Home Review on classification, physicochemical properties and applications of microbial surfactants
Article
Licensed
Unlicensed Requires Authentication

Review on classification, physicochemical properties and applications of microbial surfactants

  • Chandu S. Madankar

    Chandu S. Madankar got his Ph. D. from Indian Institute of Technology, Delhi, India in the field of Chemical Technology. He has published 10 research articles and attended several national and international conferences. He was the recipient of the Canadian Commonwealth Fellowship in University of Saskatchewan, Canada in 2011. Currently Dr. Madankar is working as Assistant Professor at the Oils, Oleochemicals and Surfactants Department.

    EMAIL logo
    and Ashwini Meshram

    Ashwini Meshram received her bachelordegree from the Laxminarayan Institute of Technology, Nagpur in 2018 in Oil, Fats and Surfactant Technology. She worked on the use of rice bran wax as a skin moisturizer. She is currently working as a research scholar at the Institute of Chemical Technology, Mumbai.

Published/Copyright: January 20, 2022
Become an author with De Gruyter Brill

Abstract

Biosurfactants are amphiphilic microbial compounds synthesized from plants and micro organisms that have both hydrophilic and hydrophobic zones, which are classified into liquid-liquid, liquid-solid and liquid-gas interfaces. Due to their versatile nature, low toxicity, and high reactivity at extreme temperatures, as well as – extremely important – their good biodegradability and environmental compatibility, biobased surfactants provide approaches for use in many environmental industries. Biosurfactants produced by microorganisms have potential applications in bioremediation as well as in the petroleum, agricultural, food, cosmetics and pharmaceutical industries. In this review article, we include a detailed overview of the knowledge obtained over the years, such as factors influencing bio-surfactant production and developments in the incorporation of biomolecules in different industries and future research needs.


Corresponding author: Chandu S. Madankar, Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai, India, E-mail:

About the authors

Chandu S. Madankar

Chandu S. Madankar got his Ph. D. from Indian Institute of Technology, Delhi, India in the field of Chemical Technology. He has published 10 research articles and attended several national and international conferences. He was the recipient of the Canadian Commonwealth Fellowship in University of Saskatchewan, Canada in 2011. Currently Dr. Madankar is working as Assistant Professor at the Oils, Oleochemicals and Surfactants Department.

Ashwini Meshram

Ashwini Meshram received her bachelordegree from the Laxminarayan Institute of Technology, Nagpur in 2018 in Oil, Fats and Surfactant Technology. She worked on the use of rice bran wax as a skin moisturizer. She is currently working as a research scholar at the Institute of Chemical Technology, Mumbai.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Varjani, S. J., Upasani, V. N. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour. Technol. 2017, 232, 389–397; https://doi.org/10.1016/j.biortech.2017.02.047.Search in Google Scholar PubMed

2. Nurfarahin, A. H., Mohamed, M. S., Phang, L. Y. Culture medium development for microbial-derived surfactants production—an overview. Molecules 2018, 23, 1–26; https://doi.org/10.3390/molecules23051049.Search in Google Scholar PubMed PubMed Central

3. Roy, A. A review on the biosurfactants: properties, types and its applications. J. Fund. Renew. Energy Appl. 2018, 8, 1–5; https://doi.org/10.4172/2090-4541.1000248.Search in Google Scholar

4. Shekhar, S., Sundaramanickam, A., Balasubramanian, T. Biosurfactant producing microbes and their potential applications: a review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1554; https://doi.org/10.1080/10643389.2014.955631.Search in Google Scholar

5. TEGEWA. 2014. https://www.tegewa.de/en/wpcontent/uploads/sites/2/2019/07/Surfactants_brochure_2014_eng.pdf.Search in Google Scholar

6. Fenibo, E. O., Ijoma, G. N., Selvarajan, R., Chikere, C. B. Microbial surfactants: the next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 2019, 7, 1–29; https://doi.org/10.3390/microorganisms7110581.Search in Google Scholar PubMed PubMed Central

7. Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., Cameotra, S. S. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 2011, 12, 633–654; https://doi.org/10.3390/ijms12010633.Search in Google Scholar PubMed PubMed Central

8. Vecino, X., Cruz, J. M., Moldes, A. B., Rodrigues, L. R. Biosurfactants in cosmetic formulations: trends and challenges. Crit. Rev. Biotechnol. 2017, 37, 911–923; https://doi.org/10.1080/07388551.2016.1269053.Search in Google Scholar PubMed

9. Banat, I. M., Satpute, S. K., Cameotra, S. S., Patil, R., Nyayanit, N. V. Cost effective technologies and renewable substrates for biosurfactants’ production. Front. Microbiol. 2014, 5, 1–18; https://doi.org/10.3389/fmicb.2014.00697.Search in Google Scholar PubMed PubMed Central

10. Kubicki, S., Bollinger, A., Katzke, N., Jaeger, K. E., Loeschcke, A., Thies, S. Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar. Drugs 2019, 17, 1–30; https://doi.org/10.3390/md17070408.Search in Google Scholar PubMed PubMed Central

11. Trimble, M. J., Mlynárčik, P., Kolář, M., Hancock, R. E. W. Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 2016, 6, 1–22; https://doi.org/10.1101/cshperspect.a025288.Search in Google Scholar PubMed PubMed Central

12. Varadavenkatesan, T., Murty, V. R. Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol. 2013, 2013, 1–8; https://doi.org/10.1155/2013/621519.Search in Google Scholar PubMed PubMed Central

13. Hu, F., Liu, Y., Li, S. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microb. Cell Factories 2019, 18, 1–13; https://doi.org/10.1186/s12934-019-1089-x.Search in Google Scholar PubMed PubMed Central

14. Yeh, M. S., Wei, Y. H., Chang, J. S. Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol. Prog. 2005, 21, 1329–1334; https://doi.org/10.1021/bp050040c.Search in Google Scholar PubMed

15. Huszcza, E., Burczyk, B. Surfactin isoforms from Bacillus coagulans. Z. Naturforsch. C Biosci. 2006, 61, 727–733; https://doi.org/10.1515/znc-2006-9-1020.Search in Google Scholar PubMed

16. Inès, M., Dhouha, G. Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 2015, 71, 100–112; https://doi.org/10.1016/j.peptides.2015.07.006.Search in Google Scholar PubMed

17. Xu, B. H., Lu, Y. Q., Ye, Z. W., Zheng, Q. W., Wei, T., Lin, J. F., Guo, L. Q. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. PLoS One 2018, 13, 1–18; https://doi.org/10.1371/journal.pone.0202893.Search in Google Scholar PubMed PubMed Central

18. Henkel, M., Hausmann, R. Diversity and classification of microbial surfactants. In Biobased Surfactants (Second Edition) Synthesis, Properties, and Applications; Ashby Richard, D., Hayes, Douglas, G., Solaiman Daniel, K. Y., Eds. Academic Press: London, 2019; pp. 41–63.10.1016/B978-0-12-812705-6.00002-2Search in Google Scholar

19. Marchant, R., Banat, I. M. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol. 2012, 30, 558–565; https://doi.org/10.1016/j.tibtech.2012.07.003.Search in Google Scholar PubMed

20. Marchant, R., Banat, I. M. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012, 34, 1597–1605; https://doi.org/10.1007/s10529-012-0956-x.Search in Google Scholar PubMed

21. Fenibo, E. O., Douglas, S. I., Stanley, H. O. A review on microbial surfactants: production, classifications, properties and characterization. J. Adv. Microbiol. 2019, 18, 1–22; https://doi.org/10.9734/jamb/2019/v18i330170.Search in Google Scholar

22. Antonieta, M., Cristina, M. Purification of peptides from Bacillus strains with biological activity. In Chromatography and Its Applications; Dhanarasu, S., Ed. Intech: Croatia, 2012; pp. 201–224.10.5772/36906Search in Google Scholar

23. Fukuoka, T., Morita, T., Konishi, M., Imura, T., Kitamoto, D. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by pseudozyma yeasts. Biotechnol. Lett. 2007, 29, 1111–1118; https://doi.org/10.1007/s10529-007-9363-0.Search in Google Scholar PubMed

24. White, D. A., Hird, L. C., Ali, S. T. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J. Appl. Microbiol. 2013, 115, 744–755; https://doi.org/10.1111/jam.12287.Search in Google Scholar PubMed

25. Tripathy, D. B., Mishra, A. Sustainable biosurfactants. Encycl. Inorg. Bioinorg. Chem. 2016, 1–17; https://doi.org/10.1002/9781119951438.eibc2433.Search in Google Scholar

26. Gautam, K. K., Tyagi, V. K. Microbial surfactants: a review. J. Oleo Sci. 2006, 55, 155–166; https://doi.org/10.5650/jos.55.155.Search in Google Scholar

27. Reis, R. S., Pacheco, G. J., Pereira, A. G., Freire, D. M. G. Biosurfactants: production and applications. In Biodegradation: Life of Science; Chamy, R., Rosenkranz, F., Eds. InTech: Croatia, 2013; pp. 31–62.10.5772/56144Search in Google Scholar

28. Fracchia, L., Cavallo, M., Giovanna, M., Banat, I. M. Biosurfactants and bioemulsifiers biomedical and related applications – present status and future potentials. In Biomedical Science, Engineering and Technology; Ghista, D. N., Ed. InTech: London, 2012; pp. 325–370.10.5772/23821Search in Google Scholar

29. Dams-Kozlowska, H., Mercaldi, M. P., Panilaitis, B. J., Kaplan, D. L. Modifications and applications of the Acinetobacter venetianus RAG-1 exopolysaccharide, the emulsan complex and its components. Appl. Microbiol. Biotechnol. 2008, 81, 201–210; https://doi.org/10.1007/s00253-008-1664-2.Search in Google Scholar PubMed

30. Pines, O., Gutnick, D. Role for emulsan in growth of Acinetobacter calcoaceticus RAG-1 on crude oil. Appl. Environ. Microbiol. 1986, 51, 661–663; https://doi.org/10.1128/aem.51.3.661-663.1986.Search in Google Scholar PubMed PubMed Central

31. Edosa, T. T., Jo, Y. H., Keshavarz, M., Han, Y. S. Biosurfactants: production and potential application in insect pest management. Trends Entomol. 2018, 14, 79; https://doi.org/10.31300/tent.14.2018.79-87.Search in Google Scholar

32. Barkay, T., Navon-Venezia, S., Ron, E. Z., Rosenberg, E. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 1999, 65, 2697–2702; https://doi.org/10.1128/aem.65.6.2697-2702.1999.Search in Google Scholar

33. Kaplan, N., Rosenberg, E., Jann, B., Jann, K. Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Eur. J. Biochem. 1985, 152, 453–458; https://doi.org/10.1111/j.1432-1033.1985.tb09218.x.Search in Google Scholar PubMed

34. Floris, R., Rizzo, C., Lo Giudice, A. Biosurfactants from marine microorganisms. In Metabolomics – New Insights into Biology and Medicine; Hozzein, W. N., Ed. InTech: Croatia, 2018; pp. 1–16.10.5772/intechopen.80493Search in Google Scholar

35. Georgiou, G., Lin, S. C., Sharma, M. M. Surface-active compounds from microorganisms. Bio Technol. 1992, 10, 60–65; https://doi.org/10.1038/nbt0192-60.Search in Google Scholar PubMed

36. Md, F. Biosurfactant: production and application. J. Petrol Environ. Biotechnol. 2012, 03, 1–5; https://doi.org/10.4172/2157-7463.1000124.Search in Google Scholar

37. Meliani, A., Bensoltane, A. The ability of some pseudomonas strains to produce biosurfactant. Poultry Fish. Wildl. Sci. 2014, 2, 1–5; https://doi.org/10.4172/2375-446x.1000112.Search in Google Scholar

38. Alizadeh-Sani, M., Hamishehkar, H., Khezerlou, A., Azizi-Lalabadi, M., Azadi, Y., Nattagh-Eshtivani, E., Fasihi, M., Ghavami, A., Aynehchi, A., Ehsani, A. Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Adv. Pharmaceut. Bull. 2018, 8, 191–199; https://doi.org/10.15171/apb.2018.023.Search in Google Scholar PubMed PubMed Central

39. Yakimov, M. M., Timmis, K. N., Wray, V., Fredrickson, H. L. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 1995, 61, 1706–1713; https://doi.org/10.1128/aem.61.5.1706-1713.1995.Search in Google Scholar PubMed PubMed Central

40. Makkar, R. S., Cameotra, S. S., Banat, I. M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 2011, 1, 1–19; https://doi.org/10.1186/2191-0855-1-5.Search in Google Scholar PubMed PubMed Central

41. Jung, J., Park, W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 2533–2548; https://doi.org/10.1007/s00253-015-6439-y.Search in Google Scholar PubMed

42. Uzoigwe, C., Burgess, J. G., Ennis, C. J., Rahman, P. K. S. M. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 2015, 6, 1–6; https://doi.org/10.3389/fmicb.2015.00245.Search in Google Scholar PubMed PubMed Central

43. Vijayakumar, S., Saravanan, V. Biosurfactants-types, sources and applications. Res. J. Microbiol. 2015, 10, 181–192; https://doi.org/10.3923/jm.2015.181.192.Search in Google Scholar

44. Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., Sarubbo, L. A. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401; https://doi.org/10.3390/ijms17030401.Search in Google Scholar PubMed PubMed Central

45. Mouafo, T. H., Mbawala, A., Ndjouenkeu, R. Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. Biomed Res. Int. 2018, 2018, 1–15; https://doi.org/10.1155/2018/5034783.Search in Google Scholar PubMed PubMed Central

46. Mulligan, C., Gibbs, B. F. Types production and applications of biosurfactant. Proc. Indian Natl. Sci. Acad. 2004, 70, 31–55.Search in Google Scholar

47. Thavasi, R., Nambaru, V. R. M. S., Jayalakshmi, S., Balasubramanian, T., Banat, I. M. Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J. Microbiol. 2011, 51, 30–36; https://doi.org/10.1007/s12088-011-0076-7.Search in Google Scholar PubMed PubMed Central

48. SousaI, M., Dantas, I. T., Feitosa, F. X., Alencar, A. E. V., Soares, S. A., Melo, V. M. M., Gonçalves, L. R. B., Sant’ana, H. B. Performance of a biosurfactant produced by Bacillus subtilis LAMI005 on the formation of oil/biosurfactant/water emulsion: study of the phase behaviour of emulsified systems. Braz. J. Chem. Eng. 2014, 31, 613–623; https://doi.org/10.1590/0104-6632.20140313s00002766.Search in Google Scholar

49. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 1–9; https://doi.org/10.1186/1556-276X-8-102.Search in Google Scholar PubMed PubMed Central

50. Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., Alarcon, E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, 1–36; https://doi.org/10.1016/j.heliyon.2018.e01067.Search in Google Scholar PubMed PubMed Central

51. Shah, N., Nikam, R., Gaikwad, S., Sapre, V., Kaur, J. Biosurfactant: types, detection methods, importance and applications. Indian J. Microbiol. Res. 2016, 3, 5–10; https://doi.org/10.5958/2394-5478.2016.00002.9.Search in Google Scholar

52. Deb, M., Mandal, N., Sathiavelu, M., Arunachalam, S. Application and future aspects of microbial biosurfactants – review. Res. J. Pharmaceut. Biol. Chem. Sci. 2016, 7, 2803–2812.Search in Google Scholar

53. Kim, S. Y., Oh, D. K., Lee, K. H., Kim, J. H. Effect of soybean oil and glucose on sophorose lipid fermentation by Torulopsis bombicola in continuous culture. Appl. Microbiol. Biotechnol. 1997, 48, 23–26; https://doi.org/10.1007/s002530051009.Search in Google Scholar PubMed

54. Pekin, G., Vardar-Sukan, F., Kosaric, N. Production of sophorolipids from Candida bombicola ATCC 22214 using Turkish corn oil and honey. Eng. Life Sci. 2005, 5, 357–362; https://doi.org/10.1002/elsc.200520086.Search in Google Scholar

55. Amézcua-Vega, C., Poggi-Varaldo, H. M., Esparza-García, F., Ríos-Leal, E., Rodríguez-Vázquez, R. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour. Technol. 2007, 98, 237–240; https://doi.org/10.1016/j.biortech.2005.11.025.Search in Google Scholar PubMed

56. Willenbacher, J., Yeremchuk, W., Mohr, T., Syldatk, C., Hausmann, R. Enhancement of Surfactin yield by improving the medium composition and fermentation process. AMB Express 2015, 5, 1–9; https://doi.org/10.1186/s13568-015-0145-0.Search in Google Scholar PubMed PubMed Central

57. Kurtzman, C. P., Price, N. P. J., Ray, K. J., Kuo, T. M. Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol. Lett. 2010, 311, 140–146; https://doi.org/10.1111/j.1574-6968.2010.02082.x.Search in Google Scholar PubMed

58. Ghribi, D., Ellouze-Chaabouni, S. Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol. Res. Int. 2011, 2011, 1–6; https://doi.org/10.4061/2011/653654.Search in Google Scholar PubMed PubMed Central

59. Cristóvão, R., Botelho, C., Martins, R., Boaventura, R. Pollution prevention and wastewater treatment in fish canning industries of Northern Portugal. Int. Conf. Environ. Sci. Eng. 2012, 32, 12–16; https://doi.org/10.7763/IPCBEE.Search in Google Scholar

60. Archana, S., Tomar, G. S., Srinikethan, G. Studies on production of biosurfactant from Pseudomonas aeruginosa (MTCC7815) & its application in microbial enhanced oil recovery. Res J. Chem. Environ. Sci. 2016, 4, 84–91.Search in Google Scholar

61. Willenbacher, J., Rau, J. T., Rogalla, J., Syldatk, C., Hausmann, R. Foam-free production of Surfactin via anaerobic fermentation of Bacillus subtilis DSM 10T. AMB Express 2015, 5, 1–9; https://doi.org/10.1186/s13568-015-0107-6.Search in Google Scholar PubMed PubMed Central

62. Moussa, T. A. A., Mohamed, M. S., Samak, N. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 2014, 31, 867–880; https://doi.org/10.1590/0104-6632.20140314s00002473.Search in Google Scholar

63. Pereira, J. F. B., Gudiña, E. J., Costa, R., Vitorino, R., Teixeira, J. A., Coutinho, J. A. P., Rodrigues, L. R. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 2013, 111, 259–268; https://doi.org/10.1016/j.fuel.2013.04.040.Search in Google Scholar

64. Makkar, R. S., Cameotra, S. S. Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45 °C. J. Surfactants Deterg. 2002, 5, 11–17; https://doi.org/10.1007/s11743-002-0199-8.Search in Google Scholar

65. Jain, R. M., Mody, K., Joshi, N., Mishra, A., Jha, B. Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: evaluation of different carbon sources. Colloids Surf. B Biointerfaces 2013, 108, 199–204; https://doi.org/10.1016/j.colsurfb.2013.03.002.Search in Google Scholar PubMed

66. Liu, X., Ren, B., Gao, H., Liu, M., Dai, H., Song, F., Yu, Z., Wang, S., Hu, J., Kokare, C. R., Zhang, L. Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One 2012, 7, 1–9; https://doi.org/10.1371/journal.pone.0034430.Search in Google Scholar PubMed PubMed Central

67. Lowor, S. T., Agyente-Badu, C. K. Mineral and proximate composition of cashew apple (Anarcadium occidentale L.) juice from Northern savannah, forest and coastal savannah regions in Ghana. Am. J. Food Technol. 2009, 4, 154–161; https://doi.org/10.3923/ajft.2009.154.161.Search in Google Scholar

68. Gudiña, E. J., Teixeira, J. A., Rodrigues, L. R. Biosurfactant-producing lactobacilli: screening, production profiles, and effect of medium composition. Appl. Environ. Soil Sci. 2011, 2011, 1–9; https://doi.org/10.1155/2011/201254.Search in Google Scholar

69. Adamczak, M., Bednarski, W. Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida antarctica. Biotechnol. Lett. 2000, 22, 313–316; https://doi.org/10.1023/A:1005634802997.10.1023/A:1005634802997Search in Google Scholar

70. Sarubbo, L. A., Farias, C. B. B., Campos-Takaki, G. M. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr. Microbiol. 2007, 54, 68–73; https://doi.org/10.1007/s00284-006-0412-z.Search in Google Scholar PubMed

71. Kaskatepe, B., Yildiz, S. Rhamnolipid biosurfactants produced by pseudomonas species. Braz. Arch. Biol. Technol. 2016, 59, 1–16; https://doi.org/10.1590/1678-4324-2016160786.Search in Google Scholar

72. Jayanthi, C., Revathi, K. Optimization of biosurfactant production from hydrocarbonoclastic bacteria Pseudomonas putida. Int. J. Curr. Res. Biol. Med. 2016, 1, 22–27.Search in Google Scholar

73. Agarry, S. E., Salam, K. K., Arinkoola, A., Aremu, M. O. Biosurfactant production by indigeneous Pseudomonas and Bacillus species isolated from auto-mechanic soil environment towards microbial enhanced oil recovery. Eur. J. Eng. Technol. 2015, 3, 27–39.Search in Google Scholar

74. Zhang, J., Xue, Q., Gao, H., Lai, H., Wang, P. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb. Cell Factories 2016, 15, 1–11; https://doi.org/10.1186/s12934-016-0574-8.Search in Google Scholar PubMed PubMed Central

75. Nagendramma, P., Kumar, P. Eco-friendly multipurpose lubricating greases from vegetable residual oils. Lubricants 2015, 3, 628–636; https://doi.org/10.3390/lubricants3040628.Search in Google Scholar

76. Kim, H. S., Jeon, J. W., Kim, B. H., Ahn, C. Y., Oh, H. M., Yoon, B. D. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl. Microbiol. Biotechnol. 2006, 70, 391–396; https://doi.org/10.1007/s00253-005-0092-9.Search in Google Scholar PubMed

77. Thaniyavarn, J., Chongchin, A., Wanitsuksombut, N., Thaniyavarn, S., Pinphanichakarn, P., Leepipatpiboon, N., Morikawa, M., Kanaya, S. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J. Gen. Appl. Microbiol. 2006, 52, 215–222; https://doi.org/10.2323/jgam.52.215.Search in Google Scholar PubMed

78. Rufino, R. D., de Luna, J. M., de Campos Takaki, G. M., Sarubbo, L. A. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 2014, 17, 34–38; https://doi.org/10.1016/j.ejbt.2013.12.006.Search in Google Scholar

79. Ezebuiro, V., Jonathan Otaraku, I., Oruwari, B., Chijioke Okpokwasili, G. Effects of nitrogen and carbon sources on biosurfactant production by hydrocarbon-utilizing Stenotrophomonas sp. Microbiol. Res. J. Int. 2019, 29, 1–10; https://doi.org/10.9734/mrji/2019/v29i530177.Search in Google Scholar

80. Onwosi, C. O., Odibo, F. J. C. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J. Microbiol. Biotechnol. 2012, 28, 937–942; https://doi.org/10.1007/s11274-011-0891-3.Search in Google Scholar PubMed

81. Silva, S. N. R. L., Farias, C. B. B., Rufino, R. D., Luna, J. M., Sarubbo, L. A. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B Biointerfaces 2010, 79, 174–183; https://doi.org/10.1016/j.colsurfb.2010.03.050.Search in Google Scholar PubMed

82. Thavasi, R., Jayalakshmi, S., Balasubramanian, T., Banat, I. M. Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J. Microbiol. Biotechnol. 2008, 24, 917–925; https://doi.org/10.1007/s11274-007-9609-y.Search in Google Scholar

83. Aparecida, G. M. E., Lima Martins, J. J., Ponte Rocha, M. V., Melo, V. M. M., Barros Gonçalves, L. R. Clarified cashew apple juice as alternative raw material for biosurfactant production by Bacillus subtilis in a batch bioreactor. Biotechnol. J. 2009, 4, 738–747; https://doi.org/10.1002/biot.200800296.Search in Google Scholar PubMed

84. Bezza, F. A., Chirwa, E. M. N. Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. J. Hazard. Mater. 2017, 321, 218–227; https://doi.org/10.1016/j.jhazmat.2016.08.035.Search in Google Scholar PubMed

85. Kutvonen, H., Rajala, P., Carpén, L., Bomberg, M. Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. Front. Microbiol. 2015, 6, 1–16; https://doi.org/10.3389/fmicb.2015.01079.Search in Google Scholar PubMed PubMed Central

86. Plaitakis, A., Kalef-Ezra, E., Kotzamani, D., Zaganas, I., Spanaki, C. The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease. Biology 2017, 6, 1–26; https://doi.org/10.3390/biology6010011.Search in Google Scholar PubMed PubMed Central

87. Taskin, M., Kurbanoglu, E. B. Evaluation of waste chicken feathers as peptone source for bacterial growth. J. Appl. Microbiol. 2011, 111, 826–834; https://doi.org/10.1111/j.1365-2672.2011.05103.x.Search in Google Scholar

88. Peng, Z., Mao, X., Zhang, J., Du, G., Chen, J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb. Cell Factories 2019, 18, 1–11; https://doi.org/10.1186/s12934-019-1134-9.Search in Google Scholar

89. Kim, H. S., Yoon, B. D., Choung, D. H., Oh, H. M., Katsuragi, T., Tani, Y. Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16. Appl. Microbiol. Biotechnol. 1999, 52, 713–721; https://doi.org/10.1007/s002530051583.Search in Google Scholar

90. Kiran, G. S., Hema, T. A., Gandhimathi, R., Selvin, J., Anto Thomas, T., Ravji, T. R., Natarajaseenivasan, K. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf. B Biointerfaces 2009, 73, 250–256; https://doi.org/10.1016/j.colsurfb.2009.05.025.Search in Google Scholar

91. Oliveira, F. J. S., Vazquez, L., de Campos, N. P., de França, F. P. Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem. 2008, 44, 383–389; https://doi.org/10.1016/j.procbio.2008.11.014.Search in Google Scholar

92. Cunha, C. D., Do Rosário, M., Rosado, A. S., Leite, S. G. F. Serratia sp. SVGG16: a promising biosurfactant producer isolated from tropical soil during growth with ethanol-blended gasoline. Process Biochem. 2003, 39, 2277–2282; https://doi.org/10.1016/j.procbio.2003.11.027.Search in Google Scholar

93. Desai, J. D., Banat, I. M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64; https://doi.org/10.1128/.61.1.47-64.1997.Search in Google Scholar

94. Fiechter, A. Biosurfactants: moving towards industrial application. Trends Biotechnol. 1992, 10, 208–217; https://doi.org/10.1016/0167-7799(92)90215-H.Search in Google Scholar

95. Ramsay, J. A., Cooper, D. G., Neufeld, R. J. Effects of oil reservoir conditions on the production of water‐insoluble levan by Bacillus licheniformis. Geomicrobiol. J. 1989, 7, 155–165; https://doi.org/10.1080/01490458909377859.Search in Google Scholar

96. Olasanmi, I. O., Thring, R. W. The role of biosurfactants in the continued drive for environmental sustainability. Sustainability 2018, 10, 1–12; https://doi.org/10.3390/su10124817.Search in Google Scholar

97. Yan, G., Ma, W., Chen, C., Wang, Q., Guo, S., Ma, J. Combinations of surfactant flushing and bioremediation for removing fuel hydrocarbons from contaminated soils. Clean Soil Air Water 2016, 44, 984–991; https://doi.org/10.1002/clen.201500571.Search in Google Scholar

98. Azubuike, C. C., Chikere, C. B., Okpokwasili, G. C. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 1–18; https://doi.org/10.1007/s11274-016-2137-x.Search in Google Scholar PubMed PubMed Central

99. Smyth, T. J. P., Perfumo, A., Marchant, R., Banat, I. M. Isolation and analysis of low molecular weight microbial glycolipids. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K. N., Ed. SpringerLink: Braunschweig, 2010; pp. 3706–3721.10.1007/978-3-540-77587-4_291Search in Google Scholar

100. Rashedi, H., Jamshidi, E., Mazaheri Assadi, M., Bonakdarpour, B. Isolation and production of biosurfactant from Pseudomonas aeruginosa isolated from Iranian southern wells oil. Int. J. Environ. Sci. Technol. 2005, 2, 121–127.10.1007/BF03325858Search in Google Scholar

101. Christofi, N., Ivshina, I. B. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 2002, 93, 915–929; https://doi.org/10.1046/j.1365-2672.2002.01774.x.Search in Google Scholar PubMed

102. Fabón, G., Martínez-Abaigar, J., Tomás, R., Núñez-Olivera, E. Effects of enhanced UV-B radiation on hydroxycinnamic acid derivatives extracted from different cell compartments in the aquatic liverwort Jungermannia exsertifolia subsp. Cordifolia. Physiol. Plantarum 2010, 140, 269–279; https://doi.org/10.1111/j.1399-3054.2010.01401.x.Search in Google Scholar PubMed

103. Antoniou, E., Fodelianakis, S., Korkakaki, E., Kalogerakis, N. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front. Microbiol. 2015, 6, 1–14; https://doi.org/10.3389/fmicb.2015.00274.Search in Google Scholar PubMed PubMed Central

104. Franzetti, A., Caredda, P., Ruggeri, C., La Colla, P., Tamburini, E., Papacchini, M., Bestetti, G. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 2009, 75, 801–807; https://doi.org/10.1016/j.chemosphere.2008.12.052.Search in Google Scholar PubMed

105. Kralova, I., Sjöblom, J. Surfactants used in food industry: a review. J. Dispersion Sci. Technol. 2009, 30, 1363–1383; https://doi.org/10.1080/01932690902735561.Search in Google Scholar

106. Sinumvayo, J. P. Agriculture and food applications of rhamnolipids and its production by Pseudomonas aeruginosa. J. Chem. Eng. Process Technol. 2015, 06, 2–9; https://doi.org/10.4172/2157-7048.1000223.Search in Google Scholar

107. Campos, J. M., Montenegro Stamford, T. L., Sarubbo, L. A., de Luna, J. M., Rufino, R. D., Banat, I. M. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013, 29, 1097–1108; https://doi.org/10.1002/btpr.1796.Search in Google Scholar PubMed

108. Ganceviciene, R. A., Liakou, I. A., Theodoridis, A., Makrantonaki, E., Zouboulis, C. C. Skin anti-aging strategies. Derm. Endocrinol. 2012, 4, 308–319; https://doi.org/10.4161/derm.22804.Search in Google Scholar PubMed PubMed Central

109. Daga, L. A., Hills, S. Biosurfactant: classification, properties and recent application. J. Emerg. Technol. Innovat. Res. 2018, 5, 160–167.Search in Google Scholar

110. Zhang, S., Duan, E. Fighting against skin aging: the way from bench to bedside. Cell Transplant. 2018, 27, 729–738; https://doi.org/10.1177/0963689717725755.Search in Google Scholar PubMed PubMed Central

111. Salavkar, S. M., Tamanekar, R. A., Athawale, R. B. Antioxidants in skin ageing – future of dermatology. Int. J. Green Pharm. 2011, 5, 161–168; https://doi.org/10.4103/0973-8258.91221.Search in Google Scholar

112. Takahashi, M., Morita, T., Fukuoka, T., Imura, T., Kitamoto, D. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2-induced oxidative stress in cultured human skin fibroblasts. J. Oleo Sci. 2012, 61, 457–464; https://doi.org/10.5650/jos.61.457.Search in Google Scholar PubMed

113. D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248; https://doi.org/10.3390/ijms140612222.Search in Google Scholar PubMed PubMed Central

114. Gudiña, E. J., Fernandes, E. C., Rodrigues, A. I., Teixeira, J. A., Rodrigues, L. R. Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front. Microbiol. 2015, 6, 1–8; https://doi.org/10.3389/fmicb.2015.00059.Search in Google Scholar PubMed PubMed Central

115. Ahmadi-Ashtiani, H., Baldisserotto, A., Cesa, E., Manfredini, S., Zadeh, H. S., Gorab, M. G., Khanahmadi, M., Zakizadeh, S., Buso, P., Vertuani, S. Microbial biosurfactants as key multifunctional ingredients for sustainable cosmetics. Cosmetics 2020, 7, 1–35; https://doi.org/10.3390/COSMETICS7020046.Search in Google Scholar

116. Kim, J. H., Choi, J., Choi, S., Kim, W., Lee, S. Study on the dependence of sun protection factor on particle size distribution of mica using gravitational field-flow fractionation. Bull. Kor. Chem. Soc. 2020, 41, 66–72; https://doi.org/10.1002/bkcs.11920.Search in Google Scholar

117. Covaleda-Cortés, G., Hernández, M., Trejo, S. A., Mansur, M., Rodríguez-Calado, S., García-Pardo, J., Lorenzo, J., Vendrell, J., Chávez, M. Á., Alonso-del-Rivero, M., Avilés, F. X. Characterization, recombinant production and structure-function analysis of NvCI, A picomolar metallocarboxypeptidase inhibitor from the marine snail nerita versicolor. Mar. Drugs 2019, 17, 1–19; https://doi.org/10.3390/md17090511.Search in Google Scholar PubMed PubMed Central

118. Shetty, P. K., Venuvanka, V., Jagani, H. V., Chethan, G. H., Ligade, V. S., Musmade, P. B., Nayak, U. Y., Reddy, M. S. R., Kalthur, G., Udupa, N., Rao, C. M., Mutalik, S. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int. J. Nanomed. 2015, 10, 6477–6491; https://doi.org/10.2147/IJN.S90964.Search in Google Scholar PubMed PubMed Central

119. Das, I., Roy, S., Chandni, S., Karthik, L., Kumar, G., Bhaskara Rao, K. V. Biosurfactant from marine actinobacteria and its application in cosmetic formulation of toothpaste. Der Pharm. Lett. 2013, 5, 1–6.Search in Google Scholar

120. Resende, A. H. M., Farias, J. M., Silva, D. B., Rufino, R. D., Luna, J. M. Application of biosurfactants and chitosan in toothpaste formulation. Colloids Surf. B Biointerfaces 2019, 181, 77–84; https://doi.org/10.1016/j.colsurfb.2019.05.032.Search in Google Scholar PubMed

121. Oliveira, M. R., Magri, A., Baldo, C., CAmiliou-Neto, D., Minucelli, T., Celligoi, M. A. P. C. Review: sophorolipids A promising biosurfactant and it’s applications. Int. J. Adv. Biotechnol. Res. 2018, 6, 161–174.Search in Google Scholar

122. Randhawa, K. K. S., Rahman, P. K. S. M. Rhamnolipid biosurfactants-past, present, and future scenario of global market. Front. Microbiol. 2014, 5, 1–7; https://doi.org/10.3389/fmicb.2014.00454.Search in Google Scholar PubMed PubMed Central

Received: 2021-02-10
Accepted: 2021-06-30
Published Online: 2022-01-20
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2021-2353/html
Scroll to top button