Startseite Numerical Study of the Propulsive Performance of the Hollow Rotating Detonation Engine with a Laval Nozzle
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical Study of the Propulsive Performance of the Hollow Rotating Detonation Engine with a Laval Nozzle

  • Songbai Yao EMAIL logo , Xinmeng Tang und Jianping Wang
Veröffentlicht/Copyright: 5. November 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of the present paper is to investigate the propulsive performance of the hollow rotating detonation engine (RDE) with a Laval nozzle. Three-dimensional simulations are carried out with a one-step Arrhenius chemistry model. The Laval nozzle is found to improve the propulsive performance of hollow RDE in all respects. The thrust and fuel-based specific impulse are increased up to 12.60 kN and 7484.40 s, respectively, from 6.46 kN and 6720.48 s. Meanwhile, the total mass flow rate increases from 3.63 kg/s to 6.68 kg/s. Overall, the Laval nozzle significantly improves the propulsive performance of the hollow RDE and makes it a promising model among detonation engines.

Funding statement: Funding: The research is supported by National Natural Science Foundation of China (Grant No. 91441110).

Acknowledgements

This work is written based on the presentation paper in APCATS 2015.

Nomenclature

p0

stagnation pressure

pw

pressure on the head end wall

T0

stagnation temperature

e

total energy

q

heat released per unit mass of reactants

Rˉ

gas constant

γ

ratio of specific heats

β

mass fraction

Isp

fuel-based specific impulse

F

thrust

m˙f

fuel mass flow rate

m˙Total

total mass flow rate

Rc

radius of the nozzle inlet

Rt

radius of the throat

Lc

length of the convergent part

Ae

area of the exit of the nozzle

At

area of the throat of the nozzle

References

1. Nicholls JA, Wilkinson HR, Morrison RB. Intermittent detonation as a thrust-producing mechanism. J Jet Propul 1957;27:534–41.10.2514/8.12851Suche in Google Scholar

2. Voitsekhovskii BV. Stationary spin detonation. Sov J Appl Mech Tech Phys 1959;129:157–64.Suche in Google Scholar

3. Bykovskii FA, Zhdan SA, Vedernikov EF. Continuous spin detonation. J Propul Power 2006;22:1204–16.10.2514/1.17656Suche in Google Scholar

4. Kindracki J, Wolanski P, Gut Z. Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves 2011;21:75–87.10.1007/s00193-011-0298-ySuche in Google Scholar

5. Naour BJ, Falempin F, Miquel F. Recent experimental results obtained on continuous detonation wave engine. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011.10.2514/6.2011-2235Suche in Google Scholar

6. Suchocki JA, Yu STJ, Hoke JL, Naples AG, Schauer FR, Russo R. Rotating detonation engine operation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.10.2514/6.2012-119Suche in Google Scholar

7. Wang YH, Wang JP, Li YS, Li Y. Induction for multiple rotating detonation waves in the Hydrogen–Oxygen mixture with tangential flow. Int J Hydrogen Energy 1797;39:11792–1.10.1016/j.ijhydene.2014.05.162Suche in Google Scholar

8. Liu SJ, Lin ZY, Liu WD, Lin W, Zhuang FC. Experimental Realization of H2/air Continuous Rotating Detonation in a Cylindrical Combustor. Combust Sci Technol 2012;184:1302–17.10.1080/00102202.2012.682669Suche in Google Scholar

9. Zhdan SA, Bykovskii FA, Vedernikov EF. Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen–oxygen Mixture. Combust Explos Shock Waves 2007;43:449–59.10.1007/s10573-007-0061-ySuche in Google Scholar

10. Davidenko DM, Gokalp I, Kudryavtsev AN. Numerical study of the continuous detonation wave rocket engine. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008.10.2514/6.2008-2680Suche in Google Scholar

11. Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonation. Shock Waves 2009;19:1–10.10.1007/s00193-008-0178-2Suche in Google Scholar

12. Shao YT, Liu M, Wang JP. Numerical investigation of rotating detonation engine propulsive performance. Combust Sci Technol 2010;182:1586–97.10.1080/00102202.2010.497316Suche in Google Scholar

13. Zhou R, Wang JP. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combust Flame 2012;159:3632–45.10.1016/j.combustflame.2012.07.007Suche in Google Scholar

14. Schwer D, Kailasanath K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proc Combust Inst 2013;34:1991–98.10.1016/j.proci.2012.05.046Suche in Google Scholar

15. Nordeen CA, Schwer D, Schauer F, Hoke J, Cetegen B, Barber T. Thermodynamic modeling of a rotating detonation engine. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011.10.2514/6.2011-803Suche in Google Scholar

16. Uemura Y, Hayashi AK, Asahara M, Tsuboi N, Yamada E. Transverse wave generation mechanism in rotating detonation. Proc Combust Inst 2013;34:1981–89.10.1016/j.proci.2012.06.184Suche in Google Scholar

17. Tsuboi N, Watanabe Y, Kojima T, Hayashi AK. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture. Proc Combust Inst 2015;35:2003–.10.1016/j.proci.2014.09.010Suche in Google Scholar

18. Tang XM, Wang JP, Shao YT. Three-dimensional numerical investigation of the rotating detonation engine with a hollow combustor. Combust Flame 2015;162:997–1008.10.1016/j.combustflame.2014.09.023Suche in Google Scholar

19. Yi TH, Turangan C, Lou J, Wolanski P, Kindracki J. A three-dimensional numerical study of rotational detonation in an annular chamber. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009.10.2514/6.2009-634Suche in Google Scholar

20. Ma F, Choi JY, Yang V. Propulsive performance of airbreathing pulse detonation engines. J Propul Power 2006;22:1188–203.10.2514/1.21755Suche in Google Scholar

21. Paydar N. Buckling analysis of sandwich columns of linearly varying thickness. AIAA J 1988;26:756–9.10.2514/3.9967Suche in Google Scholar

22. Kasahara J. 500-n class rotating detonation rocket engine experiments. International Workshop on Detonation for Propulsion 2015, 2015.Suche in Google Scholar

Received: 2015-9-10
Accepted: 2015-10-21
Published Online: 2015-11-5
Published in Print: 2017-4-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2015-0052/html
Button zum nach oben scrollen