Home Synthesis and performance study of a new surfactant with corrosion inhibition function
Article
Licensed
Unlicensed Requires Authentication

Synthesis and performance study of a new surfactant with corrosion inhibition function

  • Jingwen Yang EMAIL logo , Bo Liu , Zuoming Chen , Weiyun Luo , Yefei Wang , Qiongwei Li and Ying Tang
Published/Copyright: September 12, 2024
Become an author with De Gruyter Brill

Abstract

In view of the simultaneous demand for surfactants and corrosion inhibitors in oilfield production, new surfactants with both low interfacial tension and corrosion inhibition function were successfully prepared in this work by amidation and carboxymethylation using fatty acids and amines as raw materials. The interfacial tension of the surfactant was investigated using a rotational interfacial tensiometer, and the critical micelle concentration was determined. The corrosion inhibition properties of the dual-functional agents were measured by weight loss experiments, electrochemical tests, and scanning electron microscopy (SEM). The results showed that the prepared surfactants exhibited interfacial tension as low as 10−2 mN m−1. The dual-functional surfactants possessed both low interfacial tension and promising corrosion inhibition effects. Electrochemical tests and SEM analysis showed that an adsorption layer preventing corrosion was formed on the surface of A3 steel. The adsorption of the dual-functional surfactants followed the Langmuir isotherm. The experimental data were also supported by quantum calculations.


Corresponding author: Jingwen Yang, Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an, 710065, China; and Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi’an Shiyou University, Xi’an, 710065, China, E-mail:

Acknowledgments

The work of the Centre of Advanced Analysis and Testing at Xi`an Shiyou University is gratefully acknowledged.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Conflict of interest: The authors state no conflict of interest.

  5. Research funding: The work was supported financially by the Key Projects of China National Key R&D Plan (2021YFE0107000), National Natural Science Foundation of China (52074339) and Youth Innovation Team of Shaanxi University.

  6. Data availability: Not applicable.

  7. Use of large language models, AI and machine learning tools: None declared.

References

1. Druetta, P.; Raffa, P.; Picchioni, F. Chemical Enhanced Oil Recovery and the Role of Chemical Product Design. Appl. Energy 2019, 252, 113480. https://doi.org/10.1016/j.apenergy.2019.113480.Search in Google Scholar

2. Liu, Y. F.; Feng, H. X.; Wang, L. Y.; Yang, T. T.; Qiu, J. H. Preparation of Bis-Thiophene Schiff Alkali-Copper Metal Complex for Metal Corrosion Inhibition. Materials 2023, 16 (8), 3214. https://doi.org/10.3390/ma16083214.Search in Google Scholar PubMed PubMed Central

3. Zhang, J.; Bai, Y.; Du, W. C.; Wu, Y.; Gu, X. F.; Li, H.; Ma, Y.; Qu, C. T.; Chen, G. The Effect of Anion on Cationic Surfactants and a Structure-Efficiency Relationship Study. Desalin. Water Treat. 2019, 140, 207–211. https://doi.org/10.5004/dwt.2019.23371.Search in Google Scholar

4. Zhu, Y. K.; Free, M. L.; Woollam, R.; Durnie, W. A Review of Surfactants as Corrosion Inhibitors and Associated Modeling. Prog. Mater. Sci. 2017, 90, 159–223. https://doi.org/10.1016/j.pmatsci.2017.07.006.Search in Google Scholar

5. Aslam, R.; Mobin, M.; Aslam, J.; Aslam, A.; Zehra, S.; Masroor, S. Application of Surfactants as Anticorrosive Materials: A Comprehensive Review. Adv. Colloid Interface Sci. 2021, 295, 102481. https://doi.org/10.1016/j.cis.2021.102481.Search in Google Scholar PubMed

6. Gao, M. L.; Zhang, J.; Liu, Q. N.; Li, J. L.; Zhang, R. J.; Chen, G. Effect of the Alkyl Chain of Quaternary Ammonium Cationic Surfactants on Corrosion Inhibition in Hydrochloric Acid Solution. C. R. Chim. 2019, 22 (5), 355–362. https://doi.org/10.1016/j.crci.2019.03.006.Search in Google Scholar

7. Sliem, M. H.; Afifi, M.; Radwan, A. B.; Fayyad, E. M.; Shibl, M. F.; Heakal, F. E.; Abdullah, A. M. AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl Solution. Sci. Rep. 2019, 9, 2319. https://doi.org/10.1038/s41598-018-37254-7.Search in Google Scholar PubMed PubMed Central

8. Chen, G.; Zhou, Z. C.; Shi, X. D.; Zhang, X. L.; Dong, S. B.; Zhang, J. Synthesis of Alkylbenzenesulfonate and its Behavior as Flow Improver in Crude Oil. Fuel 2021, 288, 119644. https://doi.org/10.1016/j.fuel.2020.119644.Search in Google Scholar

9. Verma, C.; Goni, L.; Yaagoob, I. Y.; Vashisht, H.; Mazumder, M. A. J.; Alfantazi, A. Polymeric Surfactants as Ideal Substitutes for Sustainable Corrosion Protection: A Perspective on Colloidal and Interface Properties. Adv. Colloid Interface Sci. 2023, 318, 102966. https://doi.org/10.1016/j.cis.2023.102966.Search in Google Scholar PubMed

10. Chen, G.; Yan, J.; Liu, Q. N.; Zhang, J.; Li, H.; Li, J. L.; Qu, C. T.; Zhang, Y. M. Preparation and Surface Activity Study of Amino Acid Surfactants. C. R. Chim. 2019, 22 (4), 277–282. https://doi.org/10.1016/j.crci.2018.11.009.Search in Google Scholar

11. Abdel-Rahem, R. A.; Niaz, S.; Altwaiq, A. M.; Esaifan, M.; AlShamaileh, E.; Al Bawab, A. Sodium Dodecyl Benzene Sulfonate (SDBS) and N,N-Dimethyldodecan-1-Amine Oxide (DDAO) in Single and Mixed Systems as Corrosion Inhibitors of Zinc in Hydrochloric Acid. Tenside, Surfactants, Deterg. 2022, 59 (3), 240–253. https://doi.org/10.1515/tsd-2021-2417.Search in Google Scholar

12. Chang, W. J.; Hu, W. S.; Wang, X. J.; Gu, X. F.; Chen, S. J.; Chen, G. Study on an All-In-One Foaming Agent with Corrosion Inhibition for Air Foam Flooding. Tenside Surfactants Detergents. 2024, 61 (2), 158–169. https://doi.org/10.1515/tsd-2023-2574.Search in Google Scholar

13. Yang, J. W.; Wu, T. J.; Liu, Q. A.; Huang, H.; Chen, S. J.; Chen, G. Research of a Fracturing-Oil Displacement Integrated Working Fluid Based on Betaine Surfactant. Colloids Surf., A 2024, 686, 133371. https://doi.org/10.1016/j.colsurfa.2024.133371.Search in Google Scholar

14. Miller, R.; Aksenenko, E. V.; Fainerman, V. B. Dynamic Interfacial Tension of Surfactant Solutions. Adv. Colloid Interface Sci. 2017, 247, 115–129. https://doi.org/10.1016/j.cis.2016.12.007.Search in Google Scholar PubMed

15. Khowdiary, M. M.; Taha, N. A.; Saleh, N. M.; Elhenawy, A. A. Synthesis of Novel Nano-Sulfonamide Metal-Based Corrosion Inhibitor Surfactants. Materials 2022, 15 (3), 1146. https://doi.org/10.3390/ma15031146.Search in Google Scholar PubMed PubMed Central

16. Verma, C.; Rhee, K. Y.; Quraishi, M. A. Hydrophilicity and Hydrophobicity Consideration of Organic Surfactant Compounds: Effect of Alkyl Chain Length on Corrosion Protection. Adv. Colloid Interface Sci. 2022, 306, 102723. https://doi.org/10.1016/j.cis.2022.102723.Search in Google Scholar PubMed

17. Yan, J.; Liu, Q. N.; Du, W. C.; Qu, C. T.; Song, Z. F.; Li, J. L.; Zhang, J.; Chen, G. Synthesis and Properties of Octadecyl Trimethyl Ammonium Polyacrylic Surfactants. Tenside, Surfactants, Deterg. 2020, 57 (2), 122–128. https://doi.org/10.3139/113.110674.Search in Google Scholar

18. Cochran, R. E.; Kubátová, A.; Kozliak, E. I. An Approach to the Estimation of Adsorption Enthalpies of Polycyclic Aromatic Hydrocarbons on Particle Surfaces. J. Phys. Chem. A 2016, 120 (30), 6029–6038. https://doi.org/10.1021/acs.jpca.6b03611.Search in Google Scholar PubMed

19. Wu, Y. M.; Zhang, J.; Dong, S. B.; Li, Y. F.; Slany, M.; Chen, G. Use of Betaine-Based Gel and its Potential Application in Enhanced Oil Recovery. Gels 2022, 8 (6), 351. https://doi.org/10.3390/gels8060351.Search in Google Scholar PubMed PubMed Central

20. Verma, C.; Hussain, C. M.; Quraishi, M. A.; Alfantazi, A. Green Surfactants for Corrosion Control: Design, Performance and Applications. Adv. Colloid Interface Sci. 2023, 311, 102822. https://doi.org/10.1016/j.cis.2022.102822.Search in Google Scholar PubMed

21. Pan, F.; Zhang, Z. X.; Zhang, X. X.; Davarpanah, A. Impact of Anionic and Cationic Surfactants Interfacial Tension on the Oil Recovery Enhancement. Powder Technol. 2020, 373, 93–98. https://doi.org/10.1016/j.powtec.2020.06.033.Search in Google Scholar

22. Rodríguez, J. L. F.; Dynarowicz-Latka, P.; Conde, J. M. Structure of Unsaturated Fatty Acids in 2D System. Colloids Surf., B 2017, 158, 634–642. https://doi.org/10.1016/j.colsurfb.2017.07.016.Search in Google Scholar PubMed

23. Chang, K.; Macosko, C. W.; Morse, D. C. Interfacial Tension Measurement and Micellization in a Polymer Blend with Copolymer Surfactant: A False Critical Micelle Concentration. Macromolecules 2015, 48 (22), 8154–8168. https://doi.org/10.1021/acs.macromol.5b01268.Search in Google Scholar

24. Ni, G. H.; Xie, H. C.; Li, S.; Sun, Q.; Huang, D. M.; Cheng, Y. Y.; Wang, N. The Effect of Anionic Surfactant (SDS) on Pore-Fracture Evolution of Acidified Coal and its Significance for Coalbed Methane Extraction. Adv. Powder Technol. 2019, 30 (5), 940–951. https://doi.org/10.1016/j.apt.2019.02.008.Search in Google Scholar

25. Li, Y. F.; Bai, Q. Z.; Li, Q.; Huang, H.; Ni, W. J.; Wang, Q.; Xin, X.; Zhao, B.; Chen, G. Preparation of Multifunctional Surfactants Derived from Sodium Dodecylbenzene Sulfonate and Their Use in Oil-Field Chemistry. Molecules 2023, 28 (8), 3640. https://doi.org/10.3390/molecules28083640.Search in Google Scholar PubMed PubMed Central

26. Yan, J.; Li, Y. F.; Xie, X.; Slany, M.; Dong, S. B.; Wu, Y. P.; Chen, G. Research of a Novel Fracturing-Production Integral Fluid Based on Cationic Surfactant. J. Mol. Liq. 2023, 369, 120858. https://doi.org/10.1016/j.molliq.2022.120858.Search in Google Scholar

27. Shi, Y.; Ma, L. W.; Hou, S.; Dou, M.; Li, Y. F.; Du, W. C.; Chen, G. Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment. Molecules 2022, 27 (21), 7459. https://doi.org/10.3390/molecules27217459.Search in Google Scholar PubMed PubMed Central

28. Chen, F. X.; Zhou, C. R.; Li, G. P.; Peng, F. F. Thermodynamics and Kinetics of Glyphosate Adsorption on Resin D301. Arabian J. Chem. 2016, 9, S1665–S1669. https://doi.org/10.1016/j.arabjc.2012.04.014.Search in Google Scholar

29. Chen, G.; Bai, Y.; Liu, Q. N.; Zhang, J.; Gu, X. F.; Li, H.; Qu, C. T.; Zhang, Y. M. Synthesis and Interface Activity of a Series of Dicarboxylic Cationic Surfactants and a Structure-Efficiency Relationship Study. J. Surfactants Deterg. 2019, 22 (4), 691–698. https://doi.org/10.1002/jsde.12264.Search in Google Scholar

30. Ayukayeva, V. N.; Boiko, G.; Lyubchenko, N. P.; Sarmurzina, R. G.; Mukhamedova, R. F.; Karabalin, U. S.; Dergunov, S. A. Polyoxyethylene Sorbitan Trioleate Surfactant as an Effective Corrosion Inhibitor for Carbon Steel Protection. Colloids Surf., A 2019, 579, 123636. https://doi.org/10.1016/j.colsurfa.2019.123636.Search in Google Scholar

Received: 2024-06-10
Accepted: 2024-08-21
Published Online: 2024-09-12
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2024-2604/html?lang=en
Scroll to top button