Startseite Numerical study of the parameters of a gas turbine combustion chamber with steam injection operating on distillate fuel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical study of the parameters of a gas turbine combustion chamber with steam injection operating on distillate fuel

  • Serhiy Serbin EMAIL logo und Kateryna Burunsuz
Veröffentlicht/Copyright: 16. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Investigations of the working process in a gas turbine combustion chamber with ecological and energy steam injection operating on liquid fuel are conducted. The mathematical model of the aerodynamic processes and liquid fuel combustion in similar burning devices based on the numerical solution of the system of conservation and transport equations for a multi-component chemically reactive turbulent system is developed. The influence of the relative steam mass flow rate (the ratio of the sum of the mass flow rates of ecological and energy steam to the fuel consumption) on the combustion chamber’s emission characteristics is determined. The obtained results can be used for parameter selection and optimization of promising high-temperature gas turbine combustion chambers with steam injection operating on liquid fuels.


Corresponding author: Serhiy Serbin, Department of Turbines, Mechanical Engineering Institute of the admiral Makarov National University of Shipbuilding, Mikolayiv, 54025, Ukrain, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Reasearch funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Cheng, DY, Nelson, ALC. The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. In: Proceedings of ASME turbo expo 2002. Amsterdam, the Netherlands 2002. p. 1–8. GT-2002-30119.10.1115/GT2002-30119Suche in Google Scholar

2. Sahai, V, Cheng, DY. Reduction of NOx and CO to below 2 ppm in a diffusion flame. In: Proceedings of ASME turbo expo 2003 power for land, sea, and air. Atlanta, Georgia, US; 2003; GT2003-38208. p. 1–9.10.1115/GT2003-38208Suche in Google Scholar

3. Rao, A. Evaporative gas turbine (EvGT)/Humid air turbine (HAT) cycles. In: Handbook of clean energy systems John Wiley & Sons, Ltd; 2015. p. 1–18.10.1002/9781118991978.hces141Suche in Google Scholar

4. Guillet, R. The humid combustion to protect environment and to save the fuel: the water vapor pump and Maisotsenko cycle examples. Int J Energy a Clean Environ (IJECE) 2011;12:259–71. https://doi.org/10.1615/interjenercleanenv.2012006092.Suche in Google Scholar

5. Bouam, A, Aïssani, S, Kadi, R. Gas turbine performances improvement using steam injection in the combustion chamber under sahara conditions. Oil Gas Sci Technol 2008;63:251–61. https://doi.org/10.2516/ogst:2007076.Suche in Google Scholar

6. Tirgar, R, Sarmazdeh, AM, Nezhad, MM, Tahani, M. Modelling of steam injection effects on performance parameters and NOx emissions of a gas turbine. J Appl Sci Res 2014;10:331–6.Suche in Google Scholar

7. Stathopoulos, P, Terhaar, S, Schimek, S, Paschereit, CO. The ultra-wet cycle for high efficiency, low emission gas turbines. In: The future of gas turbine technology, 7th International gas turbine conference. Brussels, Belgium: 2014. p. 1–8.Suche in Google Scholar

8. Nelson, A. Quick and economical power augmentation and emission control using new advancements in combustion turbine steam injection. Cheng Power Systems 2001;1–16. Available from https://www.intpower.com/cln/PowerGen(6B)Paper.pdf.Suche in Google Scholar

9. Bondin, YN, Krivutsa, VA, Movchan, SN, Romanov, VI, Kolomeev, VN, Shevtsov, AP. Operation experience of a gas turbine unit GPU-16K with steam injection. Gas Turbine Technologies 2004;5:18–20. (in Russian).Suche in Google Scholar

10. Serbin, S, Mostipanenko, A, Matveev, I. Investigation of the working processes in a gas turbine combustor with steam injection. In: Proceedings of the ASME/JSME 8th thermal engineering joint conference AJTEC2011. USA; 2011; AJTEC2011-44042 p. 1–6.10.1115/AJTEC2011-44042Suche in Google Scholar

11. Sehat, A, Ommi, F, Saboohi, Z. Effects of steam addition and/or injection on the combustion characteristics: a review. Therm Sci 2019:1–35. OnLine-First Issue 2019. https://doi.org/10.2298/TSCI191030452S.Suche in Google Scholar

12. Meloni, R. Pollutant emission validation of a heavy-duty gas turbine burner by CFD modeling. Machines 2013;2:81–97. https://doi.org/10.3390/machines1030081.Suche in Google Scholar

13. Xue, R, Hu, C, Nikolaidis, T, Pilidis, P. Effect of steam addition on the flow field and NOx emissions for Jet-A in an aircraft combustor. Int J Turbo Jet Engines 2015;33:381–93. https://doi.org/10.1515/tjj-2015-0041.Suche in Google Scholar

14. Sharafoddinil, R, Habibi, M, Pirmohammadi, M. Numerical study of water vapor injection in the combustion chamber to reduce gas turbine fuel consumption. J Appl Fluid Mech 2020;13:1047–54. https://doi.org/10.29252/jafm.13.03.30466.Suche in Google Scholar

15. Sayadian, S, Mazaheri, K. Reducing NOx emissions in gas turbine combustor by steam injection using CLN technique. AJSR – Mechanical Engineering 2016;48:89–92.Suche in Google Scholar

16. Benini, E, Pandolfo, S, Zoppellari, S. Reduction of NO emissions in a turbojet combustor by direct water/steam injection: numerical and experimental assessment. Appl Therm Eng 2009;29:3506–10. https://doi.org/10.1016/j.applthermaleng.2009.06.004.Suche in Google Scholar

17. Sullerey, RK, Agarwal, A. Performance improvement of gas turbine cycles. Int J Turbo Jet Engines 2008;25:209–20. https://doi.org/10.1515/tjj.2008.25.3.209.Suche in Google Scholar

18. Mishra, RK, Kumar, SK, Chandel, S. Effect of fuel particle size on the stability of swirl stabilized flame in a gas turbine combustor. Int J Turbo Jet Engines 2015;32:129–41. https://doi.org/10.1515/tjj-2014-0028.Suche in Google Scholar

19. Xiao, Y, Lai, Z, Wang, Z, Chen, K. Predicting lean blowout and emissions of aircraft engine combustion chamber based on CRN. Int J Turbo Jet Engines 2019;36:147–56. https://doi.org/10.1515/tjj-2017-0063.Suche in Google Scholar

20. Mishra, RK, Chandel, S. Numerical analysis of exhaust emission from an aero gas turbine combustor under fuel-rich condition. Int J Turbo Jet Engines 2018;36:411–24. https://doi.org/10.1515/tjj-2016-0079.Suche in Google Scholar

21. Launder, BE, Spalding, DB. Lectures in mathematical models of turbulence. London: Academic Press; 1972. p. 1–327.Suche in Google Scholar

22. Choudhury, D. Introduction to the renormalization group method and turbulence modeling. Fluent Inc. Technical Memorandum TM-107; 1993.Suche in Google Scholar

23. Matveev, I, Serbin, S. Experimental and numerical definition of the reverse vortex combustor parameters. In: 44th AIAA aerospace sciences meeting and exhibit. Reno, Nevada; 2006; AIAA-2006-0551 p. 1–12.10.2514/6.2006-551Suche in Google Scholar

24. Matveev, I, Matveeva, S, Serbin, S. Design and preliminary result of the plasma assisted tornado combustor. In: 43rd AIAA/ASME/SAE/ASEE joint propulsion conference. Collection of Technical Papers, Cincinnati, OH; 2007;AIAA 2007-5628 p. 6091–8.10.2514/6.2007-5628Suche in Google Scholar

25. Magnussen, BF. On the structure of turbulence and a generalized Eddy dissipation Concept for chemical reaction in turbulent flow. In: Nineteeth AIAA meeting, St. Louis; 1981. p. 1–7.10.2514/6.1981-42Suche in Google Scholar

26. Serbin, SI. Modeling and experimental study of operation process in a gas turbine combustor with a plasma-chemical element. Combust Sci Technol 1998;139:137–58. https://doi.org/10.1080/00102209808952084.Suche in Google Scholar

27. Warnatz, J, Maas, U, Dibble, RW. Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. Springer; 2001. p. 1–299.10.1007/978-3-662-04508-4Suche in Google Scholar

28. Serbin, SI, Mostipanenko, AB, Goncharova, NA. Low-emission gas turbine combustion chambers. Mikolayiv: Torubara V.V. 2016:1–216. (in Russian).10.1155/2017/6146984Suche in Google Scholar

29. Peters, N, Rogg, B. Reduced kinetic mechanisms for applications in combustion systems. Lect Notes Phys 1992;12:3–12.10.1007/978-3-540-47543-9Suche in Google Scholar

30. Meredith, KV, Black, DL. Automated global mechanism generation for use in CFD simulations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada; 2006. p. 1–13.10.2514/6.2006-1168Suche in Google Scholar

31. James, S, Anand, MS, Pope, SB. The Lagrangian PDF transport method for simulations of gas turbine combustor flow. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Indianapolis, USA; 2002; AIAA 2002-4017 p. 1–12.10.2514/6.2002-4017Suche in Google Scholar

32. Faeth, GM. Spray combustion models: a review. AIAA Paper 1979;293:1–18.10.2514/6.1979-293Suche in Google Scholar

33. Dyatlov, IN. Spraying fuel in the combustion chambers of gas turbine engines. Kazan: KAI 1980:1–81. (in Russian).Suche in Google Scholar

34. Serbin, S. Mathematical modeling and theoretical investigations of plasma-chemical combustion processes. Plasma assisted combustion, gasification, and pollution control, 2 Denver, Colorado: Outskirts Press Inc; 2015. p. 10–89.Suche in Google Scholar

35. Matveev, IB, Tropina, AA, Serbin, SI, Kostyuk, VY. Arc modeling in a plasmatron channel. IEEE Trans Plasma Sci 2008;36:293–8. https://doi.org/10.1109/tps.2007.913876.Suche in Google Scholar

36. Gatsenko, NA, Serbin, SI. Arc plasmatrons for burning fuel in industrial installations. Glass Ceram 1998;51:383–6. https://doi.org/10.1007/BF00679821.Suche in Google Scholar

37. Serbin, SI, Matveev, IB, Goncharova, NA. Plasma assisted reforming of natural gas for GTL. Part I. IEEE Trans Plasma Sci 2014;42:3896–900. https://doi.org/10.1109/tps.2014.2353042.Suche in Google Scholar

38. Serbin, SI, Kozlovskyi, AV, Burunsuz, KS. Investigations of non-stationary processes in low emissive gas turbine combustor with plasma assistance. IEEE Trans Plasma Sci 2016;44:2960–4. https://doi.org/10.1109/tps.2016.2607461.Suche in Google Scholar

Received: 2020-08-11
Accepted: 2020-08-17
Published Online: 2020-09-16
Published in Print: 2023-03-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2020-0029/html
Button zum nach oben scrollen