Startseite Technik Creep Life Prediction of Aircraft Turbine Disc Alloy Using Continuum Damage Mechanics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Creep Life Prediction of Aircraft Turbine Disc Alloy Using Continuum Damage Mechanics

  • Yan-Feng Li , Zhisheng Zhang , Chenglin Zhang , Jie Zhou und Hong-Zhong Huang EMAIL logo
Veröffentlicht/Copyright: 4. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper deals with the creep characteristics of the aircraft turbine disc material of nickel-base superalloy GH4169 under high temperature. From the perspective of continuum damage mechanics, a new creep life prediction model is proposed to predict the creep life of metallic materials under both uniaxial and multiaxial stress states. The creep test data of GH4169 under different loading conditions are used to demonstrate the proposed model. Moreover, from the perspective of numerical simulation, the test data with analysis results obtained by using the finite element analysis based on Graham creep model is carried out for comparison. The results show that numerical analysis results are in good agreement with experimental data. By incorporating the numerical analysis and continuum damage mechanics, it provides an effective way to accurately describe the creep damage process of GH4169.

Funding statement: This research was supported by the Fundamental Research Funds for the Central Universities under contract number ZYGX2014Z010.

References

1. Yang YK, Wu TL. Metal high temperature strength and testing. Shanghai: Shanghai Scientific and Technical Publishers, 1986.Suche in Google Scholar

2. Rajendran R, Paik JK, Lee JM, Chae YH, Lee MS. Creep life prediction of a high strength steel plate. Mater Des. 2008;29(2):427–35.10.1016/j.matdes.2007.01.003Suche in Google Scholar

3. Aghaie-Khafri M, Farahany S. Creep life prediction of thermally exposed rene 80 superalloy. J Mater Eng Perform. 2010;19(7):1065–70.10.1007/s11665-009-9584-6Suche in Google Scholar

4. Kim WG, Yin SN, Lee GG, Kim YW, Kim SJ. Creep oxidation behaviour and creep strength prediction for Alloy 617. Int J Press Vessels Piping. 2010;87(6):289–95.10.1016/j.ijpvp.2010.03.008Suche in Google Scholar

5. An D, Choi JH, Kim NH, Pattabhiraman S. Fatigue life prediction based on Bayesian approach to incorporate field data into probability model. Struct Eng Mech. 2011;37(4):427–42.10.12989/sem.2011.37.4.427Suche in Google Scholar

6. Zhang G, Yuan H, Li F. Analysis of creep-fatigue life prediction models for nickel-based super alloys. Comput Mater Sci. 2012;57:80–88.10.1016/j.commatsci.2011.07.034Suche in Google Scholar

7. Rouse JP, Sun W, Hyde TH, Morris A. Comparative assessment of several creep damage models for use in life prediction. Int J Press Vessels Piping. 2013;108–109:81–87.10.1016/j.ijpvp.2013.04.012Suche in Google Scholar

8. Goyal S, Laha K. Creep life prediction of 9Cr-1Mo steel under multiaxial state of stress. Mater Sci Eng A. 2014;615:348–60.10.1016/j.msea.2014.07.096Suche in Google Scholar

9. Miyakita A, Yamashita K, Taniguchi G, Suga T. Creep-rupture life prediction for 9Cr-1Mo-Nb-V weld metal. ISIJ Int. 2015;55(10):2189–97.10.2355/isijinternational.ISIJINT-2014-783Suche in Google Scholar

10. Yan XL, Zhang XC, Tu ST, Mannan SL, Xuan FZ, Lin YC. Review of creep-fatigue endurance and life prediction of 316 stainless steels. Int J Press Vessels Piping. 2015;126:17–28.10.1016/j.ijpvp.2014.12.002Suche in Google Scholar

11. Shi DQ, Quan CB, Niu HW, Yang XG. Constitutive modelling and creep life prediction of a directionally solidified turbine blade under service loadings. Mater High Temp. 2015;32(5):455–60.10.1179/0960340915Z.000000000118Suche in Google Scholar

12. Ding YQ, Lu QF, Liu JB, Chen ZT, Zhang Y, Zheng YX. Stress analysis and creep life prediction of hydrogen reformer furnace tube. J Mech Eng Res Dev. 2016;39(3):744–56.Suche in Google Scholar

13. Zhang DX, Wang JP, Wen ZX, Liu DS, Yue ZF. V-Notched bar creep life prediction: GH3536 Ni-based superalloy under multiaxial stress state. J Mater Eng Perform. 2016;25(7):2959–68.10.1007/s11665-016-2081-9Suche in Google Scholar

14. Ji D, Ren J, Zhang LC. A novel creep-fatigue life prediction model for P92 steel on the basis of cyclic strain energy density. J Mater Eng Perform. 2016;25(11):4868–74.10.1007/s11665-016-2334-7Suche in Google Scholar

15. Li YF, Huang HZ, Zhang H, Xiao NC, Liu Y. Fuzzy sets method of reliability prediction and its application to a turbocharger of diesel engines. Adv Mech Eng. 2013;2013:7 pages. Article ID 216192. DOI:10.1155/2013/216192.Suche in Google Scholar

16. Li YF, Huang HZ, Zhu SP, Liu Y, Xiao NC. An application of fuzzy fault tree analysis to uncontained events of an areo-engine rotor. Int J Turbo Jet Engines. 2012;29(4):309–15.10.1515/tjj-2012-0032Suche in Google Scholar

17. Mi J, Li YF, Yang YJ, Peng W, Huang HZ. Reliability assessment of complex electromechanical systems under epistemic uncertainty. Reliab Eng Syst Saf. 2016;152:1–15.10.1016/j.ress.2016.02.003Suche in Google Scholar

18. Mi J, Li YF, Liu Y, Yang YJ, Huang HZ. Belief universal generating function analysis of multi-state systems under epistemic uncertainty and common cause failures. IEEE Trans Reliab. 2015;64(4):1300–09.10.1109/TR.2015.2419620Suche in Google Scholar

19. Li YF, Lv Z, Cai W, Zhu SP, Huang HZ. Fatigue life analysis of turbine disks based on load spectra of aero-engines. Int J Turbo Jet Engines. 2016;33(1):27–33.10.1515/tjj-2015-0004Suche in Google Scholar

20. Li YF, Zhu SP, Li J, Peng W, Huang HZ. Uncertainty analysis in fatigue life prediction of gas turbine blades using Bayesian inference. Int J Turbo Jet Engines. 2015;32(4):319–24.10.1515/tjj-2014-0037Suche in Google Scholar

21. Lemaitre J. Application of damage concepts to predict creep-fatigue failures. J Eng Mater Technol Trans ASME. 1979;101(3):284–92.10.1115/1.3443689Suche in Google Scholar

22. Chaboche JL. Continuum damage mechanics: part 2. J Appl Mech Trans ASME. 1988;55(1):65–72.10.1115/1.3173662Suche in Google Scholar

23. GB/T 2039-1997. Metallic materials-creep and stress-rupture test in tension. Beijing: China Standard Press, 1997.Suche in Google Scholar

Received: 2017-09-27
Accepted: 2017-10-19
Published Online: 2017-11-04
Published in Print: 2021-03-26

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2017-0043/pdf
Button zum nach oben scrollen