Startseite Technik Active fault tolerant control of turbofan engines with actuator faults under disturbances
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Active fault tolerant control of turbofan engines with actuator faults under disturbances

  • Yan-Hua Ma , Xian Du EMAIL logo , Lin-Feng Gou und Si-Xin Wen
Veröffentlicht/Copyright: 17. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, an active fault-tolerant control (FTC) scheme for turbofan engines subject to simultaneous multiplicative and additive actuator faults under disturbances is proposed. First, a state error feedback controller is designed based on interval observer as the nominal controller in order to achieve the model reference rotary speed tracking control for the fault-free turbofan engine under disturbances. Subsequently, a virtual actuator based reconfiguration block is developed aiming at preserving the consistent performance in spite of the occurrence of the simultaneous multiplicative and additive actuator faults. Moreover, to improve the performance of the FTC system, the interval observer is slightly modified without reconstruction of the state error feedback controller. And a theoretical sufficiency criterion is provided to ensure the stability of the proposed active FTC system. Simulation results on a turbofan engine indicate that the proposed active FCT scheme is effective despite of the existence of actuator faults and disturbances.


Corresponding author: Xian Du, School of Control Science and Engineering, Dalian University of Technology, Dalian, China; and Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, China, E-mail:

Award Identifier / Grant number: 61903061, 61903059, 61890920, 61890925

Award Identifier / Grant number: 2020-MS-098

Funding source: LiaoNing Revitalization Talents Program

Award Identifier / Grant number: XLYC1907070

Funding source: National Science and Technology Major Project

Award Identifier / Grant number: 2017-V-0011-0062

  1. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  2. Research funding: This work is supported by the National Natural Science Foundation of China (Grant No. 61903061, 61903059, 61890920, 61890925), Natural Science Foundation of Liaoning Province (Grant No. 2020-MS-098), LiaoNing Revitalization Talents Program (Grant No. XLYC1907070), and National Science and Technology Major Project (2017-V-0011-0062).

  3. Competing interests: Authors state no conflict of interest.

References

1. Richter, H. Advanced control of turbofan engines. New York: Springer; 2012. ch. 1.10.1007/978-1-4614-1171-0Suche in Google Scholar

2. Guo, T, Mattern, D, Jaw, LC, Chen, CL. Model-based sensor validation for a turbofan engine using auto-associative neural networks. Int J Smart Eng Syst Des 2003;5:21–32. https://doi.org/10.1080/10255810305035.Suche in Google Scholar

3. Zhang, X, Liu, Y, Rysdyk, R, Kwan, C, Xu, R. An intelligent hierarchical approach to actuator fault diagnosis and accommodation. In: IEEE 2006 Aerospace Conference. Montana; 2006. 1–15 pp.Suche in Google Scholar

4. Litt, JS, Truso, JA, Shah, N, Sowers, TS, Owen, AK. A Demonstration of a retrofit Architecture for intelligent control and diagnostics of a turbofan engine. AIAA Report. AIAA 2005-6905.10.2514/6.2005-6905Suche in Google Scholar

5. Naderi, E, Meskin, N, Khorasani, K. Nonlinear fault diagnosis of jet engines by using a multiple model-based approach. J Eng Gas Turbines Power 2012;134:011602. https://doi.org/10.1115/1.4004152.Suche in Google Scholar

6. Kumar, A, Viassolo, D. Model-based fault tolerant control. NASA Report. NASA/CR-2008-215273.Suche in Google Scholar

7. Liu, X, Zhang, D, Xue, N. Nonlinear system modeling based on system equilibrium manifold. Int J Turbo Jet Engines 2018;35:395–402. https://doi.org/10.1515/tjj-2016-0054.Suche in Google Scholar

8. Noshirvani, G, Askari, J, Fekih, A. Fractional-order fault-tolerant pitch control design for a 2.5 MW wind turbine subject to actuator faults. Struct Contr Health Monit 2019;26:e2411. https://doi.org/10.1002/stc.2411.Suche in Google Scholar

9. Shen, Q, Yue, C, Goh, CH. Active Fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Trans Ind Electron 2019;66:3763–72. https://doi.org/10.1109/tie.2018.2854602.Suche in Google Scholar

10. El-Madbouly, EI, Hameed, IA, Abdo, MI. Reconfigurable adaptive fuzzy fault-hiding Control for greenhouse climate control system. 2017;11:164–87. https://doi.org/10.1504/ijaac.2017.083297.Suche in Google Scholar

11. Hameed, IA, Elmadbouly, EI, Abdo, MI. Sensor and actuator fault-hiding reconfigurable control design for a four-tank system benchmark. Int J Innovat Comput Inf Contr 2015;11:679–90.Suche in Google Scholar

12. Yadegar, M, Meskin, N, Afshar, A. Fault-tolerant control of linear systems using adaptive virtual actuator. Int J Contr 2019;92:1729–41. https://doi.org/10.1080/00207179.2017.1408921.Suche in Google Scholar

13. Farias, AO, Queiroz, GAC, Bessa, IV, Medeiros, RLP, Cordeiro, LC, Palhares, RM. Sim3Tanks: a benchmark model simulator for process control and monitoring. IEEE Access 2018;6:62234–54. https://doi.org/10.1109/access.2018.2874752.Suche in Google Scholar

14. Tabatabaeipour, SM, Stoustrup, J, Bak, T. Fault-tolerant Control of discrete-time LPV Systems using virtual actuators and sensors. J Robust Nonlinear Control 2015;25:709–34. https://doi.org/10.1002/rnc.3194.Suche in Google Scholar

15. Yadegar, M, Afshar, A, Meskin, N. Fault-torlerant control of non-linear systems based on adaptive virtual actuator. IET Control Theory & Appl 2017;11:1371–9. https://doi.org/10.1049/iet-cta.2016.1169.Suche in Google Scholar

16. Quadros, MM, Bessa, IV, Leite, VJS, Palhares, RM. Fault tolerant control for linear parameter varying systems: an improved robust virtual actuator and sensor approach. ISA (Instrum Soc Am) Trans 2020;104:356–69. Online.10.1016/j.isatra.2020.05.010Suche in Google Scholar

17. Blesa, J, Rotondo, D, Puig, V, Nejjari, F. FDI and FTC of wind turbines using the interval observer approach and virtual. Actuators/Sensors. Contr Eng Pract 2014;24:138–55. https://doi.org/10.1016/j.conengprac.2013.11.018.Suche in Google Scholar

18. Qian, Y, Ye, Z, Zhang, H, Zhou, L. LPV/PI control for nonlinear aeroengine system based on guardian maps theory. IEEE Access 2019;7:125854–67. https://doi.org/10.1109/access.2019.2929572.Suche in Google Scholar

19. Lu, F, Huang, JQ, Ji, CS, Zhang, DD, Jiao, HB. Gas path on-line fault diagnostics using a nonlinear integrated model for gas turbine engines. Int J Turbo Jet Engines 2018;31:773–84.10.1515/tjj-2014-0001Suche in Google Scholar

20. Smith, H. Monotone dynamical systems an introduction to the theory of competitive and cooperative systems. Ams Ebooks Program 1995;41:174.Suche in Google Scholar

21. Efimov, D, Raissi, T, Zolghadri, A. Control of nonlinear and LPV systems: interval observer-based framework. IEEE Trans Automat Contr 2013;58:773–8. https://doi.org/10.1109/tac.2013.2241476.Suche in Google Scholar

22. Sontag, ED. Input to state stability: basic concepts and results. Nonlinear and optimal control theory. Cetraro, Italy: Springer; 2008.10.1007/978-3-540-77653-6_3Suche in Google Scholar

23. Huang, Y, Jia, Y. Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target. Int J Robust Nonlinear Control 2018;28:2598–618. https://doi.org/10.1002/rnc.4038.Suche in Google Scholar

24. Rotondo, D, Cristofaro, A, Johansen, T. Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control 2018;28:611–24. https://doi.org/10.1002/rnc.3888.Suche in Google Scholar

Received: 2020-10-17
Accepted: 2020-10-31
Published Online: 2020-11-17
Published in Print: 2023-05-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2020-0039/pdf
Button zum nach oben scrollen