Home Physical Sciences Interfacial Behaviour of Saponin Based Surfactant for Potential Application in Cleaning
Article
Licensed
Unlicensed Requires Authentication

Interfacial Behaviour of Saponin Based Surfactant for Potential Application in Cleaning

Grenzflächenverhalten eines Tensids auf Saponinbasis für potenzielle Anwendung in der Reinigung.
  • Gajendra Rajput EMAIL logo , Niki Pandya , Darshan Soni , Harshal Vala and Jainik Modi
Published/Copyright: March 13, 2021
Become an author with De Gruyter Brill

Abstract

Amphiphilic molecules reduce the surface tension of the aqueous medium and are widely used in industrial and domestic applications due to this property. Nowadays, amphiphilic molecules on a natural basis are in great demand to replace synthetic surfactants and thus contribute to the reduction of environmental problems. Approximately 60% of the material based on surfactants end up in seawater, which is dangerous for aquatic life. We are proposing a new type of material, which is a surfactant on a natural basis, biodegradable and an environmentally friendly alternative. Here we focus on tea saponin and study its properties such as surface tension, foaming, skin mildness, cleanability. Tea is naturally acidic, reduces the surface tension to 31.4 mN/m, has a greater foaming power, is ultra-mild to skin, and has excellent cleaning properties. The results show that tea has excellent surface activity, which is why tea can be used as a green substitute for synthetic surfactants.

Abstract

Amphiphile Moleküle verringern die Oberflächenspannung des wässrigen Mediums und sind aufgrund dieser Eigenschaft im industriellen und häuslichen Bereich weit verbreitet. Heutzutage sind amphiphile Moleküle auf natürlicher Basis sehr gefragt, um synthetische Tenside zu ersetzen und so zur Verringerung des Umweltproblems beizutragen. Ca. 60% der Materialien, die auf Tensiden basieren, gelangen in das Meerwasser, was für Wasserlebewesen gefährlich ist. Wir schlagen ein neuartiges Material vor, bei dem es sich um ein Tensid auf natürlicher Basis handelt, das biologisch abbaubar und eine umweltfreundliche Alternative darstellt. Hier konzentrieren wir uns auf Teesaponin und untersuchen seine Eigenschaften wie Oberflächenspannung, Schaumbildung, Hautfreundlichkeit, und Reinigungsleistung. Tee ist von Natur aus säurehaltig, reduziert die Oberflächenspannung auf 31,4 mN/m, hat ein größeres Schaumvermögen, ist ultra-mild zur Haut, und besitzt eine ausgezeichnete Reinigungsfähigkeit. Die Ergebnisse zeigen, dass Tee eine hervorragende Oberflächenaktivität aufweist, weshalb Tee als grüner Ersatz für synthetische Tenside verwendet werden kann.


Tel.: +91 8140692495

References

1 Rosen, M. and J., Kunjappu, J. T.: Surfactants and interfacial phenomena, John Wiley & Sons (2012). DOI:10.1002/978111822892010.1002/9781118228920Search in Google Scholar

2 Kronberg, B., Holmberg, K. and Lindman, B.: Surface chemistry of surfactants and polymers, John Wiley & Sons (2014). DOI:10.1002/978111869596810.1002/9781118695968Search in Google Scholar

3 Mittal, K. L.: Solution chemistry of surfactants, Springer Science & Business Media 2012.Search in Google Scholar

4 Edser, C.: Latest market analysis, Focus on Surfactants, 5 (2006) 1–2. DOI:10.1016/S1351-4210(06)71142-810.1016/S1351-4210(06)71142-8Search in Google Scholar

5 Ivanković, T. and Hrenović, J.: Surfactants in the environment, Archives of Industrial Hygiene and Toxicology, 61 (2010) 95–110. PMid:20338873; DOI:10.2478/10004-1254-61-2010-194310.2478/10004-1254-61-2010-1943Search in Google Scholar

6 Schmitt, C., Grassl, B., Lespes, G., Desbrières, J., Pellerin, V., Reynaud, S., Gigault, J. and Hackley, V.: Saponins: A renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices, Biomacromolecules, 15 (2014) 856–862. PMid:24443771; DOI:10.1021/bm401708 m10.1021/bm401708mSearch in Google Scholar

7 Tmáková, L., Sekretár, S. and Schmidt, Š.: Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities, Chemical Papers, 70 (2016) 188–196. DOI:10.1515/chempap-2015-020010.1515/chempap-2015-0200Search in Google Scholar

8 Pradhan, A. and Bhattacharyya, A.: Shampoos then and now: synthetic versus natural, J Surf Sci Technol, 30 (2014) 59–76. DOI:10.18311/JSST/2014/185610.18311/JSST/2014/1856Search in Google Scholar

9 Ostroumov, S.: Studying effects of some surfactants and detergents on filter-feeding bivalves, Aquatic Biodiversity, Springer (2003) 341–344. DOI:10.1007/978-94-007-1084-9_2410.1007/978-94-007-1084-9_24Search in Google Scholar

10 Chevalier, Y.: New surfactants: new chemical functions and molecular architectures, Current opinion in colloid & interface science, 7 (2002) 3–11. DOI:10.1016/S1359-0294(02)00006-710.1016/S1359-0294(02)00006-7Search in Google Scholar

11 Salati, S., Papa, G. and Adani, F.: Perspective on the use of humic acids from biomass as natural surfactants for industrial applications, Biotechnology advances, 29 (2011) 913–922. PMid:21827846; DOI:10.1016/j.biotechadv.2011.07.01210.1016/j.biotechadv.2011.07.012Search in Google Scholar PubMed

12 Mondal, M. H., Malik, S., Garain, A., Mandal, S. and Saha, B.: Extraction of natural surfactant saponin from soapnut (Sapindus mukorossi) and its utilization in the remediation of hexavalent chromium from contaminated water. Tenside Surfactants Detergents, 54 (2017) 519–529. DOI:10.3139/113.11052310.3139/113.110523Search in Google Scholar

13 Hajimohammadi, R., Hosseini, M., Amani, H. and Darzi, G. N.: Experimental design procedure for optimization of saponin extraction from Glycyrrhiza glabra: a biosurfactant for emulsification of heavy crude oil. Tenside Surfactants Detergents, 54 (2017) 308–314. DOI:10.3139/113.11050610.3139/113.110506Search in Google Scholar

14 Ross, J. and Miles, G. D.: An apparatus for comparison of foaming properties of soaps and detergents, Oil & Soap, 18 (1941) 99–102. DOI:10.1007/BF0254541810.1007/BF02545418Search in Google Scholar

15 Kothekar, S. C., Ware, A. M., Waghmare, J. T. and Momin, S.: Comparative analysis of the properties of Tween-20, Tween-60, Tween-80, Arlacel-60, and Arlacel-80, Journal of dispersion science and technology, 28 (2007) 477–484. DOI:10.1080/0193269060110804510.1080/01932690601108045Search in Google Scholar

16 Sharma, P.: Cosmetics: formulation, manufacturing and quality control, Vandana Publications (2008).Search in Google Scholar

17 Mainkar, A. and Jolly, C.: Evaluation of commercial herbal shampoos, International journal of cosmetic science, 22 (2000) 385–391. PMid:18503425; DOI:10.1046/j.1467-2494.2000.00047.x10.1046/j.1467-2494.2000.00047.xSearch in Google Scholar PubMed

18 Negm, N. A. and Mohamed, A. S.: Surface and thermodynamic properties of diquaternary bola-form amphiphiles containing an aromatic spacer, Journal of surfactants and detergents, 7 (2004) 23–30. DOI:10.1007/s11743-004-0284-z10.1007/s11743-004-0284-zSearch in Google Scholar

19 Miller, R., Aksenenko, E. and Fainerman, V.: Dynamic interfacial tension of surfactant solutions, Advances in colloid and interface science, 247 (2017) 115–129. PMid:28063521; DOI:10.1016/j.cis.2016.12.00710.1016/j.cis.2016.12.007Search in Google Scholar PubMed

20 Varade, D., Carriere, D., Arriaga, L., Fameau, A. L., Rio, E., Langevin, D. and Drenckhan, W.: On the origin of the stability of foams made from catanionic surfactant mixtures, Soft Matter, 7 (2011) 6557–6570. DOI:10.1039/C1SM05374D10.1039/C1SM05374DSearch in Google Scholar

21 Bureiko, A., Trybala, A., Kovalchuk, N. and Starov, V.: Current applications of foams formed from mixed surfactant–polymer solutions, Advances in colloid and interface science, 222 (2015) 670–677. PMid:25455806; DOI:10.1016/j.cis.2014.10.00110.1016/j.cis.2014.10.001Search in Google Scholar PubMed

22 Hajimohammadi, R. and Johari-Ahar, S.: Synergistic Effect of Saponin and Rhamnolipid Biosurfactants Systems on Foam Behavior. Tenside Surfactants Detergents, 55 (2018) 121–126. DOI:10.3139/113.11054610.3139/113.110546Search in Google Scholar

23 Li, M., Yang, W., Chen, Z., Qian, J., Wang, C. and Fu, S.: Phase behavior and polymerization of lyotropic phases. II. A series of polymerizable amphiphiles with systematically varied critical packing parameters, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 5887–5897. DOI:10.1002/pola.2157310.1002/pola.21573Search in Google Scholar

24 Muntaha, S. T. and Khan, M. N.: Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant–a dye surfactant interaction study, Journal of Cleaner Production, 93 (2015) 145 – 150. DOI:10.1016/j.jclepro.2015.01.02310.1016/j.jclepro.2015.01.023Search in Google Scholar

25 Zhou, C., Wang, D., Cao, M., Chen, Y., Liu, Z., Wu, C., Xu, H., Wang, S. and Wang, Y.: Self-aggregation, antibacterial activity, and mildness of cyclodextrin/ cationic trimeric surfactant complexes, ACS applied materials & interfaces, 8 (2016) 30811–30823. DOI:10.1021/acsami.6b1166710.1021/acsami.6b11667Search in Google Scholar PubMed

26 Lips, A., Ananthapadmanabhan, K., Vethamuthu, M., Hua, X., Yang, L., Vincent, C., Deo, N. and Somasundaran, P.: Role of surfactant micelle charge in protein denaturation and surfactant-induced skin irritation, Surfactants in Personal Care Products and Decorative Cosmetics, CRC Press (2006) 184–194. DOI:10.1201/9781420016123.ch910.1201/9781420016123.ch9Search in Google Scholar

Received: 2020-10-17
Accepted: 2020-11-30
Published Online: 2021-03-13

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2020-2319/pdf
Scroll to top button