Home Chitosan/hydroxyapatite biomimetic material loaded with Curcuma longa L. essential oil
Article
Licensed
Unlicensed Requires Authentication

Chitosan/hydroxyapatite biomimetic material loaded with Curcuma longa L. essential oil

  • Shengnan Kong

    Shengnan Kong is a postgraduate in Anhui university of Chinese Medicine. Her main fields of research are mass transfer and separation in pharmaceutical processes.

    , Ya Xu

    Ya Xu is a postgraduate in Anhui university of Chinese Medicine. Her main fields of research are mass transfer and separation in pharmaceutical processes.

    , Shuang Wu , Yang Wang , Feng Li

    Feng Li is a postgraduate tutor. His main fields of research are medicinal chemical synthesis.

    , Chuanrun Li

    Prof. Chuanrun Li is a teacher at Anhui University of Chinese Medicine. His research interests are in the fields of organic substances, fine chemicals and environmental protection.

    EMAIL logo
    and Huchuan Wang

    Prof. Huchuan Wang is a teacher at Anhui University of Chinese Medicine. His main fields of research are application of water-soluble polymers in industrial water systems and green chemical.

    EMAIL logo
Published/Copyright: March 17, 2025
Become an author with De Gruyter Brill

Abstract

In this work, Curcuma longa L. essential oil (CEO) was loaded into the modified chitosan/hydroxyapatite (PMCH) biomimetic material and the PMCH/CEO was characterized by FTIR, SEM, XRD and BET. The main components of CEO were ar-tumerone (21.97 %), ar-curcumene (13.00 %), β-sesquiphellandrene (13.00 %) and curlone (8.57 %), which was analyzed by GC-MS. The stability of PMCH/CEO was investigated at different relative humidities (33 % and 96 %) and temperatures (60 °C and 80 °C) conditions. The ability of CEO and PMCH/CEO to scavenge DPPH radicals and ABTS radicals is used to evaluate the antioxidant acivity. The concentration of the sample was determined by the CCK-8 method, and the lipopolysaccharide-induced RAW264.7 cell inflammation model was established to evaluate the anti-inflammatory effect. CEO and PMCH/CEO showed good antioxidant activity. CEO and PMCH/CEO also had significant inhibitory effects on NO, IL-6 and TNF-α, and the inhibition rates were 85.62 %, 55.82 % and 27.7 %, respectively. This study shows that CEO-loaded PMCH has potential development prospects in food, medicine and other related fields.


Corresponding authors: Chuanrun Li and Huchuan Wang, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; and Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China, E-mail: (C. Li), (H. Wang)

About the authors

Shengnan Kong

Shengnan Kong is a postgraduate in Anhui university of Chinese Medicine. Her main fields of research are mass transfer and separation in pharmaceutical processes.

Ya Xu

Ya Xu is a postgraduate in Anhui university of Chinese Medicine. Her main fields of research are mass transfer and separation in pharmaceutical processes.

Feng Li

Feng Li is a postgraduate tutor. His main fields of research are medicinal chemical synthesis.

Chuanrun Li

Prof. Chuanrun Li is a teacher at Anhui University of Chinese Medicine. His research interests are in the fields of organic substances, fine chemicals and environmental protection.

Huchuan Wang

Prof. Huchuan Wang is a teacher at Anhui University of Chinese Medicine. His main fields of research are application of water-soluble polymers in industrial water systems and green chemical.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work is supported by the National Key Research and Development Program of China [2022YFB3805102], Key Project of Natural Science Research of Anhui Universities [2024AH051029].

  7. Data availability: Not applicable.

References

1. Park, Y. G.; Cho, J. H.; Choi, J.; Ju, E. M.; Adam, G. O.; Hwang, D. I.; Lee, J. H.; An, S. Y.; Choi, H. K.; Park, C. B.; Oh, H. G. Immunomodulatory Effects of Curcuma Longa L. and Carthamus tinctorius L. on RAW 264.7 Macrophages and Cyclophosphamide-Induced Immunosuppression C57BL/6 Mouse Models. J. Funct. Foods 2022, 91, 105000. https://doi.org/10.1016/j.jff.2022.105000.Search in Google Scholar

2. Kulyal, P.; Acharya, S.; Ankari, A. B.; Kokkiripati, P. K.; Tetali, S. D.; Raghavendra, A. S. Variable Secondary Metabolite Profiles across Cultivars of Curcuma longa L. and C. Aromatica Salisb. Front. Pharmacol. 2021, 12, 659546. https://doi.org/10.3389/fphar.2021.659546.Search in Google Scholar PubMed PubMed Central

3. Zhang, L.; Yang, Z.; Chen, F.; Su, P.; Chen, D.; Pan, W.; Fang, Y.; Dong, C.; Zheng, X.; Du, Z. Composition and Bioactivity Assessment of Essential Oils of Curcuma longa L. Collected in China. Ind. Crops Prod. 2017, 109, 60–73. https://doi.org/10.1016/j.indcrop.2017.08.009.Search in Google Scholar

4. Ibáñez, M. D.; Blázquez, M. A. Curcuma longa L. Rhizome Essential Oil from Extraction to its Agri-Food Applications. A Review. Plants 2021, 10, 44. https://doi.org/10.3390/plants10010044.Search in Google Scholar PubMed PubMed Central

5. Funk, J. L.; Frye, J. B.; Oyarzo, J. N.; Zhang, H. Timmermann BN, Anti-arthritic Effects and Toxicity of the Essential Oils of Turmeric (Curcuma longa L.). J. Agric. Food Chem. 2010, 58, 842–849. https://doi.org/10.1021/jf9027206.Search in Google Scholar PubMed PubMed Central

6. Sahoo, A.; Kar, B.; Jena, S.; Dash, B.; Ray, A.; Sahoo, S.; Nayak, S. Qualitative and Quantitative Evaluation of Rhizome Essential Oil of Eight Different Cultivars of Curcuma longa L. (Turmeric). J. Essent. Oil Bearing Plants 2019, 239–247. https://doi.org/10.1080/0972060X.2019.1599734.Search in Google Scholar

7. Le, T. B.; Beaufay, C.; Nghiem, D. T.; Pham, T. A.; Mingeot-Leclercq, M.-P.; Quetin-Leclercq, J. Evaluation of the Anti-trypanosomal Activity of Vietnamese Essential Oils, with Emphasis on Curcuma longa L. and its Components. Molecules 2019, 24, 1158. https://doi.org/10.3390/molecules24061158.Search in Google Scholar PubMed PubMed Central

8. Zheng, Y. T.; Pan, C. X.; Zhang, Z. J.; Luo, W. Q.; Liang, X. X.; Shi, Y. H.; Liang, L. J.; Zheng, X.; Zhang, L. Y.; Du, Z. Antiaging Effect of Curcuma longa L. Essential Oil on Ultraviolet-Irradiated Skin. Microchem. J. 2020, 154, 104608. https://doi.org/10.1016/j.microc.2020.104608.Search in Google Scholar

9. Firmanda, A.; Fahma, F.; Warsiki, E.; Syamsu, K.; Arnata, I. W.; Sartika, D.; Suryanegara, L.; Qanytah, S. , A. Antimicrobial Mechanism of Nanocellulose Composite Packaging Incorporated with Essential Oils. Food Control 2023, 147, 109617. https://doi.org/10.1016/j.foodcont.2023.109617.Search in Google Scholar

10. Chiriac, A. P.; Rusu, A. G.; Nita, L. E.; Chiriac, V. M.; Neamtu, I.; Sandu, A. Polymeric Carriers Designed for Encapsulation of Essential Eils with Biological Activity. Pharmaceutics 2021, 13, 631. https://doi.org/10.3390/pharmaceutics13050631.Search in Google Scholar PubMed PubMed Central

11. Lotfy, T. M.; Shawir, S. M.; Badawy, M. E. The Impacts of Chitosan-Essential Oil Nanoemulsions on the Microbial Diversity and Chemical Composition of Refrigerated Minced Meat. Int. J. Biol. Macromol. 2023, 239, 124237. https://doi.org/10.1016/j.ijbiomac.2023.124237.Search in Google Scholar PubMed

12. Vishwakarma, G. S.; Gautam, N.; Babu, J. N.; Mittal, S.; Jaitak, V. Polymeric Encapsulates of Essential Oils and Their Constituents: A Review of Preparation Techniques, Characterization, and Sustainable Release Mechanisms. Polymer Rev. 2016, 56, 668–701. https://doi.org/10.1080/15583724.2015.1123725.Search in Google Scholar

13. Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S. M. Chitosan Nanoparticles Loaded with Clove Essential Oil: Characterization, Antioxidant and Antibacterial Activities. Carbohydr. Polym. 2020, 236, 116075. https://doi.org/10.1016/j.carbpol.2020.116075.Search in Google Scholar PubMed

14. Xiao, Z. B.; Bao, H. Q.; Jia, S. H.; Bao, Y. T.; Niu, Y. W.; Kou, X. R. Organic Hollow Mesoporous Silica as a Promising Sandalwood Essential Oil Carrier. Molecules 2021, 26, 2744. https://doi.org/10.3390/molecules26092744.Search in Google Scholar PubMed PubMed Central

15. Qin, Z. Y.; Zou, Y. C.; Zhang, Y. P.; Wang, P.; Zhang, H. Electrospun Pullulan Nanofiber Loading Zanthoxylum Bungeanum Essential Oil/β-Cyclodextrin Inclusion Complexes for Active Packaging. Int. J. Biol. Macromol. 2022, 210, 465–474. https://doi.org/10.1016/j.ijbiomac.2022.04.155.Search in Google Scholar PubMed

16. Said, H. A.; Noukrati, H.; Youcef, H. B.; Mahdi, I.; Oudadesse, H.; Barroug, A. In Situ Precipitated Hydroxyapatite-Chitosan Composite Loaded with Ciprofloxacin: Formulation, Mechanical, In Vitro Antibiotic Uptake, Release, and Antibacterial Properties. Mater. Chem. Phys. 2023, 294, 127008. https://doi.org/10.1016/j.matchemphys.2022.127008.Search in Google Scholar

17. Katayon, H.; Nasab, N. A.; Hesaraki, S.; Nezafati, N. In Vitro Evaluation of Curcumin-Loaded Chitosan-Coated Hydroxyapatite Nanocarriers as a Potential System for Effective Treatment of Cancer. J. Biomater. Sci., Polym. Ed. 2021, 32, 1267–1287. https://doi.org/10.1080/09205063.2021.1910920.Search in Google Scholar PubMed

18. Uskoković, V.; Deasi, T. A. In Vitro Analysis of Nanoparticulate Hydroxyapatite/Chitosan Composites as Potential Drug Delivery Platforms for the Sustained Release of Antibiotics in the Treatment of Osteomyelitis. J. Pharm. Sci. 2014, 103, 567–579. https://doi.org/10.1002/jps.23824.Search in Google Scholar PubMed PubMed Central

19. Xu, Y.; Ji, Z.; Wei, B. C.; Kong, S. N.; Wang, Y.; Li, C. R.; Wang, H. C. Preparation and Biological Studies of Chinese Propolis Essential Oil-Loaded Chitosan/hydroxyapatite Biomimetic Material. J. Food Meas. Char. 2023, 18, 382–392. https://doi.org/10.1007/s11694-023-02159-1.Search in Google Scholar

20. Berraaouan, D.; Essifi, K.; Addi, M.; Hano, C.; Fauconnier, M.-L.; Tahani, A. Hybrid Microcapsules for Encapsulation and Controlled Release of Rosemary Essential Oil. Polymers 2023, 15, 823. https://doi.org/10.3390/polym15040823.Search in Google Scholar PubMed PubMed Central

21. Jaouadi, I.; Cherrad, S.; Bouyahya, A.; Koursaoui, L.; Satrani, B.; Ghanmi, M.; Chaouch, A. Chemical Variability and Antioxidant Activity of Cedrus Atlantica Manetti Essential Oils Isolated from Wood Tar and Sawdust. Arab. J. Chem. 2021, 14, 103441. https://doi.org/10.1016/j.arabjc.2021.103441.Search in Google Scholar

22. Yu, X.; Zhang, H. B.; Wang, J.; Wang, J. M.; Wang, Z. X.; Li, J. B. Phytochemical Compositions and Antioxidant Activities of Essential Oils Extracted from the Flowers of Paeonia Delavayi Using Supercritical Carbon Dioxide Fluid. Molecules 2022, 27, 3000. https://doi.org/10.3390/molecules27093000.Search in Google Scholar PubMed PubMed Central

23. Zhang, L. Y.; Yang, Z. W.; Chen, F.; Su, P.; Chen, D. K.; Pan, W. Y.; Fang, Y. X.; Dong, C. Z.; Zheng, X.; Du, Z. Y. Composition and Bioactivity Assessment of Essential Oils of Curcuma longa L. Collected in China. Ind. Crops Prod. 2017, 109, 60–73. https://doi.org/10.1016/j.indcrop.2017.08.009.Search in Google Scholar

24. Borgonetti, V.; Governa, P.; Manetti, F.; Galeotti, N. Zingiberene. A Non-zinc-binding Class I HDAC Inhibitor: A Novel Strategy for the Management of Neuropathic Pain. Phytomedicine 2023, 111, 154670. https://doi.org/10.1016/j.phymed.2023.154670.Search in Google Scholar PubMed

25. Setzer, W. N.; Duong, L.; Poudel, A.; Mentreddy, S. R. Variation in the Chemical Composition of Five Varieties of Curcuma Longa Rhizome Essential Oils Cultivated in North Alabama. Foods 2021, 10, 212. https://doi.org/10.3390/foods10020212.Search in Google Scholar PubMed PubMed Central

26. Hwang, K. W.; Son, D.; Jo, H. W.; Kim, C. H.; Seong, K. C.; Moon, J. K. Levels of Curcuminoid and Essential Oil Compositions in Turmerics (Curcuma longa L.) Grown in Korea. Appl. Biol. Chem. 2016, 59, 209–215. https://doi.org/10.1007/s13765-016-0156-9.Search in Google Scholar

27. Hu, J.; Zhang, Y.; Xiao, Z.; Wang, X. Preparation and Properties of Cinnamon-Thyme-Ginger Composite Essential Oil Nanocapsules. Ind. Crop. Prod. 2018, 122, 85–92. https://doi.org/10.1016/j.indcrop.2018.05.058.Search in Google Scholar

28. Hosseini, F.; Miri, M. A.; Najafi, M.; Soleimanifard, S.; Aran, M. Encapsulation of Rosemary Essential Oil in Zein by Electrospinning Technique. J. Food Sci. 2021, 86, 4070–4086. https://doi.org/10.1111/1750-3841.15876.Search in Google Scholar PubMed

29. Das, S.; Singh, V. K.; Dwivedy, A. K.; Chaudhari, A. K.; Upadhyay, N.; Singh, A.; Dubey, N. K. Fabrication, Characterization and Practical Efficacy of Myristica Fragrans Essential Oil Nanoemulsion Delivery System against Postharvest Biodeterioration. Ecotoxicol. Environ. Saf. 2020, 189, 110000. https://doi.org/10.1016/j.ecoenv.2019.110000.Search in Google Scholar PubMed

30. Monier, M.; Ayad, D. M.; Abdel-Latif, D. A. Adsorption of Cu(II), Cd(II) and Ni(II) Ions by Cross-Linked Magnetic Chitosan-2-Aminopyridine Glyoxal Schiff’s Base. Colloids Surf. B Biointerfaces 2012, 94, 250–258. https://doi.org/10.1016/j.colsurfb.2012.01.051.Search in Google Scholar PubMed

31. Jiang, J.; Long, Y.; Hu, X.; Hu, J.; Zhu, M.; Zhou, S. A Facile Microwave-Assisted Synthesis of Mesoporous Hydroxyapatite as an Efficient Adsorbent for Pb2+ Adsorption. J. Solid State Chem. 2020, 289, 121491. https://doi.org/10.1016/j.jssc.2020.121491.Search in Google Scholar

32. Zhang, L.; Wang, C.; Yang, R.; Zhou, G.; Yu, P.; Sun, L.; Hao, T.; Wang, J.; Liu, Y. Novel Environment-Friendly Magnetic Bentonite Nanomaterials Functionalized by Carboxymethyl Chitosan and 1-(2-Pyridinylazo)-2-Naphthaleno for Adsorption of Sc (III). Appl. Surf. Sci. 2021, 566, 150644. https://doi.org/10.1016/j.apsusc.2021.150644.Search in Google Scholar

33. Ding, B.; Zheng, Q.; Pan, M.; Chiou, Y.; Yan, F.; Li, Z. Microencapsulation of Ammonium Bicarbonate by Phase Separation and Using Palm Stearin/carnauba Wax as Wall Materials. Int. J. Food Eng. 2018, 14, 7–8. https://doi.org/10.1515/ijfe-2017-0270.Search in Google Scholar

34. Deng, W.; Li, X. Y.; Ren, G. Q.; Bu, Q. M.; Ruan, Y. Y.; Feng, Y.; Li, B. Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin and its Combinations with Gum Arabic and Whey Protein Isolate. Foods 2023, 12, 2393. https://doi.org/10.3390/foods12122393.Search in Google Scholar PubMed PubMed Central

35. Rakmai, J.; Cheirsilp, B.; Mejuto, J. C.; Simal-Gándara, J.; Torrado-Agrasar, A. Antioxidant and Antimicrobial Properties of Encapsulated Guava Leaf Oil in Hydroxypropyl-Beta-Cyclodextrin. Ind. Crops Prod. 2018, 111, 219–225. https://doi.org/10.1016/j.indcrop.2017.10.027.Search in Google Scholar

36. Fernández-Marín, R.; Fernandes, S. C. M.; Andrés, M. A.; Labidi, J. Microwave-assisted Extraction of Curcuma longa L. Oil: Optimization, Chemical Structure and Composition, Antioxidant Activity and Comparison with Conventional Soxhlet Extraction. Molecules 2021, 26, 1516. https://doi.org/10.3390/molecules26061516.Search in Google Scholar PubMed PubMed Central

37. Zhang, L. J.; Yin, M. Z.; Feng, X.; Ibrahim, S. A.; Liu, Y.; Huang, W. Anti-inflammatory Activity of Four Triterpenoids Isolated from Poriae Cutis. Foods 2021, 10, 3155. https://doi.org/10.3390/foods10123155.Search in Google Scholar PubMed PubMed Central

38. Hou, C.; Chen, L.; Yang, L.; Ji, X. An Insight into Anti-inflammatory Effects of Natural Polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. https://doi.org/10.1016/j.ijbiomac.2020.02.315.Search in Google Scholar PubMed

39. Bian, M.; Zhen, D.; Shen, Q. K.; Du, H. H.; Ma, Q. Q.; Quan, Z. S. Structurally Modified Glycyrrhetinic Acid Derivatives as Anti-inflammatory Agents. Bioorg. Chem. 2021, 107, 104598. https://doi.org/10.1016/j.bioorg.2020.104598.Search in Google Scholar PubMed

40. Zhao, Q.; Zhu, L. Y.; Wang, S. N.; Gao, Y. S.; Jin, F. Molecular Mechanism of the Anti-inflammatory Effects of Plant Essential Oils: A Systematic Review. J. Ethnopharmacol. 2023, 301, 115829. https://doi.org/10.1016/j.jep.2022.115829.Search in Google Scholar PubMed

41. Park, S. Y.; Jin, M. L.; Kim, Y. H.; Kim, Y. H.; Lee, S. J. Anti-inflammatory Effects of Aromatic-Turmerone through Blocking of NF-Κb, JNK, and P38 MAPK Signaling Pathways in Amyloid β-stimulated Microglia. Int. Immunopharmacol. 2012, 14, 13–20. https://doi.org/10.1016/j.intimp.2012.06.003.Search in Google Scholar PubMed

42. Wu, Y. Z.; Zhang, Q.; Wei, X. H.; Jiang, C. X.; Li, X. K.; Shang, H. C.; Lin, S. Multiple Anti-inflammatory Mechanisms of Zedoary Turmeric Oil Injection against Lipopolysaccharides-Induced Acute Lung Injury in Rats Elucidated by Network Pharmacology Combined with Transcriptomics. Phytomedicine 2022, 106, 154418. https://doi.org/10.1016/j.phymed.2022.154418.Search in Google Scholar PubMed

Received: 2024-10-07
Accepted: 2025-02-17
Published Online: 2025-03-17
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2024-2631/html
Scroll to top button