Synthesis and Properties of Alkyl Bis-Guanidinium Acetates Surfactants
-
Yongbo Song
Yongbo Song , Senior engineer, Taiyuan Institute of Technology, China. He received Ph.D. from Shanxi University, China. His research interests are focused on the synthesis, physicochemical property and theoretical research of cationic surfactants., Hongyan Zheng
, Yulan NiuHongyan Zheng , Senior engineer of Taiyuan Institute of Technology. Her research field is focused on the application investigation of surfactants. , Ying YaoYulan Niu , Dean of department of chemistry and chemical engineering, Taiyuan Institute of Technology, China. His research interests are focused on the engineering development related to manufactures of fine chemical. und Rongqian MengYing Yao , Lecturer, Taiyuan Institute of Technology, China. Her research field is focused on the theoretical investigation of surfactants.Rongqian Meng , Lecturer, Taiyuan Institute of Technology, China. Her research field is focused on the analysis and detection of surfactants.
Abstract
Novel surfactants with double hydrophilic groups (cocopropane and tallowpropane bis-guanidinium acetates), were synthesized and tested to evaluate both the basic surfactant properties and the unique application performance. Surface tension, conductivity and contact angle measurements were used to study the self-aggregation behavior in aqueous solution. Aggregation parameters were calculated such as adsorption efficiency and effectiveness (pC20 and CAC/C20), the maximum surface excess concentration (Гmax) and minimum surface area permolecule (Amin). The thermodynamic parameters of aggregation based conductivity measurements revealed that the aggregation process was spontaneous and entropy-driven. Compared to DTAC and CTAC, the alkyl bis-guanidinium acetates showed a higher emulsification capacity with both liquid kerosene and soybean oil. The evaluation of antimicrobial activity showed that the alkyl bisguanidinium acetates exhibited strong antibacterial activity against the tested strains at a concentration of 50 ppm.
Abstract
Synthese und Eigenschaften von Alkylbiguanidinacetat-Tensiden. Es wurden neuartige Tenside mit doppelten hydrophilen Gruppen (Kokospropan- und Rindertalgpropan-Biguanidinacetat) synthetisiert und getestet, um sowohl die grundlegenden oberflächenaktiven Eigenschaften als auch die einzigartige Anwendungsleistung zu bewerten. Oberflächenspannung, Leitfähigkeit und Kontaktwinkelmessungen wurden zur Untersuchung des Selbstaggregationsverhaltens in wässriger Lösung verwendet. Es wurden Aggregationsparameter wie die Adsorptionseffizienz und -effektivität (pC20 und CAC/C20), die maximale Oberflächen-Überschusskonzentration (Гmax) und der minimale Oberflächenbedarf pro Tensidmolekül (Amin) berechnet. Die thermodynamischen Parameter der Aggregation, die aus den Leitfähigkeitsmessungen berechnet wurden, zeigten, dass der Aggregationsprozess spontan und entropiegetrieben war. Im Vergleich zu DTAC und CTAC wiesen die Alkylbiguanidinacetate ein stärkeres Emulgiervermögen sowohl mit Flüssigparaffin als auch mit Sojaöl auf. Die Bewertung der antimikrobiellen Aktivität ergab, dass die Alkylbiguanidinacetate bei einer Konzentration von 50 ppm eine starke antibakterielle Aktivität gegen die getesteten Stämme aufwiesen.
About the authors
Yongbo Song, Senior engineer, Taiyuan Institute of Technology, China. He received Ph.D. from Shanxi University, China. His research interests are focused on the synthesis, physicochemical property and theoretical research of cationic surfactants.
Hongyan Zheng, Senior engineer of Taiyuan Institute of Technology. Her research field is focused on the application investigation of surfactants.
Yulan Niu, Dean of department of chemistry and chemical engineering, Taiyuan Institute of Technology, China. His research interests are focused on the engineering development related to manufactures of fine chemical.
Ying Yao, Lecturer, Taiyuan Institute of Technology, China. Her research field is focused on the theoretical investigation of surfactants.
Rongqian Meng, Lecturer, Taiyuan Institute of Technology, China. Her research field is focused on the analysis and detection of surfactants.
Acknowledgements
The authors acknowledge the financial supports by Science and Technology Innovation Project of Higher Education Institutions in Shanxi (No. 2019L0930).
References
1 Jiang, Y., Geng, T. and Li, Q.: Synthesis of Quaternary Ammonium Salts with Novel Counterions, J. Surf. Det. 15 (2012) 67–71. DOI:10.1007/s11743-011-1289-910.1007/s11743-011-1289-9Suche in Google Scholar
2 Quagliotto, P., Barbero, N., Barolo, C., Artuso, E., Compari, C., Fisicaro, E. and Viscardi, G.: Synthesis and Properties of Cationic Surfactants with Tuned Hydrophylicity, J. Colloid Interface Sci. 340 (2009) 269–275. PMid:19815228; DOI:10.1016/j.jcis.2009.09.00910.1016/j.jcis.2009.09.009Suche in Google Scholar PubMed
3 Li, Y., Li, Q., Zhi, L. and Zhang, M.: Synthesis, Characterization and Surface-Activity of Hydroxyethyl Group-Containing Quaternary Ammonium Surfactants, J. Surf. Det. 14 (2011) 529–533. DOI:10.1007/s11743-011-1279-y10.1007/s11743-011-1279-ySuche in Google Scholar
4 Ismail A. A., Abdelfatah M. B., Mohammed M. E., Abdallah A. E. and Ahmed I. A.: Synthesis and Biocidal Activity of Some Naphthalene-Based Cationic Surfactants, J. Colloid Interface Sci. 15 (2012) 223–234. PMid:22389580; DOI:10.1007/s11743-011-1286-z10.1007/s11743-011-1286-zSuche in Google Scholar PubMed PubMed Central
5 Chauhan,V., Singh, S. and Bhadani A.: Synthesis, Characterization and Surface Properties of Long Chain b-Hydroxy-c-Alkyloxy-N-Methylimidazolium Surfactants, Colloids Surf. A. 395 (2012) 1–9. 10.1016/j.colsurfa.2011.11.022Suche in Google Scholar
6 Cornellas, A., Perez, L., Comelles, F., Ribosa, I., Manresa, A. and Garcia, M. T.: Self-Aggregation and Antimicrobial Activity of Imidazolium and Pyridinium Based Ionic Liquids in Aqueous Solution, J. Colloid Interface Sci. 355 (2011) 164–171. PMid:21186035; DOI:10.1016/j.jcis.2010.11.06310.1016/j.jcis.2010.11.063Suche in Google Scholar PubMed
7 Inoue, T., Ebina, H., Dong, B. and Zheng, L.: Electrical Conductivity Study on Aggregate Formation of Long-Chain Imidazolium Ionic Liquids in Aqueous Solution, J. Colloid Interface Sci. 314 (2007) 236–241. PMid:17574264; DOI:10.1016/j.jcis.2007.05.05210.1016/j.jcis.2007.05.052Suche in Google Scholar PubMed
8 Vanyúr, R., Biczók, L. and Miskolczy, Z.: Micelle Formation of 1-Alkyl-3-Methylimidazolium Bromide Ionic Liquids in Aqueous Solution, Colloids Surf. A. 299 (2007) 256–261. 10.1016/j.colsurfa.2006.11.049Suche in Google Scholar
9 Miyake, M. and Oyama, N.: Effect of Amidoalkyl Group as Spacer on Aggregation Properties of Guanidine-Type Surfactants, J. Colloid Interface Sci. 330 (2009) 180–185. PMid:18990404; DOI:10.1016/j.jcis.2008.10.04710.1016/j.jcis.2008.10.047Suche in Google Scholar PubMed
10 Miyake, M., Yamada, K. and Oyama, N.: Self-Assembling of Guanidine-Type Surfactant, Langmuir. 24 (2008) 8527–8532. PMid:18627192; DOI:10.1021/la801115y10.1021/la801115ySuche in Google Scholar PubMed
11 Fukui, H., Hatano, K., Kamio, K., Miyake, M., Tamura, T. and Hayakawa: Cooperative Binding and the Conformation of Poly(L-Glutamic Acid) in Guanidinium Salts with an Alkanoylamidoalkyl Group, J. Phys. Chem. B. 107 (2003) 8218–8222. DOI:10.1021/jp027178n10.1021/jp027178nSuche in Google Scholar
12 Hu, Y., Du, Y., Yang, J., Kennedy, J. F., Wang, X. and Wang, L.: Synthesis, Characterization and Antibacterial Activity of Guanidinylated Chitosan, Carbohydrate Polym. 67 (2007) 66–72. DOI:10.1016/j.carbpol.2006.04.01510.1016/j.carbpol.2006.04.015Suche in Google Scholar
13 Sercheli, R., Vargas, R. M. and Schuchardt, U.: Alkylguanidine-Catalyzed Heterogeneous Transesterification of Soybean Oil, J. Am. Oi. Chem. Soc. 76 (1999) 1207–1210. DOI:10.1007/s11746-999-0095-210.1007/s11746-999-0095-2Suche in Google Scholar
14 Bhattacharya, S. and Samanta, S. K.: Surfactants Possessing Multiple Polar Heads. A Perspective on Their Unique Aggregation Behavior and Applications, J. Phys. Chem. Lett. 2 (2011) 914–920. PMid:26295628; DOI:10.1021/jz200163410.1021/jz2001634Suche in Google Scholar PubMed
15 Zhou, T., Ao, M., Xu, G., Liu, T. and Zhang, J.: Interactions of Bovine Serum Albumin with Cationic Imidazolium and Quaternary Ammonium Gemini Surfactants: Effects of Surfactant Architecture, J. Colloid Interface Sci. 389 (2013) 175–181. PMid:23044272; DOI:10.1016/j.jcis.2012.08.06710.1016/j.jcis.2012.08.067Suche in Google Scholar PubMed
16 Di Michele, A., Brinchi, L., Di Profio, P., Germani, R., Savelli, G. and Onori, G.: Effect of Head Group Size, Temperature and Counterion Specificity on Cationic Aggregates, J. Colloid Interface Sci. 358 (2011) 160–166. PMid:21440896; DOI:10.1016/j.jcis.2010.12.02810.1016/j.jcis.2010.12.028Suche in Google Scholar PubMed
17 Bhattacharya, S. and Haldar, J.: Thermodynamics of Micellization of Multi-headed Single-Chain Cationic Surfactants, Langmuir. 20 (2004) 7940–7947. PMid:15350056; DOI:10.1021/la049543310.1021/la0495433Suche in Google Scholar PubMed
18 Bhattacharya, S. and Haldar, J.: Microcalorimetric and Conductivity Studies with Aggregates Prepared from Multi-Headed Pyridinium Surfactants, Langmuir. 21 (2005) 5747–5751. PMid:15952818; DOI:10.1021/la047072e10.1021/la047072eSuche in Google Scholar PubMed
19 Dong, B., Gao, Y., Su, Y., Zheng, L., Xu, J. and Inoue, T.: Self-Aggregation Behavior of Fluorescent Carbazole-Tailed Imidazolium Ionic Liquids in Aqueous Solutions, J. Phys. Chem. B. 114 (2009) 340–348. PMid:19845319; DOI:10.1021/jp908136f10.1021/jp908136fSuche in Google Scholar PubMed
20 Kang, E.-K., Lee, B. M., Wang, H. A. and Lim, J. C.: A Novel Cationic Surfactant Having Two Quaternary Ammonium Ions, J. Ind. Eng. Chem. 17 (2011) 845–852. DOI:10.1016/j.jiec.2011.09.00110.1016/j.jiec.2011.09.001Suche in Google Scholar
21 Mohamed, A. S. and Mohamed, M. Z.: Preparation of Novel Cationic Surfactants from Epichlorohydrin: Their Surface Properties and Biological Activities, J. Surf. Det. 13 (2010) 159–163. DOI:10.1007/s11743-009-1141-710.1007/s11743-009-1141-7Suche in Google Scholar
22 Nyuta, K., Yoshimura, T. and Esumi, K.: Surface Tension and Micellization Properties of Heterogemini Surfactants Containing Quaternary Ammonium Salt and Sulfobetaine Moiety, J. Colloid Interface Sci. 301 (2006) 267–273. PMid:16730355; DOI:10.1016/j.jcis.2006.04.07510.1016/j.jcis.2006.04.075Suche in Google Scholar PubMed
23 Hou, Y., Cao, M., Deng, M. and Wang, Y.: Highly-Ordered Selective Self-Assembly of a Trimeric Cationic Surfactant on a Mica Surface, Langmuir. 24 (2008) 10572–10574. PMid:18781783; DOI:10.1021/la802021b10.1021/la802021bSuche in Google Scholar PubMed
24 Davey, T. W., Ducker, W. A. and Hayman, A. R.: Aggregation of x-Hydroxy Quaternary Ammonium Bolaform Surfactants, Langmuir. 16 (2000) 2430–2435. DOI:10.1021/la971303i10.1021/la971303iSuche in Google Scholar
25 Samanta, S. K., Bhattacharya, S. and Maiti, P. K.: Coarse-Grained Molecular Dynamics Simulation of the Aggregation Properties of Multiheaded Cationic Surfactants in Water, J. Phys. Chem. B. 113 (2009) 13545–13550. PMid:19775096; DOI:10.1021/jp902376y10.1021/jp902376ySuche in Google Scholar PubMed
26 Caillier, L., de Givenchy, E. T., Levy, R., Vandenberghe, Y., Géribaldi, S. and Guittard, F.: Synthesis and Antimicrobial Properties of Polymerizable Quaternary Ammoniums, Eur. J. Med. Chem. 44 (2009) 3201–3208. PMid:19380184; DOI:10.1016/j.ejmech.2009.03.03110.1016/j.ejmech.2009.03.031Suche in Google Scholar PubMed
27 Skrzela, R., Para, G., Warszyníski, P. and Wilk, K. A.: Experimental and Theoretical Approach to Nonequivalent Adsorption of Novel Dicephalic Ammonium Surfactants at the Air/Solution Interface, J. Phys. Chem. B. 114 (2010) 10471–10480. PMid:20666437; DOI:10.1021/jp104980910.1021/jp1049809Suche in Google Scholar PubMed
28 Srinivasa Rao, K., Singh, T., Trivedi, T. J. and Kumar, A.: Aggregation Behavior of Amino Acid Ionic Liquid Surfactants in Aqueous Media, J. Phys. Chem. B. 115 (2011) 13847–13853. PMid:22029384; DOI:10.1021/jp207627510.1021/jp2076275Suche in Google Scholar PubMed
29 Song, Y., Li, Q. and Li, Y.: Self-Aggregation and Antimicrobial Activity of Alkylguanidinium Salts, Colloids Surf. A. 393 (2012) 11–16. 10.1016/j.colsurfa.2011.10.015Suche in Google Scholar
30 Song, Y., Li, Q. and Li, Y.: Effect of Temperature and Added Counter Ions on Aggregate Formation of Guanidine Surfactants, Tenside Surf. Det. 49 (2012) 390–393. DOI:10.3139/113.11020710.3139/113.110207Suche in Google Scholar
31 Song, Y., Li, Q., Li, Y. and Zhi, L.: Surface and Aggregation Properties of Heterogemini Surfactants Containing Quaternary Ammonium and Guanidine Moiety, Colloids Surf. A. 417 (2013) 236–242. 10.1016/j.colsurfa.2012.11.004Suche in Google Scholar
32 Song, Y., Li, Q., Li, Y. and Zhi, L.: Synthesis and Properties of Dicephalic Cationic Surfactants Containing a Quaternary Ammonium and a Guanidine Group, J. Surf. Det. 16 (2013) 71–76. DOI:10.1007/s11743-012-1417-110.1007/s11743-012-1417-1Suche in Google Scholar
33 Song, Y., Li, Q., Li, Y. and Zhi, L.: Biological Behaviors of Guanidine-Based Cationic Surfactants, J. Surf. Det. 17 (2014) 459–464. DOI:10.1007/s11743-013-1560-310.1007/s11743-013-1560-3Suche in Google Scholar
34 Cabral, J. P. S. and Smith, A. R. W.: Determination of the Critical Aggregate Concentration of Dodecylguanidine Monoacetate (Dodine), J. Colloid Interface Sci. 149 (1992) 27–33. DOI:10.1016/0021-9797(92)90387-210.1016/0021-9797(92)90387-2Suche in Google Scholar
35 Alonso-Moreno, C., Carrillo-Hermosilla, F., Garcs, A., Otero, A., Loípez-Solera, I., Rodriíguez, A. M. and Antiñolo, A.: Simple, Versatile, and Efficient Catalysts for Guanylation of Amines, Organometallics. 29 (2010) 2789–2795. DOI:10.1021/om100312210.1021/om1003122Suche in Google Scholar
36 Zhang, Y., Li, Y., Song, Y. and Li, J.: Synthesis and Aggregation Behaviors of Tail-Branched Surfactant Guerbet-Cetyl Trimethyl Ammonium Chloride, Colloid Polym. Sci. 294 (2016) 271–279. DOI:10.1007/s00396-015-3771-910.1007/s00396-015-3771-9Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Contents
- Environmental Chemistry
- Biodegradability of Polyvinyl Alcohol Based Film Used for Liquid Detergent Capsules
- Application
- Effects of Laundering on Moisture Management and Air Permeability of Different Chitosan Treated Nylon 6,6 Elastane Fabrics Using EDTA and Triton X-100
- Application of Newly Synthesized Sulfobetaine Based on Sweet Almond Oil in Bath Liquids for Sensitive Skin
- Preparation of Silicone Emulsion Defoamer with Easy Separation of Magnetic Hydrophobic Nanoparticles
- Bentonite Suspension Filtration and its Electro-Kinetics in the Presence of Additives
- Novel surfactants
- Synthesis and Properties of Alkyl Bis-Guanidinium Acetates Surfactants
- Synthesis and Characterization of a Novel Class of Zwitterionic Fluorocarbon Surfactants Based on Perfluorobutyl
- Physical Chemistry
- Interfacial Behaviour of Saponin Based Surfactant for Potential Application in Cleaning
- Synthesis
- Preparation and the Foaming Activity Study of Hydroxymethyl Cetyltrimethyl Ammonium Chloride
Artikel in diesem Heft
- Contents
- Environmental Chemistry
- Biodegradability of Polyvinyl Alcohol Based Film Used for Liquid Detergent Capsules
- Application
- Effects of Laundering on Moisture Management and Air Permeability of Different Chitosan Treated Nylon 6,6 Elastane Fabrics Using EDTA and Triton X-100
- Application of Newly Synthesized Sulfobetaine Based on Sweet Almond Oil in Bath Liquids for Sensitive Skin
- Preparation of Silicone Emulsion Defoamer with Easy Separation of Magnetic Hydrophobic Nanoparticles
- Bentonite Suspension Filtration and its Electro-Kinetics in the Presence of Additives
- Novel surfactants
- Synthesis and Properties of Alkyl Bis-Guanidinium Acetates Surfactants
- Synthesis and Characterization of a Novel Class of Zwitterionic Fluorocarbon Surfactants Based on Perfluorobutyl
- Physical Chemistry
- Interfacial Behaviour of Saponin Based Surfactant for Potential Application in Cleaning
- Synthesis
- Preparation and the Foaming Activity Study of Hydroxymethyl Cetyltrimethyl Ammonium Chloride