Nandibewoor, S. T. Spectroscopic and Mechanistic Investigations into Oxidation of Aspartame by Diperiodatocuprate(III) in Aqueous Alkaline Medium. Congent Chem. 2015, 1, 1015909. https://doi.org/101080/2331200920151015909.10.1080/23312009.2015.1015909Search in Google Scholar

21. Magdum, P. A.; Bagoji, A. M.; Nandibewoor, S. T. Ruthenium(III) Catalysed and Uncatalysed Oxidative Mechanisms of Methylxanthine Drug Theophylline by Copper(III) Periodate Complex in Alkali Media: A Comparative Approach. J. Phys. Org. Chem. 2015, 28, 743–754. https://doi.org/101002/poc3478.10.1002/poc.3478Search in Google Scholar

22. Naik, K. M.; Nandibewoor, S. T. Mechanistic Aspects of Uncatalyzed and Ruthenium(iii) Catalyzed Oxidation of 1,4-dioxane by a Copper(iii) Periodate Complex in Aqueous Alkaline Medium. Catal. Sci. Technol. 2011, 1, 1232–1242. https://doi.org/101039/C1CY00192B.10.1039/c1cy00192bSearch in Google Scholar

23. Hu, Y.; Li, G.; Zhang, Z. A. Flow Injection Chemiluminescence Method for the Determination of Lincomycin in Serum Using a diperiodato-Cuprate(III)–luminol System. Luminescence 2011, 26, 313–318. https://doi.org/101002/bio1230.10.1002/bio.1230Search in Google Scholar PubMed

24. Linder, M. C.; Hazegh-Azam, M. Copper Biochemistry and Molecular Biology. Am. J. Clin. Nutr. 1996, 63, 797S–811S. https://doi.org/101093/ajcn/635797.10.1093/ajcn/63.5.797Search in Google Scholar PubMed

25. Sahu, Y. R.; Mishra, P. Kinetics and Mechanism of Oxidation of Carbenicillin by Copper (III) Periodate Complex in Aqueous Alkaline Medium. J. Chem. 2020, 4060984. https://doi.org/101155/2020/4060984.10.1155/2020/4060984Search in Google Scholar

26. Sharanabasamma, K.; Salunke, M. S.; Tuwar, S. M. Periodate Influencing Diperiodatocuprate(III) Oxidation of Sulfur Containing Amino Acid in Aqueous Alkaline Medium. J. Solution Chem. 2008, 37, 1217–1225. https://doi.org/101007/s10953-008-9307-x.10.1007/s10953-008-9307-xSearch in Google Scholar

27. Chowdhury, B.; Ghosh, A.; Rahaman, S. M.; Saha, B. Cooperative Rate Amplification by Binary Surfactant (CPC/TX-100) Nano-Aggregates on the Diperiodatocuprate(III) (DPC) Oxidation of 2-butanol in Aqueous Medium. Res. Chem. Intermed. 2023, 49, 4041–4063. https://doi.org/101007/s11164-023-05069-5.10.1007/s11164-023-05069-5Search in Google Scholar

28. Chowdhury, B.; Mondal, M. H.; Barman, M. K.; Saha, B. A Study on the Synthesis of Alkaline Copper(III)-periodate (DPC) Complex with an Overview of its Redox Behavior in Aqueous Micellar Media. Res. Chem. Intermed. 2019, 45, 789–800. https://doi.org/101007/s11164-018-3643-2.Search in Google Scholar

29. Chowdhury, B.; Rahaman, S. M.; Ghosh, A.; Mahali, K.; Sar, P.; Saha, B. Synergistic Reinforcement of CPC/TX-100 Mixed Micellar Microenvironment for Diperiodatocuprate(III) (DPC) Oxidation of 1-propanol and 1,3-propanediol. J. Mol. Liq. 2022, 368, 120817. https://doi.org/101016/jmolliq2022120817.10.1016/j.molliq.2022.120817Search in Google Scholar

30. Srivastava, A.; Srivastava, N.; Dohare, R. K.; Srivastava, K.; Singh, R. Effect of CTAB Micellar Medium on Cu(II) Catalyzed L-Leucine Oxidation by Hexacyanoferrate(III). Dokl. Phys. Chem. 2024, 514, 15–23. https://doi.org/101134/S0012501623600201.10.1134/S0012501623600201Search in Google Scholar

31. Srivastava, A.; Srivastava, N.; Tiwari, D.; Nayak, R.; Naik, R. M. Role of Surfactants on Fe2+ Mediated Oxidative Decolorization of Acid Red 13 by Peroxydisulfate. J. Disper. Sci. Technol. 2024, 1–10. https://doi.org/101080/0193269120242348495.10.1080/01932691.2024.2348495Search in Google Scholar

32. Tegginamath, V.; Hiremath, C. V.; Nandibewoor, S. T. Kinetics and Mechanism of Uncatalysed and Ruthenium(III) Catalysed Oxidation of Allyl Alcohol by Diperiodatoargentate(III) in Aqueous Alkaline Medium. J. Phys. Org. Chem. 2007, 20, 55–64. https://doi.org/101002/poc1126.10.1002/poc.1126Search in Google Scholar

33. Shetti, N. P.; Malode, S. J.; Nandibewoor, S. T. Oxidation of 6-aminopenicillanic Acid by an Alkaline Copper(III) Periodate Complex in the Absence and Presence of Ruthenium(III) as a Homogeneous Catalyst. Polyhedron 2011, 30, 1785–1798. https://doi.org/101016/jpoly201104025.10.1016/j.poly.2011.04.025Search in Google Scholar

34. Lipshutz, B. H. On the Role of Surfactants: Rethinking “Aqueous” Chemistry. Green Chem. 2024, 26, 739–752. https://doi.org/101039/D3GC03875K.10.1039/D3GC03875KSearch in Google Scholar

35. Omari, A.; Cao, R.; Zhu, Z.; Xu, X. A Comprehensive Review of Recent Advances on Surfactant Architectures and Their Applications for Unconventional Reservoirs. J. Petrol. Sci. Eng. 2011, 206, 109025. https://doi.org/101016/jpetrol2021109025.10.1016/j.petrol.2021.109025Search in Google Scholar

36. Perinelli, D. R.; Cespi, M.; Lorusso, N.; Palmieri, G. F.; Bonacucina, G.; Blasi, P. Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir 2020, 36, 5745–5753. https://doi.org/101021/acslangmuir0c00420.10.1021/acs.langmuir.0c00420Search in Google Scholar PubMed PubMed Central

37. Belhaj, A. F.; Elraies, K. A.; Mahmood, S. M.; Zulkifli, N. N.; Akbari, S.; Hussien, O. S. The Effect of Surfactant concentration.; salinity.; temperature.; and pH on Surfactant Adsorption for Chemical Enhanced Oil Recovery: A Review. J. Petrol. Explor. Prod. Technol. 2020, 10, 125–137. https://doi.org/101007/s13202-019-0685-y.10.1007/s13202-019-0685-ySearch in Google Scholar

38. Cortes-Clerget, M.; Kincaid, J. R. A.; Akporji, N.; Lipshutz, B. H. Surfactant Assemblies as Nanoreactors for Organic Transformations. In Supramolecular Catalysis; van Leeuwen, P. W. N. M.; Raynal, M., Eds.; WILEY-VCH GmbH: Weinheim, Germany, 2022.10.1002/9783527832033.ch32Search in Google Scholar

39. Sheldon, R. A. The Greening of Solvents: Towards Sustainable Organic Synthesis. Curr. Opin. Green Sustain. Chem. 2019, 18, 13–19. https://doi.org/101016/jcogsc201811006.10.1016/j.cogsc.2018.11.006Search in Google Scholar

40. Sar, P.; Ghosh, A.; Scarso, A.; Saha, B. Surfactant for Better Tomorrow: Applied Aspect of Surfactant Aggregates from Laboratory to Industry. Res. Chem. Intermed. 2019, 45, 6021–6041. https://doi.org/101007/s11164-019-04017-6.10.1007/s11164-019-04017-6Search in Google Scholar

41. Romney, D. K.; Arnold, F. H.; Lipshutz, B. H.; Li, C. J. Chemistry Takes a Bath: Reactions in Aqueous Media. J. Org. Chem. 2018, 83, 7319–7322. https://doi.org/101021/acsjoc8b01412PMID:30025465.10.1021/acs.joc.8b01412Search in Google Scholar PubMed

42. Malik, S.; Ghosh, A.; Sar, P.; Mondal, M. H.; Mahali, K.; Saha, B. Employment of Different Spectroscopic Tools for the Investigation of Chromium(VI) Oxidation of Acetaldehyde in Aqueous Micellar Medium. J. Chem. Sci. 2017, 129, 637–645. https://doi.org/101007/s12039-017-1276-4.10.1007/s12039-017-1276-4Search in Google Scholar

43. Kumar, D.; Abdul Rub, M.; Akram, M.; Kabir-ud-Din Kabir-ud-Din; Interaction of Chromium(III) Complex of Glycylphenylalanine with Ninhydrin in Aqueous and Cetyltrimethylammonium Bromide (CTAB) Micellar Media. Tenside Surfactants Deterg. 2014, 51 (2), 157–163. https://doi.org/10.3139/113.110296.Search in Google Scholar

44. Kumar, D.; Rub, M. Study of Zinc-Glycylglycine Complex with Ninhydrin in Aqueous and Cationic Micellar Media: A Spectrophotometric Technique. Tenside Surfactants Deterg. 2019, 56 (4), 312–318. https://doi.org/10.3139/113.110635.Search in Google Scholar

45. Kumar, D.; Sheikh, M. S.; Khan, J. M.; Kumar, B.; Jangde, D. T. Influence of Additives on the Interaction of Antidepressant Drug with TX-165 Surfactant: Surface Tension and FTIR Analyses. J. Mol. Liq. 2024, 411, 125727. https://doi.org/10.1016/j.molliq.2024.125727.Search in Google Scholar

46. Edbey, K.; Kumar, M.; El-Hashani, A.; Alarfi, H.; Kumar, D.; Bhattarai, A. Interaction of Anionic Dye Ethyl Orange and Cationic CnTAC Surfactants: A Multi Technique Investigation. J. Mol. Liq. 2024, 407, 125166. https://doi.org/10.1016/j.molliq.2024.125166.Search in Google Scholar

47. Sheikh, M. S.; Khan, J. M.; Kumar, B.; Jangde, D. T.; Kumar, D. Exploration of the Effect of NaCl/urea on Aggregation Process of Imipramine Hydrochloride Drug and TX-165 Mixture: A Surface Tension and UV–Visible Study. Coll. Surf. A 2024, 694, 134102. https://doi.org/10.1016/j.colsurfa.2024.134102.Search in Google Scholar

48. Alam, A.; Anis-Ul-Haque, K. M.; Khan, J. M.; Kumar, D.; Irfan, M.; Rana, S.; Hoque, M. A.; Kabir, S. E. Assessment of the Assembly Behaviour and Physicochemical Parameters for the Tetradecyltrimethylammonium Bromide and Promazine Hydrochloride Mixture: Impact of Monohydroxy Organic Compounds. Colloid Polym. Sci. 2024, 302, 721–734. https://doi.org/10.1007/s00396-024-05223-4.Search in Google Scholar

49. Kumar, D.; Farkaš Agatić, Z.; Popović, K.; Poša, M. Binary Mixed Micelles of Hexadecyltrimethylammonium Bromide–Sodium Deoxycholate and Dodecyltrimethylammonium Bromide–Sodium Deoxycholate: Thermodynamic Stabilization and Mixed Micelle Solubilization Capacity of Daidzein (Isoflavonoid). Ind. Eng. Chem. Res. 2024, 63, 3336–3348. https://doi.org/10.1021/acs.iecr.3c04484.Search in Google Scholar

50. Rub, M.; Khan, F.; Kumar, D.; Asiri, A. Study of Mixed Micelles of Promethazine Hydrochloride (PMT) and Nonionic Surfactant (TX-100) Mixtures at Different Temperatures and Compositions. Tenside Surfactants Deterg. 2015, 52 (3), 236–244. https://doi.org/10.3139/113.110371.Search in Google Scholar

51. Basu, A.; Ghosh, S.; Saha, R.; Ghosh, A.; Ghosh, T.; Mukherjee, K.; Bhattacharyya, S.; Saha, B. Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants. Tenside Surfactants Deterg. 2012, 49 (6), 481–487. https://doi.org/10.3139/113.110220.Search in Google Scholar

52. Mukherjee, K.; Saha, B. Rate Enhancement by Micelle Encapsulation for Oxidation of L-Glutamic Acid in Aqueous Media at Room Temperature. J. Korean Chem. Soc. 2013, 57 (4), 425–431. https://doi.org/10.5012/jkcs.2013.57.4.425.Search in Google Scholar

53. Chowdhury, B.; Mondal, M. H.; Barman, M. K.; Saha, B. A Study on the Synthesis of Alkaline Copper(III)-periodate (DPC) Complex with an Overview of its Redox Behavior in Aqueous Micellar Media. Res. Chem. Intermed. 2019, 45, 789–800. https://doi.org/10.1007/s11164-018-3643-2.Search in Google Scholar

54. Reddy, C. S.; Kumar, V. T. Kinetic and Mechanistic Study of Ruthenium(III) Catalysed and Uncatalysed Oxidation of Oxalic Acid by Acid Bromate. Indian J. Chem. 1995, 34 (A), 615–620.Search in Google Scholar

55. Murthy, C. P.; Sethuram, B.; Rao, T. Kinetics of Oxidations of Some Alcohols by Diperiodatocuprate(III) in Alkaline Medium. Z. Phys. Chem. 1981, 2620, 336–340. https://doi.org/101515/zpch-1981-26245.10.1515/zpch-1981-26245Search in Google Scholar

56. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denny, R. C. Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed.; ELBS; Longman: Essex; UK, 1996; p. 455.Search in Google Scholar

57. Panigrahi, G. P.; Misro, P. K. Kinetics and Mechanism of Oxidation of Aliphatic Ketones by Sodium Metaperiodate: A Comparative Study of Uncatalysed versus Osmium Tetraoxide-Catalysed Oxidation. Indian J. Chem. 1978, 16, 762–766.Search in Google Scholar

58. Reddy, K. B.; Sethuram, B.; Navneeth, R. T. Oxidation of 1,2 ethanediol; 1,2-propanediol and 1,2-butanediol by Diperiodatocuprate(III) in Aqueous Alkaline Medium: A Kinetic Study. Z. Phys. Chem. 1987, 268O, 706–710. https://doi.org/101515/zpch-1987-26890.10.1515/zpch-1987-26890Search in Google Scholar

59. Bailar, J. C.; EmelensJrH. J.; Nyholm, S. R.; Trotman-Dikenson, A. F.; Comprehensive Inorganic Chemistry, Vol. 2; Pergamon Press: Oxford, 1975; p. 1456.Search in Google Scholar

60. Lister, M. W. The Stability of Some Complexes of Trivalent Copper. Can. J. Chem. 1953, 31, 638–652. https://doi.org/101139/v53-087.10.1139/v53-087Search in Google Scholar

61. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; John Wiley and Sons Inc.: New York, 1999.Search in Google Scholar

62. Rastogi, R.; Srivastava, A.; Naik, R. M. Kinetic and Mechanistic Analysis of Ligand Substitution of Aquapentacyanoruthenate(II) in SDS Medium by 4,4′ bipyridine. J. Disper. Sci. Technol. 2019, 41, 1045–1050. https://doi.org/101080/0193269120191614042.10.1080/01932691.2019.1614042Search in Google Scholar

63. Graciani, M. M.; Rodríguez, M. A.; Moyá, M. L. Study of the Ligand Substitution Reaction Fe (CN)5 H2O3− + Pyrazine in Micellar Solutions. Int. J. Chem. Kinet. 1997, 29, 377–384. https://doi.org/101002/(SICI)1097-4601(1997)29:5%3C377::AID-KIN8%3E30CO2-R.10.1002/(SICI)1097-4601(1997)29:5<377::AID-KIN8>3.3.CO;2-2Search in Google Scholar

64. Bunton, C. A.; Nome, F.; Quina, F. H.; Romsted, L. S. Ion Binding and Reactivity at Charged Aqueous Interfaces. Acc. Chem. Res. 1991, 24, 357–364. https://doi.org/101021/ar00012a001.10.1021/ar00012a001Search in Google Scholar

65. Lopez-Cornejo, P.; Mozo, J. D.; Rolda, n. E.; Domínguez, M.; Sanchez, F. Kinetic Study of the Reaction ́ [ru(bpy)3]2++S2O82− in Solutions of Brij-35 at Premicellar and Micellar Concentrations. Chem. Phys. Lett. 2002, 352, 33–38. https://doi.org/101016/S0009-2614(01)01287-8.10.1016/S0009-2614(01)01287-8Search in Google Scholar

66. Piszkiewicz, D. Cooperativity in Bimolecular Micelle-Catalysed Reactions. Inhibition of Catalysis by High Concentrations of Detergent. J. Am. Chem. Soc. 1997, 99, 7695–9697. https://doi.org/101021/ja00465a046.10.1021/ja00465a046Search in Google Scholar

67. Sen, P. K.; Gani, N.; Pal, B. Effects of Microheterogeneous Environments of sds.; tx-100.; and Tween 20 on the Electron Transfer Reaction between L-Leucine and AuCl4−/AuCl3(OH). Ind. Eng. Chem. Res. 2013, 52, 2803–2813. https://doi.org/101021/ie302656d.10.1021/ie302656dSearch in Google Scholar

68. Acharjee, A.; Rakshit, A.; Chowdhury, S.; Malik, S.; Barman, M. K.; Ali, M. A.; Saha, B. Micellar Catalysed and Heteroaromatic Base Promoted Rate Enhancement of Oxidation of an Alicyclic Alcohol in Aqueous Medium. J. Mol. Liq. 2019, 277, 360–371. https://doi.org/101016/jmolliq201812082.10.1016/j.molliq.2018.12.082Search in Google Scholar

Received: 2025-02-04
Accepted: 2025-02-24
Published Online: 2025-04-08
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2025-2662/html
Scroll to top button