Home Physical Sciences Preparation and the Foaming Activity Study of Hydroxymethyl Cetyltrimethyl Ammonium Chloride
Article
Licensed
Unlicensed Requires Authentication

Preparation and the Foaming Activity Study of Hydroxymethyl Cetyltrimethyl Ammonium Chloride

Herstellung von Hydroxymethylcetyltrimethylammoniumchlorid und Untersuchung seines Schaumvermögens.
  • Qiaona Liu

    Qiaona Liu is a graduated student of applied chemistry.

    , Yun Bai

    Yun Bai is a graduated student of applied chemistry.

    , Sanbao Dong

    Sanbao Dong is a professor of applied chemistry.

    , Jinling Li

    Jinling Li is a professor of applied chemistry.

    , Zhifei Song

    Zhifei Song is a professor of material chemistry.

    , Shijun Chen

    Shijun Chen is a professor of applied chemistry.

    , Jie Zhang

    Jie Zhang is a professor of applied chemistry.

    and Gang Chen

    Chen Gang is professor at Xi’an Shiyou University, his main research areas are Oilfield Chemistry, and Petroleum Chemistry. He is member of Chinese Chemical Society and Chemical Industry and Engineering Society of China, published more than 30 research papers and is reviewer for 15 academic journals.

    EMAIL logo
Published/Copyright: March 13, 2021
Become an author with De Gruyter Brill

Abstract

In this paper, hydroxymethyl cetyltrimethyl ammonium chloride (HM-CTAC) was prepared from cetyltrimethyl ammonium chloride (CTAC) and formaldehyde with different molar ratios (1:1 to 1: 4). The effects of reaction conditions (molar ratio) on surface properties were studied, including surface tension, foaming ability, high temperature resistance, methanol resistance and salt resistance. The results show that the minimum surface tension of HM-CTAC is lower than that of CTAC, and HM-CTAC (1:1) has the lowest surface tension of 31.89 mN · m–1. The foam volume of HM-CTAC with different molar ratios is higher than that of CTAC, and HM-CTAC (1:4) has a high foam volume of 435 mL. Compared to CTAC, the HM-CTAC under different reaction conditions has higher temperature resistance. At the methanol content of 10 wt.%, the initial foam volume of HM-CTAC is higher than that of CTAC, and the initial foam volume of HM-CTAC (1:2) is the highest with a volume of 21.5 mL. Among all the surfactants prepared under different reaction conditions, HM-CTAC (1:3) has the highest salt resistance with a relatively stable change in foam volume under different salt contents.

Abstract

In dieser Arbeit wurde Hydroxymethylcetyltrimethylammoniumchlorid (HM-CTAC) aus Cetyltrimethylammoniumchlorid (CTAC) und Formaldehyd hergestellt, wobei CTAC und Formaldehyd in unterschiedlichen Molverhältnissen (1 : 1 bis 1 : 4) eingegsetzt wurden. Die Auswirkungen der Reaktionsbedingungen (= Molverhältnisse), auf die Oberflächeneigenschaften inklusive Oberflächenspannung, Schaumvermögen, Hochtemperaturbeständigkeit, Methanolbeständigkeit und Salzbeständigkeit wurden untersucht. Die Ergebnisse zeigen, dass die minimale Oberflächenspannung von HM-CTAC niedriger ist als die von CTAC. HM-CTAC, das bei einem CTAC-Formaldehyd-Molverhältnis von 1 : 1 erzeugt worden ist, hat die niedrigste Oberflächenspannung von 31,89 mN m–1. Das Schaumvolumen von HM-CTAC mit unterschiedlichen Molverhältnissen ist höher als das von CTAC, und HM-CTAC (1:4) hat ein hohes Schaumvolumen von 435 mL. Im Vergleich zu CTAC weist HMCTAC unter verschiedenen Reaktionsbedingungen (Molverhältnissen) eine höhere Temperaturbeständigkeit auf. Bei einem Methanolgehalt von 10 Gew.-%, ist das anfängliche Schaumvolumen vonHM-CTAC höher als das von CTAC, und das anfängliche Schaumvolumen von HM-CTAC (1:2) ist mit einem Volumen von 21,5 mL am höchsten. Von allen Tensiden, die unter verschiedenen Reaktionsbedingungen hergestellt wurden, weist HM-CTAC (1:3) die höchste Salzbeständigkeit mit einer relativ stabilen Änderung des Schaumvolumens unter verschiedenen Salzgehalten auf.


Prof. Gang Chen Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields Xi’an Shiyou University Xi’an, 710065 China Tel.: 0086-29-88382693

About the authors

Qiaona Liu

Qiaona Liu is a graduated student of applied chemistry.

Yun Bai

Yun Bai is a graduated student of applied chemistry.

Sanbao Dong

Sanbao Dong is a professor of applied chemistry.

Jinling Li

Jinling Li is a professor of applied chemistry.

Zhifei Song

Zhifei Song is a professor of material chemistry.

Shijun Chen

Shijun Chen is a professor of applied chemistry.

Jie Zhang

Jie Zhang is a professor of applied chemistry.

Prof. Gang Chen

Chen Gang is professor at Xi’an Shiyou University, his main research areas are Oilfield Chemistry, and Petroleum Chemistry. He is member of Chinese Chemical Society and Chemical Industry and Engineering Society of China, published more than 30 research papers and is reviewer for 15 academic journals.

Acknowledgements

This work was financially supported by the grants from Youth Innovation Team of Shaanxi University, National Natural Science Foundation of China (21376189, 51974245) and Shaanxi Key Research and Development Program (2019ZDLGY06-03). We also thank the work of Modern Analysis and Testing Center of Xi`an Shiyou University.

References

1 Wen, C. Y., Yu, J. H., Yan, Z. F., Jia, Z. H., Hu, N. T. and Miao, Y. P.: Application of technology of gas recovery by foam drainage to tarim oilfield, Oil Drilling & Production Technology. 29 (2007) 100–101. DOI:10.1016/S1872-5813(07)60034-610.1016/S1872-5813(07)60034-6Search in Google Scholar

2 Chen, T., Song, J. Y., Liu, S. F. and Huang, X. S.: Preparation and use of foaming agent for foamover drainage from gas wells, Oilfield Chemistry. 18 (2001) 115–116. DOI:10.19346/j.cnki.1000-4092.2001.02.00510.19346/j.cnki.1000-4092.2001.02.005Search in Google Scholar

3 Chen, G., Bai, Y., Liu, Q. N., Zhang, J., Gu, X. F., Li, H., Qu, C. T. and Zhang, Y. M.: Synthesis and interface activity of a series of dicarboxylic cationic surfactants and structure-efficiency relationship study, Journal of Surfactants and Detergents. 22 (2019) 691–698. DOI:10.1002/jsde.1226410.1002/jsde.12264Search in Google Scholar

4 Zhang, H., Liang, Y., Zhou, X., Yan, X., Chen, Q. and Qi, L.: Sensitivity analysis and optimal operation control for large-scale waterflooding pipeline network of oilfield, Journal of Petroleum Science & Engineering. 154 (2017) 38–48. DOI:10.1016/j.petrol.2017.04.01910.1016/j.petrol.2017.04.019Search in Google Scholar

5 Chen, G., Cheng, C., Zhang, J., Sun, Y., Hu, Q., Qu, C. T. and Dong, S. B.: Synergistic effect of surfactant and alkali on the treatment of oil sludge, Journal of Petroleum Science and Engineering. 183 (2019) 106420. DOI:10.1016/j.petrol.2019.10642010.1016/j.petrol.2019.106420Search in Google Scholar

6 Chen, G., Yan, J., Liu, Q. N., Zhang, J., Li, H., Li, J. L., Qu, C. T. and Zhang, Y. M.: Preparation and surface activity study of amino acid surfactants, Comptes Rendus Chimie. 22 (2019) 277–282. DOI:10.1016/j.crci.2018.11.00910.1016/j.crci.2018.11.009Search in Google Scholar

7 Wang, J. and Nguyen, A. V.: Foam drainage in the presence of solid particles, Soft Matter. 12 (2016) 3004–3012. DOI:10.1039/C6SM00028B10.1039/C6SM00028BSearch in Google Scholar PubMed

8 Zhou, M., Zhao, J., Wang, X. and Yang, Y.: Research on Surfactant Flooding in High-temperature and High-salinity Reservoir for Enhanced Oil Recovery, Tenside Surfactants Detergents. 50 (2013) 175–181. DOI:10.3139/113.11024510.3139/113.110245Search in Google Scholar

9 Wu, Y., Iglauer, S., Shuler, P., Tang, Y. and Goddard, W. A.: Branched Alkyl Alcohol Propoxylated Sulfate Surfactants for Improved Oil Recovery, Tenside Surfactants Detergents. 47 (2010) 152–161. DOI:10.3139/113.11006410.3139/113.110064Search in Google Scholar

10 Jin, X., Zhang, S. F. and Yang, J. Z.: Surface Tension and Micellization of Aqueous Alkyl Polyglucosides Solutions: Influence of the Molecular Structure and the Addition of Electrolyte, Tenside Surfactants Detergents. 41 (2004) 126–129. DOI:10.3139/113.10021610.3139/113.100216Search in Google Scholar

11 Negm, N. A., Farargy, A. F. M. E., Mohammed, D. E. and Mohamad, H. N.: Environmentally friendly nonionic surfactants derived from tannic acid: synthesis, characterization and surface activity, Journal of Surfactants and Detergents. 15 (2012) 433–443. DOI:10.1007/s11743-011-1326-810.1007/s11743-011-1326-8Search in Google Scholar

12 Sheng, Y. J., Wu, X. J., Lu, S. X. and Li, C. H.: Experimental Study on Foam Properties of Mixed Systems of Silicone and Hydrocarbon Surfactants, Journal of Surfactants and Detergents. 19 (2016) 823–831. DOI:10.1007/s11743-016-1822-10.1007/s11743-016-1822-ySearch in Google Scholar

13 Folmer, B. M. and Krongberg, B.: Effect of surfactant-polymer assocition on the stabilities of foams and thin films: sodium dodecyl sulfate and poly (vinyl pyrrolidone), Langmuir. 16 (2000) 5987–5992. DOI:10.1021/la991655k10.1021/la991655kSearch in Google Scholar

14 Lunkenheimer, K. and Malysa, K.: Simple and generally applicable method of determination and evaluation of foam properties, Journal of Surfactants and Detergents. 6 (2003) 69–74. DOI:10.1007/s11743-003-0251-810.1007/s11743-003-0251-8Search in Google Scholar

15 Kuliszwska, E. and Brecker, L.: Gemini surfactants foam formation ability and foam stability depends on spacer length, Journal of Surfactants and Detergents. 17 (2014) 951–957. DOI:10.1007/s11743-014-1582-510.1007/s11743-014-1582-5Search in Google Scholar

16 Thevenot, C., Grassl, B., Bastiat, G. and Binana, W.: Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering and conductivity, Colloids & Surfaces A Physicochemical & Engineering Aspects. 252 (2005) 105–111. 10.1016/j.colsurfa.2004.10.062Search in Google Scholar

17 Du, X. G., Wang, C. W., Niu, R. Q., Zhang, J. and Yang, Z. Y.: Study on foam properties of alkylbenzene sulfonate gemini surfactants, Advanced Materials Research. 4 (2011) 418–420. 10.4028/www.scientific.net/AMR.418-420.528Search in Google Scholar

18 Samanta, S. and Ghosh, P.: Coalescence of bubbles and stability of foams in aqueous solutions of tween surfactants, Chemical Engineering Research & Design. 89 (2011) 2344–2355. DOI:10.1016/j.cherd.2011.04.00610.1016/j.cherd.2011.04.006Search in Google Scholar

19 Danov, K. D., Kralchevska, S. D. and Kralchevsky, P. A.: Ananthapadmanabhan K.P., Lips A., Mixed solutions of anionic and zwitterionic surfactant (betaine): surface-tension isotherms, adsorption, and relaxation kinetics, Langmuir. 20 (2004) 5445–5453. DOI:10.1021/la049576i10.1021/la049576iSearch in Google Scholar PubMed

20 Rakowska, J., Radwan, K., Ślosorz, Z., Porycka, B. and Norman, M.: Selection of surfactants on the basis of foam and emulsion properties to obtain the fire fighting foam and the degreasing agent, Tenside Surfactants Detergents. 51 (2014) 215–219. DOI:10.3139/113.11030010.3139/113.110300Search in Google Scholar

21 Miller, D. and GmbH, C.: Dynamic Surface Tension: Industrial Applications and Characterisation of Commercial Surfactants, Tenside Surfactants Detergents. 42 (2005) 204–209. DOI:10.3139/113.10026310.3139/113.100263Search in Google Scholar

22 Kitabatake, N. and Doi, E.: Surface tension and foamability of protein and surfactant solutions, Journal of Food Science. 53 (2010) 1542–1569. DOI:10.1111/j.1365-2621.1988.tb09319.x10.1111/j.1365-2621.1988.tb09319.xSearch in Google Scholar

23 Cohen, L., Soto, F. and Sanchez, E.: Effect of Calcium Ions Concentration on the Foaming Power of Anionic Surfactants, Tenside Surfactants Detergents. 46 (2009) 352–356. DOI:10.3139/113.11004110.3139/113.110041Search in Google Scholar

24 Casandra, A., Tsay, R. Y., Phan, C. M. and Lin, S. Y.: An examination of the one-parameter adsorption equation without using the gibbs adsorption equation, Colloids & Surfaces A Physicochemical & Engineering Aspects. 512 (2017) 137–144. 10.1016/j.colsurfa.2016.10.030Search in Google Scholar

25 Alagic, E., Spildo, K., Skauge, A. and Solbakken, J.: Effect of crude oil ageing on low salinity and low salinity surfactant flooding, Journal of Petroleum Science & Engineering. 78 (2011) 220–227. DOI:10.1016/j.petrol.2011.06.02110.1016/j.petrol.2011.06.021Search in Google Scholar

26 Lee, J., Nikolov, A. and Wasan, D.: Surfactant micelles containing solubilized oil decrease foam film thickness stability, Journal of Colloid and Interface Science. 415 (2014) 18–25. DOI:10.1016/j.jcis.2013.10.01410.1016/j.jcis.2013.10.014Search in Google Scholar PubMed

27 Zhang, J., Bai, Y., Du, W. C., Wu, Y., Gu, X. F., Li, H., Ma, Y., Qu, C. T. and Chen, G.: The effect of anion on cationic surfactants and a structure-efficiency relationship study, Desalination and Water Treatment. 140 (2019) 207–211. DOI:10.5004/dwt.2019.2337110.5004/dwt.2019.23371Search in Google Scholar

28 Lin, J., Liu, Q. N., Zhang, J., Wu, Y., Li, H., Ma, Y., Qu, C. T., Song, W. Q. and Chen, G.: Corrosion inhibition and structure-efficiency relationship study of CTAC and CDHAC, Desalination and Water Treatment. 139 (2019) 1–6. DOI:10.5004/dwt.2019.2326910.5004/dwt.2019.23269Search in Google Scholar

Received: 2019-09-11
Accepted: 2020-02-05
Published Online: 2021-03-13

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2019-2221/html
Scroll to top button