Spatial detection and localisation of multiple laser beams in optical measuring systems
-
Jasmin Ruprecht
, Mingshuai Su
Abstract
Optical instruments are used in a broad range of applications in different fields of research and industry like microscopy, material science, metrology and fabrication. There, the optical adjustment of laser beams, optical rays and optical axes to a certain position is crucial for the correct function of the overall system. Often, multiple axes have to be adjusted, which requires the monitoring of multiple rays, preferably simultaneously. In this paper, a method for the spatial localisation of multiple laser beams is presented and demonstrated for an application in precision dimensional metrology. There, the position of seven spatially distributed laser beams can be detected with an uncertainty of <10 μm, enhancing the accuracy of the overall system. The underlying method is flexible in its approach and can be adapted to other optical systems.
Zusammenfassung
Optische Geräte finden breite Anwendung in verschiedenen Bereichen in Forschung und Industrie, wie Mikroskopie, Materialwissenschaft, Metrologie und Fertigung. Oft ist dort die optische Justage von Laserstrahlen, optischen Strahlen und optischen Achsen auf eine bestimmte Position entscheidend für die korrekte Funktion und die Leistungsfähigkeit des gesamten Systems. Typischerweise sind in diesen Systemen mehrere optische Achsen zu justieren, was die Beobachtung mehrerer Strahlen, vorzugsweise gleichzeitig, erforderlich macht. In diesem Beitrag wird ein Verfahren zur räumlichen Lagedetektion mehrerer Laserstrahlen vorgestellt und dessen Umsetzung an einer Anwendung in der Präzisionsmesstechnik praktisch gezeigt. Dort konnte die Position von sieben räumlich verteilten Laserstrahlen mit einer Unsicherheit <10 μm detektiert werden, wodurch die Genauigkeit des Gesamtsystems erhöht werden konnte. Die zugrunde liegende Methode ist in ihrem Ansatz flexibel und kann daher an andere optische Systeme angepasst werden.
Funding source: Deutsche Forschungsgemeinschaft in the scope of Research Training Group on Tip- and laser-based 3D
Award Identifier / Grant number: 274711337
About the authors

Jasmin Ruprecht graduated in 2024 in the field of Measurement and Sensor Technologies at the Technische Universität Ilmenau. Now she is a research and development engineer at LAYERTEC GmbH and works on the development of optical measuring systems.

Mingshuai Su graduated in 2021 in the field of laser measurement technology at the Technische Universität Ilmenau. Now he is scientific staff at the Friedrich-Alexander-Universität, chair of Fertigungsmesstechnik and works on a turnable AFM sensor there.

Maximilian Hoffmann graduated from Technische Universität Ilmenau in 2024 with a degree in mechanical engineering, specialising in mechanical design. He is now a research associate at the Department of Mechanical Engineering, Research Training Group NanoFab at the Technische Universität Ilmenau, working on length and force measurement.

Ingo Ortlepp completed his his doctorate in 2020 in the field of standing wave interferometry at the Technische Universität Ilmenau. Now he is a postdoc at the Institute of Process Measurement and Sensor Technology, working on Nanopositioning and Nanomeasuring Machines.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. JR: theory, experiment, data evaluation, writing. MS: theory, experiment preparation. MH: experiment preparation, visualization. IO: concept, supervision, proofreading.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was supported by the German Research Foundation in the scope of the Research Training Group on Tip- and laser-based 3D-Nanofabrication in extended macroscopic working areas (GRK2182 NanoFab), project number 274711337.
-
Data availability: Not applicable.
References
[1] I. Rakhmatulin, et al.., “A review of automation of laser optics alignment with a focus on machine learning applications,” Optics Lasers Eng., Bd. 173, s. 107923, 2024, https://doi.org/10.1016/j.optlaseng.2023.107923.Suche in Google Scholar
[2] S. Mishra und V. Yadava, “Laser Beam MicroMachining (LBMM) – a review,” Optics Lasers Eng., Bd. 73, ss. 89–122, 2015, https://doi.org/10.1016/j.optlaseng.2015.03.017.Suche in Google Scholar
[3] A. Balena, et al.., “Recent advances on high-speed and holographic two-photon direct laser writing,” Adv. Funct. Mater., Bd. 33, no. 39, 2023, https://doi.org/10.1002/adfm.202211773.Suche in Google Scholar
[4] M. Hofmann, et al.., “Mix-and-match lithography and cryogenic etching for NIL template fabrication,” Microelectron. Eng., Bd. 224, s. 111234, 2020, https://doi.org/10.1016/j.mee.2020.111234.Suche in Google Scholar
[5] M. Haefner, C. Pruss, und W. Osten, “Laser direct writing of rotationally symmetric high-resolution structures,” Appl. Opt., Bd. 50, no. 31, s. 5983, 2011, https://doi.org/10.1364/ao.50.005983.Suche in Google Scholar
[6] R. Zhang und F. G. Shi, “A novel algorithm for fiber-optic alignment automation,” IEEE Trans. Adv. Packag., Bd. 27, no. 1, ss. 173–178, 2004, https://doi.org/10.1109/TADVP.2004.825434.Suche in Google Scholar
[7] Z. Tang, R. Zhang, und F. G. Shi, “Effects of angular misalignments on fiber-optic alignment automation,” Opt. Commun., Bd. 196, nos. 1-6, ss. 173–180, 2001, https://doi.org/10.1016/S0030-4018(01)01404-3.Suche in Google Scholar
[8] F. Schaal, et al.., “Optically addressed modulator for tunable spatial polarization control,” Opt. Express, Bd. 26, no. 21, s. 28119, 2018, https://doi.org/10.1364/oe.26.028119.Suche in Google Scholar PubMed
[9] C. Pruss, et al.., “Measuring aspheres quickly: tilted wave interferometry,” Optical Eng., Bd. 56, no. 11, s. 111713, 2017, https://doi.org/10.1117/1.oe.56.11.111713.Suche in Google Scholar
[10] A. Bauch, “Zeitmessung mit Fontänen: Atomuhren,” Physik in unserer Zeit, Bd. 32, no. 6, ss. 268–273, 2001, https://doi.org/10.1002/1521-3943(200111)32:6268::AID-PIUZ2683.0.CO;2-N.10.1002/1521-3943(200111)32:6<268::AID-PIUZ268>3.0.CO;2-NSuche in Google Scholar
[11] R. Wynands und S. Weyers, “Atomic fountain clocks,” Metrologia, Bd. 42, no. 3, ss. S64–S79, 2005, https://doi.org/10.1088/0026-1394/42/3/s08.Suche in Google Scholar
[12] S. Chu, et al.., “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett., Bd. 55, no. 1, ss. 48–51, 1985, https://doi.org/10.1103/PhysRevLett.55.48.Suche in Google Scholar PubMed
[13] Laser Spectroscopy: Proceedings of the Second International Conference, Megève, June 23–27,1975. Hrsg. von S. Haroche, J.-C. Pebay-Péroula, und T. W. Hänsch. Bd. 43. Lecture Notes in Physics. Springer-Verlag and Springer e-books, 1975.Suche in Google Scholar
[14] J. Meinen, et al.., “Technical Note: using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS,” Atmos. Chem. Phys., Bd. 10, no. 8, ss. 3901–3914, 2010, https://doi.org/10.5194/acp-10-3901-2010.Suche in Google Scholar
[15] G. L. Galiñanes, et al.., “Optical alignment device for two-photon microscopy,” Biomed. Optics Express, Bd. 9, no. 8, ss. 3624–3639, 2018, https://doi.org/10.1364/BOE.9.003624.Suche in Google Scholar PubMed PubMed Central
[16] J. H. Burge, et al.., “Use of a commercial laser tracker for optical alignment,” in Optical System Alignment and Tolerancing, Bd. 6676, 2007, s. 66760E, https://doi.org/10.1117/12.736705.Suche in Google Scholar
[17] R. Kumar, et al.., “Laser processing of graphene and related materials for energy storage: state of the art and future prospects,” Prog. Energy Combust. Sci., Bd. 91, s. 100981, 2022, https://doi.org/10.1016/j.pecs.2021.100981.Suche in Google Scholar
[18] C. Wei, et al.., “An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales,” Int. J. Extreme Manuf., Bd. 3, no. 1, s. 012003, 2021, https://doi.org/10.1088/2631-7990/abce04.Suche in Google Scholar
[19] C. R. Ocier, et al.., “Direct laser writing of volumetric gradient index lenses and waveguides,” Light, Sci. Appl., Bd. 9, no. 1, s. 196, 2020, https://doi.org/10.1038/s41377-020-00431-3.Suche in Google Scholar PubMed PubMed Central
[20] M. Del Pozo, et al.., “Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist,” ACS Nano, Bd. 14, no. 8, ss. 9832–9839, 2020, https://doi.org/10.1021/acsnano.0c02481.Suche in Google Scholar PubMed PubMed Central
[21] G. Jäger, et al.., “Nanomessmaschine zur abbefehlerfreien Koordinatenmessung (Nano Measuring Machine for Zero Abbe Offset Coordinate-measuring),” tm – Technisches Messen, Bd. 67, nos. 7-8, ss. 319–323, 2000, https://doi.org/10.1524/teme.2000.67.7-8.319.Suche in Google Scholar
[22] F. Balzer, „Entwicklung und Untersuchungen zur 3-D-Nanopositioniertechnik in großen Bewegungsbereichen“, Ilmenau, Techn. Univ., Diss., 2014, Univ.-Verl, 2015.Suche in Google Scholar
[23] T. Hausotte, Nanopositionier- und Nanomessmaschinen: Geräte für hochpräzise makro- bis nanoskalige Oberflächen- und Koordinatenmessungen, Zugl, Ilmenau, Techn. Univ., Habil.-Schr., 2011, 1. Aufl. Pro Business, 2011.Suche in Google Scholar
[24] I. Rahneberg, „Untersuchungen zu optischen Mehrkomponentenmesssystemen“, PhD thesis, Technische Universität Ilmenau, 2014, https://www.db-thueringen.de/receive/dbt_mods_00023376.Suche in Google Scholar
[25] F. J. Schuda, “High-precision, wide-range, dual-axis, angle monitoring system,” Rev. Sci. Instrum., Bd. 54, no. 12, ss. 1648–1652, 1983, https://doi.org/10.1063/1.1137303.Suche in Google Scholar
[26] K. Tono, et al.., “Single-shot beam-position monitor for x-ray free electron laser,” Rev. Sci. Instrum., Bd. 82, no. 2, s. 023108, 2011, https://doi.org/10.1063/1.3549133.Suche in Google Scholar PubMed
[27] R. Bansevicius, et al.., “Multi-DOF ultrasonic actuators for laser beam positioning,” Shock Vibration, Bd. 2019, ss. 1–13, 2019, https://doi.org/10.1155/2019/4919505.Suche in Google Scholar
[28] S. Grafström, et al.., “Fast laser beam position control with submicroradian precision,” Opt. Commun., Bd. 65, no. 2, ss. 121–126, 1988, https://doi.org/10.1016/0030-4018(88)90282-9.Suche in Google Scholar
[29] G. Jäger, et al.., “Nanopositioning and nanomeasuring machine NPMM-200—a new powerful tool for large-range micro- and nanotechnology,” Surf. Topogr.:Metrol. Prop., Bd. 4, no. 3, s. 034004, 2016, https://doi.org/10.1088/2051-672X/4/3/034004.Suche in Google Scholar
[30] E. K. Abbe, “Meßapparate für Physiker,” Zeitschrift für Instrumentenkunde, Bd. 10, ss. 446–448, 1890.Suche in Google Scholar
[31] J. B. Bryan, “The Abbé principle revisited: an updated interpretation,” Precision Engineering, Bd. 1, no. 3, ss. 129–132, 1979, https://doi.org/10.1016/0141-6359(79)90037-0.Suche in Google Scholar
[32] A. Meister, „Ein Beitrag zur Modellbildung und Steuerung der Nanopositionier- und Nanomessmaschine 200“, Dissertation, 2020.Suche in Google Scholar
[33] DIN Deutsches Institut für Normung e. V, Laser und Laseranlagen – Prüfverfahren für Laserstrahlabmessungen, Divergenzwinkel und Beugungsmaßzahlen: Teil 1: Stigmatische und einfach astigmatische Strahlen.Suche in Google Scholar
[34] R. Füßl, R. Grünwald, und P. Kreutzer, “Uncertainty consideration of the mirror-interferometer system in nanopositioning and nanomeasuring machines,” in Interferometry XIV: Applications, Bd. 7064, 2008, s. 70640L, https://doi.org/10.1117/12.797058.Suche in Google Scholar
[35] BIPM, et al.., “Evaluation of measurement data – Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology,” JCGM, Bd. 100, s. 2008, 2008, https://www.bipm.org/documents/20126/2071204/JCGMTTT5C_100TTT5C_2008TTT5C_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Measurement and advanced data post-processing of proton resonance frequency shift in 7 T MRI to obtain local temperature in a tissue-mimicking phantom
- Algorithmic assessment of drag on thermally cut sheet metal edges
- Messunsicherheit geometrischer Prüfmerkmale – Automatisiert und praxisgerecht mit Koordinatenmessgeräten ermitteln
- Measuring the frequency response of an optical microphone system with a fiber based setup
- Spatial detection and localisation of multiple laser beams in optical measuring systems
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Measurement and advanced data post-processing of proton resonance frequency shift in 7 T MRI to obtain local temperature in a tissue-mimicking phantom
- Algorithmic assessment of drag on thermally cut sheet metal edges
- Messunsicherheit geometrischer Prüfmerkmale – Automatisiert und praxisgerecht mit Koordinatenmessgeräten ermitteln
- Measuring the frequency response of an optical microphone system with a fiber based setup
- Spatial detection and localisation of multiple laser beams in optical measuring systems