Proof of concept and new developments on a Kibble extension
-
Markus Pabst
, Falko Hilbrunner
Abstract
This article describes the proof of concept of a Kibble extension for vacuum mass comparators and its further development. A Kibble extension is a technical extension for vacuum mass comparators to connect to the new definition of the International System of Units (SI) of 2019. A commercially available high-vacuum prototype mass comparator from Sartorius serves as the basis. It is used to compare kilogram prototypes, such as the international prototype kilogram
Zusammenfassung
Dieser Artikel beschreibt den Konzeptnachweis einer Kibble-Erweiterung für Vakuum-Massekomparatoren und ihre weitere Entwicklung. Eine Kibble-Erweiterung ist eine technische Erweiterung für Vakuum-Massekomparatoren zum Anschluss an die neue Definition des Internationalen Einheitensystems (SI) aus dem Jahr 2019. Als Grundlage dient ein kommerziell erhältlicher Hochvakuum-Prototyp-Massekomparator von Sartorius. Damit lassen sich Kilogrammprototypen, wie der internationale Prototyp des Kilogramms
About the authors

Dr.-Ing. Markus Pabst is a postdoc in the Process Measurement Technology Group at the Department of Mechanical Engineering at Technische Universität Ilmenau.

Dr.-Ing. Falko Hilbrunner works in research and development in the field of mass comparators at Sartorius Lab Instruments GmbH & Co. KG.

Univ.-Prof. Dr.-Ing. habil. Thomas Fröhlich is the head of the Process Measurement Technology Group at the Department of Mechanical Engineering at Technische Universität Ilmenau.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] M. Stock, R. S. Davis, E. de Mirandés, and M. J. T. Milton, “The revision of the SI—the result of three decades of progress in metrology,” Metrologia, vol. 56, no. 2, p. 022001, 2019. https://doi.org/10.1088/1681-7575/ab0013.Suche in Google Scholar
[2] I. A. Robinson and S. Schlamminger, “The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass,” Metrologia, vol. 53, no. 5, pp. A46–A74, 2016. https://doi.org/10.1088/0026-1394/53/5/a46.Suche in Google Scholar PubMed PubMed Central
[3] S. Schlamminger, et al.., “A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST,” Metrologia, vol. 52, no. 2, pp. L5–L8, 2015. https://doi.org/10.1088/0026-1394/52/2/l5.Suche in Google Scholar
[4] R. L. Steiner, E. R. Williams, D. B. Newell, and R. Liu, “Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass,” Metrologia, vol. 42, no. 5, pp. 431–441, 2005. https://doi.org/10.1088/0026-1394/42/5/014.Suche in Google Scholar
[5] I. A. Robinson, “Towards the redefinition of the kilogram: a measurement of the Planck constant using the NPL Mark II watt balance,” Metrologia, vol. 49, no. 1, pp. 113–156, 2011. https://doi.org/10.1088/0026-1394/49/1/016.Suche in Google Scholar
[6] K. Fujii, et al.., “Realization of the kilogram by the XRCD method,” Metrologia, vol. 53, no. 5, pp. A19–A45, 2016. https://doi.org/10.1088/0026-1394/53/5/a19.Suche in Google Scholar
[7] A. Picard, P. Barat, M. Borys, M. Firlus, and S. Mizushima, “State-of-the-art mass determination of 28Si spheres for the Avogadro project,” Metrologia, vol. 48, no. 2, pp. S112–S119, 2011. https://doi.org/10.1088/0026-1394/48/2/s14.Suche in Google Scholar
[8] C. Rothleitner, et al.., “The Planck-Balance—using a fixed value of the Planck constant to calibrate E1/E2-weights,” Measurement Science and Technology, vol. 29, no. 7, p. 074003, 2018. https://doi.org/10.1088/1361-6501/aabc9e.Suche in Google Scholar
[9] S. Vasilyan, et al.., “The progress in development of the Planck-Balance 2 (PB2): A tabletop Kibble balance for the mass calibration of E2 class weights,” tm - Technisches Messen, vol. 88, no. 12, pp. 731–756, 2021. https://doi.org/10.1515/teme-2021-0101.Suche in Google Scholar
[10] A. Eichenberger, et al.., “First realisation of the kilogram with the METAS Kibble balance,” Metrologia, vol. 59, no. 2, p. 025008, 2022. https://doi.org/10.1088/1681-7575/ac566f.Suche in Google Scholar
[11] H. Baumann, et al.., “Design of the new METAS watt balance experiment Mark II,” Metrologia, vol. 50, no. 3, pp. 235–242, 2013. https://doi.org/10.1088/0026-1394/50/3/235.Suche in Google Scholar
[12] H. Fang, F. Bielsa, S. Li, A. Kiss, and M. Stock, “The BIPM Kibble balance for realizing the kilogram definition,” Metrologia, vol. 57, no. 4, p. 045009, 2020. https://doi.org/10.1088/1681-7575/ab860c.Suche in Google Scholar
[13] D. Kim, et al.., “Realization of the kilogram using the KRISS Kibble balance,” Metrologia, vol. 57, no. 5, p. 055006, 2020. https://doi.org/10.1088/1681-7575/ab92e0.Suche in Google Scholar
[14] F. Hilbrunner, I. Rahneberg, and T. Fröhlich, “Wattwaage mit Hebelübersetzung auf Basis eines kommerziellen EMK-Wägesystems,” tm - Technisches Messen, vol. 85, no. 11, pp. 658–679, 2017. https://doi.org/10.1515/teme-2017-0065.Suche in Google Scholar
[15] National Institute of Standards and Technology, Kilogram: Introduction, NIST, 2018. Available at: https://www.nist.gov/si-redefinition/kilogram Accessed: May 31, 2023.Suche in Google Scholar
[16] B. M. Wood and S. Solve, “A review of Josephson comparison results,” Metrologia, vol. 46, no. 6, pp. R13–R20, 2009. https://doi.org/10.1088/0026-1394/46/6/r01.Suche in Google Scholar
[17] J. Frühauf and A. Sorger, “Parallelfedern als Führungsmechanik für Tastsysteme,” tm - Technisches Messen, vol. 86, no. 5, pp. 258–266, 2019. https://doi.org/10.1515/teme-2018-0075.Suche in Google Scholar
[18] Physik Instrumente (PI) GmbH & Co. KG, PiezoMike Linear Actuator, PI, 2020. Available at: https://www.physikinstrumente.de/fileadmin/user_upload/physik_instrumente/files/datasheets/N-470-Datasheet.pdf Accessed: May 15, 2022.Suche in Google Scholar
[19] C. Diethold, T. Fröhlich, F. Hilbrunner, and G. Jäger, “High precision optical position sensor for electromagnetic force compensated balances,” in Proceedings of the IMEKO, vol. 11, IMEKO, 2010.Suche in Google Scholar
[20] S. Li, F. Bielsa, M. Stock, A. Kiss, and H. Fang, “Coil-current effect in Kibble balances: analysis, measurement, and optimization,” Metrologia, vol. 55, no. 1, pp. 75–83, 2017. https://doi.org/10.1088/1681-7575/aa9a8e.Suche in Google Scholar
[21] B. Pesch, Bestimmung der Messunsicherheit nach GUM. Grundlagen der Metrologie. Books on Demand, Norderstedt, Bernd Pesch, 2003.Suche in Google Scholar
[22] W. Geiger, Die Abweichungsfortpflanzung (“Fehlerfortpflanzungsgesetz”) Abgestufte Grenzwerte (“Statistische Tolerierung”), Wiesbaden, Vieweg+Teubner Verlag, 1986, pp. 146–162.10.1007/978-3-322-91748-5_8Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Measurement uncertainty, data quality and data-driven modelling
- Research Articles
- Metrology for sensor networks: metrological traceability and measurement uncertainties for air quality monitoring
- Proof of concept and new developments on a Kibble extension
- Leveraging measurement data quality by adoption of the FAIR guiding principles
- Combination of generic novelty detection and supervised classification pipelines for industrial condition monitoring
- Test of conformance or non-conformance with geometrical specifications
- Data-driven modeling in metrology – A short introduction, current developments and future perspectives
Artikel in diesem Heft
- Frontmatter
- Editorial
- Measurement uncertainty, data quality and data-driven modelling
- Research Articles
- Metrology for sensor networks: metrological traceability and measurement uncertainties for air quality monitoring
- Proof of concept and new developments on a Kibble extension
- Leveraging measurement data quality by adoption of the FAIR guiding principles
- Combination of generic novelty detection and supervised classification pipelines for industrial condition monitoring
- Test of conformance or non-conformance with geometrical specifications
- Data-driven modeling in metrology – A short introduction, current developments and future perspectives