Home Synthesis and Characterization of a Novel Class of Zwitterionic Fluorocarbon Surfactants Based on Perfluorobutyl
Article
Licensed
Unlicensed Requires Authentication

Synthesis and Characterization of a Novel Class of Zwitterionic Fluorocarbon Surfactants Based on Perfluorobutyl

Synthese und Charakterisierung einer neuen Klasse von zwitterionischen Fluorkohlenstoff-Tensiden auf Basis von Perfluorbutyl.
  • Xuhong Jia

    Xuhong Jia, Academic staff (associate professor) at College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China. Research area is organic synthesis in novel surfactants development.

    , Rui Huang

    Rui Huang, Graduate student of College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China.

    , Xiaoguang Yang

    Xiaoguang Yang, Graduate student of College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China.

    , Wan Tao

    Wan Tao, Graduate student of College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China.

    and Xinhua Zhu

    Xinhua Zhu, Academic staff (lecturer) at College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China. Research area is organic synthesis in novel surfactants development.

    EMAIL logo
Published/Copyright: March 13, 2021
Become an author with De Gruyter Brill

Abstract

Perfluorooctane sulfonate (PFOS) and its derivatives had been banned due to their potential environmental hazards, although they possessed excellent surface activity. An effective method to solve this problem was to shorten the fluorocarbon chain of these surfactants from C°H17 to C4F9. As previous studies had shown, zwitterionic surfactants possess higher surface activity but have lower toxicity compared to other types of surfactants. In view of this, a class of novel zwitterionic fluorocarbon surfactants (n-CFNA-Br) with perfluorobutyl moiety was synthesized in this work. Their structures were characterized by FTIR, 1H NMR, 13C NMR, 19F NMR and MS. The results showed that all synthesized n-CFNA-Br had almost the same minimum surface tension, but their critical micelle concentration (CMC) decreased with increasing length of hydrophobic carbon chain. In pure water, the surface tension at the CMC (γCMC) of the four n-CFNA-Br were about 20 mN/m, and the CMC values were 7.73 mmol/L for 1-CFNA-Br, 4.70 mmol/L for 2-CFNA-Br, 4.13 mmol/L for 3-CFNA-Br, and 3.36 mmol/L for 4-CFNA-Br, indicating high efficiency and effectiveness. In 0.1 mol/L NaCl, the CMC values reduced to less than half of the CMC values measured in the pure aqueous surfactant solution, while the surface tensions γCMC remained almost unchanged, indicating good salinity tolerance of the synthesized surfactants. The acidic surfactant solutions exhibited similar CMC values to the saline solutions, but the surface tension γCMC increased slightly to 25 mN/m. However, further investigation showed that the n-CFNA-Br surfactants exhibited poor surface activity in alkaline solution (0.1 mol/L NaOH). In the pH range of 6.6 to 10.4, white precipitates appeared in the surfactant solutions after some time, indicating that the n-CFNA-Br are not suitable for use in alkaline systems with pH greater than 6.6.

Abstract

Perfluoroctansulfonat (PFOS) und seine Derivate waren aufgrund ihrer potentiellen Umweltschädlichkeit verboten worden, obwohl sie eine ausgezeichnete Oberflächenaktivität besaßen. Eine effektive Methode zur Lösung dieses Problems war die Verkürzung der Fluorkohlenstoffkette dieser Tenside von C°H17 auf C4F9. Wie frühere Studien gezeigt hatten, besitzen zwitterionische Tenside eine höhere Oberflächenaktivität, haben aber eine geringere Toxizität im Vergleich zu anderen Arten von Tensiden. In Anbetracht dessen wurde in dieser Arbeit eine Klasse neuartiger zwitterionischer Fluorkohlenstoff-Tenside (n-CFNA-Br) mit Perfluorbutyl-Teil synthetisiert. Ihre Strukturen wurden mittels FTIR, 1H NMR, 13C NMR, 19F NMR und MS charakterisiert. Die Ergebnisse zeigten, dass alle synthetisierten n-CFNA-Br fast die gleiche minimale Oberflächenspannung (γCMC) haben, ihre kritische Mizellenkonzentration (CMC) nahm aber mit zunehmender Länge der hydrophoben Kohlenstoffkette ab. Im reinen Wasser lagen die γCMC der vier n-CFNA-Br bei etwa 20 mN/m und die CMC-Werte betrugen 7,73 mmol/L für 1-CFNA-Br, 4,70 mmol/L für 2-CFNA-Br, 4,13 mmol/L für 3-CFNA-Br und 3,36 mmol/L für 4-CFNA-Br, was auf eine hohe Effizienz und Effektivität der Tenside hinweist. In der NaCl-Lösung (0.1 mol/L) reduzierten sich die CMC-Werte auf weniger als die Hälfte der CMC-Werte, die in reiner wässriger Tensidlösung gemessen wurden, während die Oberflächenspannung γCMC fast unverändert blieb, was auf eine gute Salzgehaltstoleranz der synthetisierten Tenside hindeutete. Die sauren Tensidlösungen wiesen ähnliche CMC-Werte wie die salzhaltigen Lösungen auf, aber die Oberflächenspannung γCMC stieg leicht auf 25 mN/m an. Die weiteren Untersuchungen zeigten jedoch, dass die n-CFNA-Br-Tenside in alkalischer Lösung (0,1 mol/L NaOH) eine schlechte Oberflächenaktivität aufwiesen. Im pH-Bereich von 6,6 bis 10,4 traten nach einiger Zeit weiße Ausfällungen in den Tensidlösungen auf, was darauf hindeutet, dass die n-CFNA-Br nicht für die Verwendung in alkalischen Systemen mit einem pH-Wert größer als 6,6 geeignet sind.


Tel.: +86-0838-5187202

About the authors

Xuhong Jia

Xuhong Jia, Academic staff (associate professor) at College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China. Research area is organic synthesis in novel surfactants development.

Rui Huang

Rui Huang, Graduate student of College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China.

Xiaoguang Yang

Xiaoguang Yang, Graduate student of College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China.

Wan Tao

Wan Tao, Graduate student of College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China.

Dr. Xinhua Zhu

Xinhua Zhu, Academic staff (lecturer) at College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China. Research area is organic synthesis in novel surfactants development.

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2018YFC0809500) and Security Capacity Building Project of the Civil Aviation Administration of China (No. 0241930).

References

1 Liang, Z. Q. and Chen, P.: Fluorine Surfactant. China Light Industry Press, Beijing; 1998.Search in Google Scholar

2 Banks, R. E.: Fluorocarbons and Their Derivatives (2nd), Macdonald & Co, London, 1970.Search in Google Scholar

3 Verdia, P., Gunaratne, H. Q. N., Goh, T. Y., Jacquemin, J. and Blesic, M.: A class of efficient short-chain fluorinated catanionic surfactants. Green Chem. 18 (2016) 1234–1239. DOI:10.1039/C5GC02790J10.1039/C5GC02790JSearch in Google Scholar

4 Sadtler, V. M., Giulieri, F., Krafft, M. P. and Riess, J. G.: Micellization and adsorption of fluorinated amphiphiles: Questioning the 1 CF2&1.5 CH2 rule. Chem. Eur. J. 4 (1998) 1952–1956. (SICI)15213765(19981002). DOI:10.1002/10.1002/Search in Google Scholar

5 Shinoda, K., Hato, M. and Hayashi, T.: Physicochemical properties of aqueous solutions offluorinated surfactants. J. Phys. Chem. 76 (1972) 909–914. DOI:10.1021/j100650a02110.1021/j100650a021Search in Google Scholar

6 Gramstad, T. and Haszeldine, R. N.: 806. Perfluoroalkyl derivatives of Sulphur. Part VII. Alkyl Trifluoromethan- esulphonates as alkylating agents, trifluoromethanesulphonic anhydride as promoter for esterification and some reactions of trifluoromethanesulphonic acid. J. Chem. Soc. (1957) 4069–4079. DOI:10.1039/JR957000406910.1039/JR9570004069Search in Google Scholar

7 Lu, C. Q., Kim, J. H. and DesMarteau, D. D.: Synthesis of perfluoro-t-butyl trifluorovinyl ether and its copolymerization with TPE. J. Fluor. Chem. 131 (2010) 17–20. DOI:10.1016/j.jfluchem.2009.09.01210.1016/j.jfluchem.2009.09.012Search in Google Scholar

8 Sha, M., Pan, R. M., Xing, P. and Jiang, B.: Synthesis and surface activity study of branched fluorinated cationic (FCS), gemini (FGS) and amphoteric (FAS) surfactants with CF3CF2CF2C(CF32 gruop. J. Fluor. Chem. 169 (2015) 61–65. 2014.11.005. DOI:10.1016/j.jfluchem10.1016/j.jfluchemSearch in Google Scholar

9 Long, P. F. and Hao, J. C.: Phase behavior and self-assembly aggregation of hydrocarbon and fluorocarbon surfactant mixtures in aqueous solution. Adv. Colloid Interface Sci. 171–172 (2012) 66–76. DOI:10.1016/j.cis.2012.01.00410.1016/j.cis.2012.01.004Search in Google Scholar PubMed

10 Yang, M., Hao, J. and Li, H.: Syntheses and aggregation behavior of pyridine-based CH-CF hybrid surfactants. J. Fluor. Chem. 165 (2014) 81–90. DOI:10.1016/j.jfluchem.2014.06.00110.1016/j.jfluchem.2014.06.001Search in Google Scholar

11 Zaggia, A. and Ameduri, B.: Recent advances on synthesis of potentially non-bioaccumulable fluorinated surfactants. Curr. Opin. Colloid Interface Sci. 17 (2012) 188–195. 2012.04.001. 10.1016/j.cocisSearch in Google Scholar

12 Pereiro, A. B., Arauíjo, J. M., Martinho, S., Alves, F., Nunes, S., Matias, A., Duarte, C. M. M., Rebelo, L. P. N. and Marrucho, I. M.: Fluorinated lonic liquids: Properties and applications. ACS Sustainable Chem. Eng. 1 (2013) 427–439. DOI:10.1021/sc300163n10.1021/sc300163nSearch in Google Scholar

13 Lindstrom, A. B., Strynar, M. J. and Libelo, E. L.: Polyfluorinated compounds: Past, present and future. Polyfluorinated compounds: Past, present and future. Environ. Sci. Technol. 45 (2011) 954–961. DOI:10.1021/es201162210.1021/es2011622Search in Google Scholar PubMed

14 Xiao, J. X. and Zhao, Z. G.: Application Technology of Surfactants, Chemical Industry Press, Beijing, 2018.Search in Google Scholar

15 Kishi, T. and Arai, M.: Study on the generation of perfluorooctane sulfonate from the aqueous film-forming foam. J. Hazard. Mater. 159 (2008) 81–86. DOI:10.1016/j.jhazmat.2007.09.12210.1016/j.jhazmat.2007.09.122Search in Google Scholar PubMed

16 Chirumarry, S., Rao, V. R., Ko, Y., Vijaykumar, B. V. D., Lim, J. M., Kim, H., Han, S., Jang, K. and Shin, D. S.: Design, synthesis and surfactant properties of perfluorobutyl-based fluorinated sodium alkanesulfonates. J. Fluorine. Chem. 197 (2017) 111–117. DOI:10.1016/j.jfluchem.2017.04.00310.1016/j.jfluchem.2017.04.003Search in Google Scholar

17 Oakes, K. D., Benskin, J. P., Martin, J. W., Ings, J. S., Heinrichs, J. Y., Dixon, D. G. and Servos, M. R.: Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of etobicoke creek following deployment of aqueous film-forming foam. Aquat. Toxicol. 98 (2010) 120–129. DOI:10.1016/j.aquatox.2010.02.00510.1016/j.aquatox.2010.02.005Search in Google Scholar PubMed

18 Rodriguez-Freire, L., Abad-Fernández, N., Sierra-Alvarez, R., Hoppe-Jones, C., Peng, H., Giesy, J. P. and Keswani, M.: Sonochemical degradation of perfluorinated chemicals in aqueous film-forming foams. J. Hazard. Mater. 317 (2016) 275–283. DOI:. DOI:10.1016/j.jhazmat.2016.05.07810.1016/j.jhazmat.2016.05.078Search in Google Scholar PubMed

19 Prescher, D., Gross, U., Wotzka, J., Txchen-Schlueter, M. and Starke, W.: Zum umweltverhalten von fluortensiden. Teil 2. Untersuchung der biochemischen abbaubarkeit. Acta Hydrochim. Hydrobiol. 13 (1985) 17–24. DOI:10.1002/aheh.1985013010310.1002/aheh.19850130103Search in Google Scholar

20 Key, B. D., Howell, R. D. and Criddle, C. S.: Fluorinated organics in the biosphere. Environ. Sci. Technol. 31 (1997) 2445–2454. DOI:10.1021/es961007c10.1021/es961007cSearch in Google Scholar

21 Key, B. D., Howell, R. D. and Criddle, C. S.: Defluorination of organofluorine sulfur compounds by pseudomonas sp. Strain D2. Environ. Sci. Technol. 32 (1998) 2283–2287. DOI:10.1021/es980012910.1021/es9800129Search in Google Scholar

22 Houde, M., Martin, J. W., Letcher, R. J., Solomon, K. R. and Muir, D.C.G.: Biological monitoring of polyfluoroalkyl substances: A review. Environ. Sci. Technol. 40 (2006) 3463–3473. 80b. DOI:10.1021/es052510.1021/es0525Search in Google Scholar

23 Boutevin, G., Tiffes, D., Loubat, C., Boutevin, B. and Ameduri, B.: New fluorinated surfactants based on vinylidene fluoride telomers. J. Fluorine Chem. 134 (2012) 77–84. 019. DOI:10.1016/j.jfluchem.2011.0610.1016/j.jfluchem.2011.06Search in Google Scholar

24 Weiner, B., Yeung, L. W. Y., Marchington, E. B., D’Agostino, L. A. and Mabury, S. A.: Organic fluorine content in aqueous film forming foams (AFFFs) and biodegradation of the foam component 6:2 fluorotelomermercaptoalkylamido sulfonate (6:2 FTSAS). Environ. Chem. 10 (2013) 486–493. DOI:10.1071/EN1312810.1071/EN13128Search in Google Scholar

25 Barzen-Hanson, K. A., Roberts, S. C., Choyke, S., Oetjen, K., McAlees, A., Riddell, N., McCrindle, R., Ferguson, P. L., Higgins, C. P. and Field, J. A.: Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol 51(2017)2047–2057. DOI:10.1021/acs.est.6b0584310.1021/acs.est.6b05843Search in Google Scholar PubMed

26 D’Agostino, L. A. and Mabury, S. A.: Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol 48(2014)121–129. DOI:10.1021/es403729e10.1021/es403729eSearch in Google Scholar PubMed

27 Yang, B. Q., Chen, K., Xing, H. and Xiao, J. X.: Perfluorobutyl-based fluorinated surfactant with high surface activity. Acta. Phys. Chim. Sin. 25 (2009) 2409–2412.10.3866/PKU.WHXB20091204Search in Google Scholar

28 Hagenaars, A., Meyer, I. J., Herzke, D., Pardo, B. G., Martinez, P., Pabon, M., Coen, W. D. and Knapen, D.: The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: physiological and transcriptomic effects of two Forafac fluorosurfactants in turbot. Aquat. Toxicol. 104 (2011) 168–176. j.aquatox.2011.04.012. DOI:10.1016/10.1016/Search in Google Scholar

29 Jia, X. H., Bo, H. D. and He, Y. H.: Synthesis and characterization of a novel surfactant used for aqueous film-forming foam extinguishing agent. Chem. Pap. 73 (2019) 1777–1784. DOI:10.1007/s11696-019-00730-z10.1007/s11696-019-00730-zSearch in Google Scholar

30 U.S. Environmental Protection Agency. PFOA Stewardship Program, https://www. epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program 2015.Search in Google Scholar

31 Ritter, S. K.: Fluorochemicals go short. Chem. Eng. News. 88 (2010) 12–17. DOI:10.1021/cen-v088n005.p01210.1021/cen-v088n005.p012Search in Google Scholar

32 Emmer, Å., Roeraade, J. and Liq, J.: Performance of zwitterionic and cationic fluorosurfactants as buffer additives for capillary electrophoresis of proteins. Chromatogr. R. T. 17 (1994) 3831–3846. 26079408016157. DOI:10.1080/10810.1080/108Search in Google Scholar

33 Ao, M., Xu, G., Pang, J. and Zhao, T.: Comparison of aggregation behaviors between lonic liquid-type imidazolium gemini surfactant [C12–4-C12im]Br2 and its monomer [C12mim]Br on silicon wafer. Langmuir. 25 (2009) 9721–9727. DOI:10.1021/la901005v10.1021/la901005vSearch in Google Scholar PubMed

34 Huang, Z., Cheng, C., Liu, Z., Luo, W., Zhong, H., He, G., Liang, C., Li, L., Deng, L. and Fu, W.: Gemini surfactant: A novel flotation collector for harvesting of microalgae froth flotation. Bioresource Technol. 275 (2019) 421–424. DOI:10.1016/j.biortech.2018.12.10610.1016/j.biortech.2018.12.106Search in Google Scholar PubMed

35 Cheng, Y., Yang, Y., Niu, C., Feng, Z., Zhao W. and Lu, S.: Progress in synthesis and application of zwitterionicgemini surfactants. Front. Mater. Sci. 13 (2019) 242–257. DOI:10.1007/s11706-019-0473-010.1007/s11706-019-0473-0Search in Google Scholar

36 Harwigsson, I., Tiberg, F. and Chevalier, Y.: Nature of the adsorption of zwitterionic surfactants at hydrophilic surfaces. J. Colloid Interf. Sci. 183 (1996) 380–387. DOI:10.1006/jcis.1996.056010.1006/jcis.1996.0560Search in Google Scholar PubMed

37 Nong, L., Xiao, C. and Zhong, Z.: Physicochemical properties of novel phosphobetaine zwitterionic surfactants and mixed systems with an anionic surfactant. J. Surfact. Deterg. 14 (2011) 433–438. DOI:10.1007/s11743-011-1259-210.1007/s11743-011-1259-2Search in Google Scholar

38 Tomokazu, Y., Akiko, O. and Kunio, E.: Equilibrium and dynamic surface tension properties of partially fluorinated quaternary ammonium salt gemini surfactants. Langmuir 22(2006)4643–4648. DOI:10.1021/la053426610.1021/la0534266Search in Google Scholar PubMed

39 Du Noüy, P. L.: A new apparatus for measuring surface tension. J. Gen. Physiol. 1 (1919) 521–524./jgp.1.5.521. PMid:19871767; DOI:10.108510.1085Search in Google Scholar

40 Rosen, M. J.: The relationship of structure to properties in surfactants. J. Am. Oil Chem. Soc. 49 (1972) 293–297. DOI:10.1007/BF0263757710.1007/BF02637577Search in Google Scholar

41 Jian, H. L., Liao, X. X., Zhu, L. W., Zhang, W. M. and Jiang, J. X.: Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia Oleifera Abel and synthetic surfactants. J. Colloid Interf. Sci. 359 (2011) 487–492. DOI:10.1016/j.jcis.2011.04.03810.1016/j.jcis.2011.04.038Search in Google Scholar PubMed

42 Tmáková, L., Sekretár, S. and Schmidt, Š.: Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities. Chem. Pap. 70 (2016) 188–196. DOI:10.1515/chempap-2015-020010.1515/chempap-2015-0200Search in Google Scholar

43 Lu, T., Huang, J., Li, Z., Jia, S. and Fu, H.: Effect of hydrotropic salt on the assembly transitions and rheological responses of cationic gemini surfactant solutions. J. Phys. Chem. B. 112 (2008) 2909–2914. DOI:10.1021/jp076620510.1021/jp0766205Search in Google Scholar PubMed

44 Pojják, K., Bertalanits, E. and Mészáros, R.: Effect of salt on the equilibrium and nonequilibrium features of polyelectrolyte/surfactant association. Langmuir. 27 (2011) 9139–9147. 1353. DOI:10.1021/la20210.1021/la202Search in Google Scholar

45 Demissie, H. and Duraisamy, R.: Effect of electrolytes on the surface and micellar characteristics of sodium dodecyl sulphate surfactant solution. J. Sci. Inno. Res. 5 (2016) 208 – 214.10.31254/jsir.2016.5603Search in Google Scholar

46 Kabalnov, A., Olsson, U. and Wennerström, H.: Salt effects on nonionic micro-emulsions are driven by adsorption/depletion at the surfactant monolayer. J. Phys. Chem. 99 (1995) 6220–6230. 100016a068. DOI:10.1021/j10.1021/jSearch in Google Scholar

47 Zhou, H., Gao, A., Xing, H., Gou, Z. and Xiao, J.: Abnormal surface-active behavior of perfluorooctanoates induced by salt. Acta Chem. Sinica. 69 (2011) 1035–1040.Search in Google Scholar

48 Kimizuka, H., Abood, L. G., Tahara, T. and Kaibara, K.: Adsorption kinetics of surface active agent at an interface. J. Colloid Interf. Sci. 40 (1972) 27–34. 9797(72)90170–1. DOI:10.1016/0021-10.1016/0021-Search in Google Scholar

49 Shang, Y., Wang, T., Han, X., Peng, C. and Liu, H.: Effect of ionic liquids CnmimBr on properties of gemini surfactant 12–3–12 aqueous solution. Ind. Eng. Chem. Res. 49 (2010) 8852–8857./ie100896z. DOI:10.102110.1021Search in Google Scholar

50 Hassan, P. A., Raghavan, S. R. and Kaler, E. W.: Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir. 18 (2002) 2543–2548. DOI:10.1021/la011435i10.1021/la011435iSearch in Google Scholar

51 Hisatomi, M., Abe, M., Yoshino, N., Lee, S., Nagadome, S. and Sugihara, G.: Thermodynamic study on surface adsorption and micelle formation of a hybrid anionic surfactant in water by surface tension (drop volume) measurements. Langmuir. 16 (2000) 1515–1521. DOI:10.1021/la990332l10.1021/la990332lSearch in Google Scholar

52 Chorro, M., Kamenka, N., Faucompre, B., Partyka, S. and Lindheimer, M., R.: Micellization and adsorption of adsorption of a zwitterionic surfactant: N-do-decyl betaine-effect of salt. Colloid. Surface. A. 110 (1996) 249–261. DOI:10.1016/0927-7757(95)03444-710.1016/0927-7757(95)03444-7Search in Google Scholar

53 Frank, H. S. and Evans, M. W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13 (1945) 507–532. DOI:10.1063/1.172398510.1063/1.1723985Search in Google Scholar

54 Coutiño, V. A., Bustillos, L. G., Tovar, L. A., Sánchez, R. J. and Valadez, F. J.: pH effect on surfactant properties and supramolecular structure of humic substances obtained from sewage sludge composting. Rev. Int. Contam. Ambie. 29 (2013) 191–199.Search in Google Scholar

55 Micheau, C., Bauduin, P., Diat, O. and Faure, S.: Specific salt and pH effects on foam film of a pH sensitive surfactant. Langmuir. 29 (2013) 8472–8481. DOI:10.1021/la400879t10.1021/la400879tSearch in Google Scholar PubMed

56 Liu, X., Dong, L. and Fang, Y.: A novel zwitterionic imidazolium-based ionic liquid surfactant: 1-carboxymethyl-3-dodecylimidazolium inner salt. J. Surfact. Deterg. 14 (2011) 497–504. 11743–011–1254–7. DOI:10.1007/s10.1007/sSearch in Google Scholar

57 Liu, J., Xu, T. and Fu, Y.: Fundamental studies of novel inorganic-organic zwitterionic hybrids. 1. Preparation and characterizations of hybrid zwitterionic polymers. J. Non-Cryst. Solids. 351 (2005) 3050–3059. DOI:10.1016/j.jnoncrysol.2005.07.01810.1016/j.jnoncrysol.2005.07.018Search in Google Scholar

58 Liu, J., Xu, T. and Fu, Y.: Fundamental studies of novel inorganic-organic charged zwitterionic hybrids: 2. Preparation and characterizations of hybrid charged zwitterionic membranes. J. Membrane Sci. 252 (2005) 165–173. DOI:10.1016/j.memsci.2004.12.00710.1016/j.memsci.2004.12.007Search in Google Scholar

59 Zhu, J., Zhang, P., Qing, Y., Wen, K., Su, X., Ma, L., Wei, J., Liu, H., He, H. and Xi, Y.: Novel intercalation mechanism of zwitterionic surfactant modified montmorillonites. Appl. Clay Sci. 141 (2017) 265–271. j.clay.2017.03.002. DOI:10.1016/10.1016/Search in Google Scholar

60 William, J. Z.: Alkaline tolerant sulfobetaine amphoteric surfactants cross-reference to related applications, US 5015412, 1991.Search in Google Scholar

61 Zhou, M., Luo, G., Zhang, Z., Li, S. and Wang, C.: Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl. J Mol Struct 1144(2017)199–205. DOI:10.1016/j.molstruc.2017.05.02310.1016/j.molstruc.2017.05.023Search in Google Scholar

Received: 2020-08-13
Accepted: 2020-12-27
Published Online: 2021-03-13

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2020-2302/pdf
Scroll to top button