Startseite Investigations of Combustor Inlet Swirl on the Liner Wall Temperature in an Aero Engine Combustor
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigations of Combustor Inlet Swirl on the Liner Wall Temperature in an Aero Engine Combustor

  • K. V. L. Narayana Rao EMAIL logo , B. V. S. S. S. Prasad und C. H. Kanna Babu
Veröffentlicht/Copyright: 1. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Experimental and numerical investigations are carried out on an annular, straight flow, swirl-stabilized aero engine combustor. In this work, the effect of degree and direction of swirl at the inlet of combustion chamber is examined on the liner wall temperature and hot spots. This is carried out by experimentally measuring the liner outer wall temperature at discrete positions along the circumferential and axial directions of the combustor liner in the engine test facility. The RANS based turbulence modeling with reacting flow approach is used to simulate the flow domain. Conjugate heat transfer analysis is used to estimate the liner wall temperature using Ansys CFX frame work. The degree and direction of swirl at the inlet of combustion chamber is found to alter the velocity and temperature profiles inside the combustor and hence found to have a significant effect on the liner hot spots and its location. Hotspot with 43 % increase in temperature near the secondary zone is observed with the increase in swirl angle from 5° to 15° at the combustor inlet. The location of the hotspot is found to be dependent on the swirl direction.

Nomenclature

CCW

Counter clock wise direction

CFD

Computational fluid dynamics

CHT

Conjugate Heat transfer

CPF

Circumferential pattern factor

CW

Clock wise direction

DAS

Data acquisition system

EDM

Eddy dissipation model

FAR

Fuel air ratio

hc

convective heat transfer coefficient

IGV

Inlet Guide Vanes

m

Mass flow rate

max

Maximum

Nu

Nusselt Number

P

Pressure

Pr

Prandtl number

R

gas constant

RANS

Reynolds averaged Navier stokes equations

Re

Reynold’s Number

RMS

Root mean square

SMD

Sauter mean diameter

T

Temperature

RPF

Radial pattern factor

W

Molar mass of component I

y+

Non dimensional distance from wall

Greek Symbols
θ

Angle

ν

Stoichiometric coefficient

µ

Dynamic viscosity

ν

Kinematic viscosity

Subscripts
3

Compressor exit or combustor inlet

4

Combustor exit

a

Air

c

Circumferential

f

Fuel

L

Liner

I

Species component

t

Turbulent

sw

Swirl

u

Universal

Acknowledgements

The authors are thankful to the project management, design, planning and the instrumentation teams for the support during the experimental setup and testing.

References

1. Bolger JJ, Horlock JH. Predictions of the flow in repeating stages of axial compressors using Navier-Stokes solvers. International Gas Turbine and Aeroengine Congress and Exposition, ASME 95-GT–199.10.1115/95-GT-199Suche in Google Scholar

2. Yong MU, Chengdong W, Cunxi L, Fuqiang L, Chunyan H, Gang X, et al. Numerical study of effect of compressor swirling flow on combustor design in a MTE. J Therm Sci. 2017;26:349. DOI:10.1007/s11630-017-0948.Suche in Google Scholar

3. Gordon R, Levy Y. Optimisation of wall cooling in gas turbine combustor through 3D numerical simulation. ASME J Gas Turbine Power. 2005;127:704–23. DOI:10.1115/1.1808432.Suche in Google Scholar

4. Scrittore JJ, Thole KA, Burd SW. Experimental characterization of film-cooling effectiveness near combustor dilution holes. ASME Turbo Expo GT2005–68704.10.1115/GT2005-68704Suche in Google Scholar

5. Li L, Peng XF, Liu T. Combustion and cooling performance in a aero engine annular combustor. J Appl Therm Eng. 2006;26:1771–9. Elsevier Ltd.10.1016/j.applthermaleng.2005.11.023Suche in Google Scholar

6. Behrendt T, Hassa C. A test rig for investigations of gas turbine Combustor cooling concepts under realistic operating conditions, 25th International Congress of the Aeronautical sciences, ICAS, 2006.Suche in Google Scholar

7. Andreini A, Champion JL, Facchini B, Mercier E, Surace M. Advanced liner cooling numerical analysis for low emission combustors, 25th International Congress of the Aeronautical sciences, ICAS, 2006.Suche in Google Scholar

8. Strakey PA, Yip MJ. Experimental and numerical investigation of a swirl stabilized premixed combustor under cold-flow conditions. ASME J Fluids Eng. 2007;129:942.10.1115/1.2743665Suche in Google Scholar

9. Pujari AK, Prasad BV, Sitaram N. Conjugate heat transfer analysis on the interior surface of nozzle guide vane with combined impingement and film cooling. Int J Turbo Jet Eng. DOI:10.1515/tjj-2017-0026.Suche in Google Scholar

10. Patil S, Abraham S, Tafti D, Ekkad SV, Kim Y, Dutta P, et al. Experimental and numerical investigation of convective heat transfer in a gas turbine can combustor. ASME J Turbomachinery. 2011;133:011028.10.1115/GT2009-59377Suche in Google Scholar

11. Patil S, Sedalor T, Tafti D, Ekkad SV, Kim Y, Dutta P, et al. Study of flow and convective heat transfer in a simulated scaled up low emission annular combustor. ASME J Therm Sci Eng Appl. 2011;3:031010.10.1115/1.4004531Suche in Google Scholar

12. Wurm B, Schulz A, Bauer HJ, Gerendas M. Impact of swirl flow on the cooling performance of an effusion cooled combustor liner. ASME J Eng Gas Turbines Power. 2012;134:121503.10.1115/GT2012-68972Suche in Google Scholar

13. Kedukodi S, Ekkad SV, Moon HK, Kim Y, Srinivasan R. Numerical investigation of effect of geometry changes in a model combustor on swirl dominated flow and heat transfer. ASME Turbo Expo. 2015.10.1115/GT2015-43035Suche in Google Scholar

14. Kedukodi S, Ekkad SV. Effect of downstream contraction on liner heat transfer in a gas turbine combustor swirl flow. ASME Turbo Expo. 2015.10.1115/GTINDIA2015-1206Suche in Google Scholar

15. Yinli X, Zhibo C, Changwu W. The effect of dilution air jets on aero-engine combustor performance. Int J Turbo Jet Eng. DOI:10.1515/tjj-2018-0045.Suche in Google Scholar

16. Saygin Y, Kocaman OC, Sitki U. Effect of radiation on gas turbine combustor liner temperature with conjugate heat transfer (CHT) methodology, 2016, AIAA Conference, Jul 2016. DOI: 10.2514/6.2016-4784.10.2514/6.2016-4784Suche in Google Scholar

17. Suresh B, Kumar SK. Temperature prediction and validation of V-gutter for an aero engine afterburner. Int J Sci Eng Res. 2015;6:230-6. ISSN: 2229–5518.Suche in Google Scholar

18. Rao KVLN, Prasad BVSS, KannaBabu CH, Degaonkar GK. Numerical and experimental investigations on liner heat transfer in an aero engine combustion chamber. Proceedings of the Asian Congress on Gas Turbines ACGT2016-091, 14–16 November 2016, Indian Institute of Technology Bombay, Mumbai, India.Suche in Google Scholar

19. Rao KVLN, Prasad BVSS, KannaBabu CH, Degaonkar GK. Numerical and experimental investigations on liner heat transfer in an aero engine combustor. ASME GT India 2017:4776.Suche in Google Scholar

20. Park S, Gomez-Ramirez D, Gadiraju S, Kedukodi S, Ekkad SV, Moon HK, et al. Flow field and wall temperature measurements for reacting flow in a lean premixed swirl stabilized can combustor. ASME J Eng Gas Turbines Power. 2018;140:091503.10.1115/GT2017-64837Suche in Google Scholar

21. Mishra MP, Sahani AK, Chandel S, Mishra RK. Enhancement of full coverage film cooling effectiveness with mixed injection holes. Int J Turbo Jet Eng. DOI:10.1515/tjj-2018-0025.Suche in Google Scholar

22. Mishra RK, Kumar SK, Chandel S. Effect of spray cone angle on flame stability in an annular gas turbine combustor. Int J Turbo Jet Eng. DOI:10.1515/tjj-2015-0006.Suche in Google Scholar

23. Mishra MP, Sahani AK, Chandel S, Mishra RK. Effect of injection angle on performance of full coverage film cooling with opposite injection holes. Int J Turbo Jet Eng. DOI:10.1515/tjj-2018-0037.Suche in Google Scholar

24. Kukutla PR, Prasad BVSS. Numerical study on the secondary air performance of the film holes for the combined impingement and film cooled first stage of high pressure nozzle guide vane. Int J Turbo Jet Eng. 2017. DOI:10.1515/tjj-2017-0022.Suche in Google Scholar

25. Anand VG, Parammasivam KM. Investigations of trenched film hole orientation angle on film cooling effectiveness. Int J Turbo Jet Eng. 2017. DOI:10.1515/tjj-2017-0049.Suche in Google Scholar

26. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics, the finite volume method. Harlow, England: Longman Scientific and Technical, Longman Group Ltd., 1995.Suche in Google Scholar

27. Ansys CFX. Modeling and user guide, R16.2. Ansys Inc., USA.Suche in Google Scholar

28. Andreini A, Bacci T, Insinna M, Mazzei L, Salvadori S. Modelling strategies for the prediction of hot streak generation in lean burn aero engine combustors. J Aerosp Sci Technol. 2018;2018:266–77. Elsevier.10.1016/j.ast.2018.05.030Suche in Google Scholar

29. Blazowski SW. Effect of inlet temperature and pressure on the stoichiometric flame temperature of Jet-A combustion in air. In: Oates GC, editor. Chapter 1 in Aerothermodynamics of Aircraft Engines and components. Washington DC: AIAA Inc., 1985.Suche in Google Scholar

Received: 2019-09-15
Accepted: 2019-10-06
Published Online: 2019-11-01
Published in Print: 2022-03-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2019-0035/html
Button zum nach oben scrollen