Startseite Studying the effects of siloxane poisoning on a SnO2 metal oxide semiconductor gas sensor in temperature cycled operation enabling self-monitoring and self-compensation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Studying the effects of siloxane poisoning on a SnO2 metal oxide semiconductor gas sensor in temperature cycled operation enabling self-monitoring and self-compensation

  • Caroline Schultealbert

    Caroline Schultealbert studied microtechnology and nanostructures at Saarland University and received her master’s degree in 2015. She finished her PhD. at the Lab for Measurement Technology at Saarland University in 2021, where she focussed on siloxane poisoning and model-based data evaluation. She is now working at 3S, which is a spin-off from Saarland University bringing the research results on MOS sensors into real world applications.

    ORCID logo EMAIL logo
    , Tobias Baur

    Tobias Baur studied microtechnology and nanostructures at Saarland University and received his master’s degree in 2016. He finished his PhD. at the Lab for Measurement Technology at Saarland University in 2023, where he focussed on the full measurement chain for gas sensor systems: from sensor model over calibration and statistical training as well as validation to electronics – especially for the application of indoor air quality. He is now working at 3S, which is a spin-off from Saarland University bringing the research results on MOS sensors into real world applications.

    , Tilman Sauerwald

    Tilman Sauerwald received his PhD in 2007 at the University of Giessen working on the influence of surface reactions to the multi-signal generation of metal oxide sensors. From 2011–2020 he was Post-Doc at the Lab of Measurement Technology at the Saarland University, where he focussed on the detection of trace gases by developing of model-based techniques for multi-signal generation. Since 2020 he is Head of Department Analytics and Technologies at the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising.

    und Andreas Schütze

    Andreas Schütze studied Physics and received his doctorate in Applied Physics from Justus-Liebig-Universität in Gießen in 1994 with a thesis on micro gas sensor systems. After some years in industry, he joined the University of Applied Sciences in Krefeld, Germany, as professor for Microsystems Technology from 1998 to 2000. Since 2000 he is a full professor for measurement science and technology in the Department Systems Engineering at Saarland University, Saarbrücken, Germany. His research interests include microsensors and microsystems, especially advanced chemical sensor systems, both for gas and liquid phase, for security and control applications.

    ORCID logo
Veröffentlicht/Copyright: 12. Oktober 2023

Abstract

This work studies poisoning by the cyclic siloxane octamethylcyclotetrasiloxane on a commercially available semiconductor gas sensor in TCO (temperature cycled operation). The data is evaluated using the Sauerwald-Baur model and the DSR method (differential surface reduction). The sensitivity towards several gases (volatile organic compounds, hydrogen and carbon monoxide) is evaluated and compared with a sensor in constant temperature operation mode. The physical and chemical processes on the sensitive layer as well as the resulting selectivity towards hydrogen are discussed. A feature is identified that can be derived from the Sauerwald-Baur model (the differential surface oxidation, DSO) and that quantitatively expresses the sensor condition regarding siloxane poisoning. With the help of this feature, a self-compensation of the sensor signal is demonstrated.

Kurzfassung

Untersucht wird die Vergiftung eines kommerziell erhältlichen Halbleitergassensors im temperaturzyklischen Betrieb (TCO, engl. temperature cycled operation) durch das zyklische Siloxan Octamethylcyclotetrasiloxan. Die Datenauswertung erfolgt dabei anhand des Sauerwald-Baur-Modells und mit Hilfe der differenziellen Oberflächenreduktion (DSR, engl. differential surface reduction). Der Empfindlichkeitsverlust für verschiedene Gase (mehrere flüchtige organische Verbindungen, Wasserstoff und Kohlenmonoxid) wird ausgewertet und mit einem Sensor, der bei konstanter Temperatur betrieben und vergiftet wurde, verglichen. Die physikalischen und chemischen Prozesse auf der Oberfläche der sensitiven Schicht sowie die entstehende Selektivität auf Wasserstoff werden diskutiert. Ein Merkmal, das aus dem Sauerwald-Baur-Modell abgeleitet werden kann (die differenzielle Oberflächenoxidation, DSO, engl. differential surface oxidation), wird vorgestellt. Mit diesem Merkmal kann der Sensorzustand in Bezug auf Siloxanvergiftung quantitativ ausgewertet werden. Eine Selbstkompensation des Sensorsignals auf Basis dieses Merkmals wird demonstriert.


Corresponding author: Caroline Schultealbert, Lab for Measurement Technology, Saarland University, Campus A5.1, Saarbrücken, 66123, Germany, E-mail:

About the authors

Caroline Schultealbert

Caroline Schultealbert studied microtechnology and nanostructures at Saarland University and received her master’s degree in 2015. She finished her PhD. at the Lab for Measurement Technology at Saarland University in 2021, where she focussed on siloxane poisoning and model-based data evaluation. She is now working at 3S, which is a spin-off from Saarland University bringing the research results on MOS sensors into real world applications.

Tobias Baur

Tobias Baur studied microtechnology and nanostructures at Saarland University and received his master’s degree in 2016. He finished his PhD. at the Lab for Measurement Technology at Saarland University in 2023, where he focussed on the full measurement chain for gas sensor systems: from sensor model over calibration and statistical training as well as validation to electronics – especially for the application of indoor air quality. He is now working at 3S, which is a spin-off from Saarland University bringing the research results on MOS sensors into real world applications.

Tilman Sauerwald

Tilman Sauerwald received his PhD in 2007 at the University of Giessen working on the influence of surface reactions to the multi-signal generation of metal oxide sensors. From 2011–2020 he was Post-Doc at the Lab of Measurement Technology at the Saarland University, where he focussed on the detection of trace gases by developing of model-based techniques for multi-signal generation. Since 2020 he is Head of Department Analytics and Technologies at the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising.

Andreas Schütze

Andreas Schütze studied Physics and received his doctorate in Applied Physics from Justus-Liebig-Universität in Gießen in 1994 with a thesis on micro gas sensor systems. After some years in industry, he joined the University of Applied Sciences in Krefeld, Germany, as professor for Microsystems Technology from 1998 to 2000. Since 2000 he is a full professor for measurement science and technology in the Department Systems Engineering at Saarland University, Saarbrücken, Germany. His research interests include microsensors and microsystems, especially advanced chemical sensor systems, both for gas and liquid phase, for security and control applications.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. CS: manuscript writing, measurements, data treatment. TB: data treatment, measurement setup, proofreading. TS: supervisor. AS: supervisor, proofreading.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] D. Graiver, K. W. Farminer, and R. Narayan, “A review of the fate and effects of silicones in the environment,” J. Polym. Environ., vol. 11, no. 4, pp. 129–136, 2003. https://doi.org/10.1023/A:1026056129717/METRICS.10.1023/A:1026056129717Suche in Google Scholar

[2] C. Rücker and K. Kümmerer, “Environmental chemistry of organosiloxanes,” Chem. Rev., vol. 115, no. 1, pp. 466–524, 2015. https://doi.org/10.1021/CR500319V/ASSET/IMAGES/CR500319V.SOCIAL.JPEG_V03.Suche in Google Scholar

[3] K. Mojsiewicz-Pieńkowska and D. Krenczkowska, “Evolution of consciousness of exposure to siloxanes—review of publications,” Chemosphere, vol. 191, pp. 204–217, 2018. https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.045.Suche in Google Scholar PubMed

[4] I. S. Krogseth, A. Kierkegaard, S. Michael, K. B. McLachlan, K. M. Hansen, and M. Schlabach, “Occurrence and seasonality of cyclic volatile methyl siloxanes in arctic air,” Environ. Sci. Technol., vol. 47, no. 1, pp. 502–509, 2013. https://doi.org/10.1021/ES3040208/SUPPL_FILE/ES3040208_SI_001.PDF.Suche in Google Scholar

[5] T. Limero, E. Reese, W. T. Wallace, P. Cheng, and J. Trowbridge, “Results from the air quality monitor (gas chromatograph-differential mobility spectrometer) experiment on board the international space station,” Int. J. Ion Mobil. Spectrom., vol. 15, no. 3, pp. 189–198, 2012. https://doi.org/10.1007/S12127-012-0107-Z/METRICS.Suche in Google Scholar

[6] A. T. Hodgson, D. Faulkner, D. P. Sullivan, D. L. DiBartolomeo, M. L. Russell, and W. J. Fisk, “Effect of outside air ventilation rate on volatile organic compound concentrations in a call center,” Atmos. Environ., vol. 37, nos. 39–40, pp. 5517–5527, 2003. https://doi.org/10.1016/J.ATMOSENV.2003.09.028.Suche in Google Scholar

[7] H. Hofmann, G. Erdmann, and A. Müller, Zielkonflikt energieeffiziente Bauweise und gute Raumluftqualität – Datenerhebung für flüchtige organische Verbindungen in der Innenraumluft von Wohn- und Bürogebäuden (Lösungswege) – Anhang, 2014. Available at: https://www.agoef.de/fileadmin/user_upload/dokumente/forschung/AGOEF-Abschlussericht_VOCDB_II_Anhang-nicht-barrierefrei.pdf.Suche in Google Scholar

[8] H. Hofmann and P. Peter, “Bereitstellung einer Datenbank zum Vorkommen von flüchtigen organischen Verbindungen in der Raumluft,” WaBoLu-Hefte, vol. 5, pp. 1–161, 2008. Available at: https://www.umweltbundesamt.de/publikationen/bereitstellung-einer-datenbank-vorkommen-von.Suche in Google Scholar

[9] H. D. Neumann, M. Buxtrup, M. Weber, et al.., “Vorschlag zur Ableitung von Innenraumarbeitsplatzreferenzwerten in Schulen,” Gefahrst. Reinhalt. Luft, vol. 72, nos. 7–8, pp. 291–297, 2012. Available at: https://www.unfallkasse-nrw.de/fileadmin/server/download/Praeventionsmaterialien/Praeventionsdateien/Klassenraumreferenzwerte.pdf.Suche in Google Scholar

[10] F. Pieri, A. Katsoyiannis, T. Martellini, D. Hughes, K. C. Jones, and A. Cincinelli, “Occurrence of linear and cyclic volatile methyl siloxanes in indoor air samples (UK and Italy) and their isotopic characterization,” Environ. Int., vol. 59, pp. 363–371, 2013. https://doi.org/10.1016/J.ENVINT.2013.06.006.Suche in Google Scholar PubMed

[11] H. C. Shields, D. M. Fleischer, and C. J. Weschler, “Comparisons among VOCs measured in three types of U.S. Commercial buildings with different occupant densities,” Indoor Air, vol. 6, no. 1, pp. 2–17, 1996. https://doi.org/10.1111/J.1600-0668.1996.T01-3-00002.X.Suche in Google Scholar

[12] Unfallkasse Nordrhein-Westfalen, “Gesunde Luft in Schulen – Teil 1 (VOC- und Aldehydkonzentrationen in beschwerdefreien Klassenräumen),” 2014. Available at: https://www.unfallkasse-nrw.de/fileadmin/server/download/praevention_in_nrw/Gesunde_Luft_in_Schulen_Teil_1.pdf.Suche in Google Scholar

[13] R. A. Yucuis, C. O. Stanier, and K. C. Hornbuckle, “Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation,” Chemosphere, vol. 92, no. 8, pp. 905–910, 2013. https://doi.org/10.1016/J.CHEMOSPHERE.2013.02.051.Suche in Google Scholar PubMed PubMed Central

[14] J. Zhu, S. L. Wong, and S. Cakmak, “Nationally representative levels of selected volatile organic compounds in Canadian residential indoor air: population-based survey,” Environ. Sci. Technol., vol. 47, no. 23, pp. 13276–13283, 2013. https://doi.org/10.1021/ES403055E/SUPPL_FILE/ES403055E_SI_001.PDF.Suche in Google Scholar

[15] G. Korotcenkov and B. K. Cho, “Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey),” Sens. Actuators, B, vol. 156, no. 2, pp. 527–538, 2011. https://doi.org/10.1016/j.snb.2011.02.024.Suche in Google Scholar

[16] A. C. Romain and J. Nicolas, “Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview,” Sens. Actuator. B., vol. 146, no. 2, pp. 502–506, 2010. https://doi.org/10.1016/J.SNB.2009.12.027.Suche in Google Scholar

[17] S. J. Gentry and T. A. Jones, “A comparison of metal oxide semiconductor and catalytic gas sensors,” Sens. Actuator., vol. 4, no. C, pp. 581–586, 1983. https://doi.org/10.1016/0250-6874(83)85070-7.Suche in Google Scholar

[18] T. Hyodo, Y. Baba, K. Wada, Y. Shimizu, and M. Egashira, “Hydrogen sensing properties of SnO2 varistors loaded with SiO2 by surface chemical modification with diethoxydimethylsilane,” Sens. Actuators, B, vol. 64, nos. 1–3, pp. 175–181, 2000. https://doi.org/10.1016/S0925-4005(99)00503-1.Suche in Google Scholar

[19] J. Kelleter, “Künstliche Nase für gasförmige Emissionen aus unvollständiger Verbrennung,” Dissertation, Shaker Verlag, Gießen , Germany, 1997.Suche in Google Scholar

[20] X. Meng, Q. Zhang, S. Zhang, and Z. He, “The enhanced H2 selectivity of SnO2 gas sensors with the deposited SiO2 filters on surface of the sensors,” Sensors, vol. 19, no. 11, p. 2478, 2019. https://doi.org/10.3390/S19112478.Suche in Google Scholar

[21] G. Tournier and C. Pijolat, “Selective filter for SnO2-based gas sensor: application to hydrogen trace detection,” Sens. Actuator, B., vol. 106, no. 2, pp. 553–562, 2005. https://doi.org/10.1016/J.SNB.2004.06.037.Suche in Google Scholar

[22] D. E. Williams, “Semiconducting oxides as gas-sensitive resistors,” Sens. Actuator, B.l, vol. 57, nos. 1–3, pp. 1–16, 1999. https://doi.org/10.1016/S0925-4005(99)00133-1.Suche in Google Scholar

[23] D. E. Williams and K. F. E. Pratt, “Classification of reactive sites on the surface of polycrystalline tin dioxide,” J. Chem. Soc., Faraday Trans., vol. 94, no. 23, pp. 3493–3500, 1998. https://doi.org/10.1039/A807644H.Suche in Google Scholar

[24] V. Palmisano, E. Weidner, L. Boon-Brett, et al.., “Selectivity and resistance to poisons of commercial hydrogen sensors,” Int. J. Hydrogen Energy, vol. 40, no. 35, pp. 11740–11747, 2015. https://doi.org/10.1016/J.IJHYDENE.2015.02.120.Suche in Google Scholar

[25] A. Katsuki and K. Fukui, “H2 selective gas sensor based on SnO2,” Sens. Actuators, B, vol. 52, nos. 1–2, pp. 30–37, 1998. https://doi.org/10.1016/S0925-4005(98)00252-4.Suche in Google Scholar

[26] Bosch Sensortec GmbH, “Products – environmental sensors – gas sensors – BME680,” Available at: https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme680/ [accessed: May 22, 2021].Suche in Google Scholar

[27] A. G. Sensirion, “Datasheet SGP30 indoor air quality sensor for TVOC and CO2eq measurements,” Available at: www.sensirion.com [accessed: Mar. 26, 2023].Suche in Google Scholar

[28] T. Baur, J. Amann, C. Schultealbert, and A. Schütze, “Field study of metal oxide semiconductor gas sensors in temperature cycled operation for selective VOC monitoring in indoor air,” Atmosphere, vol. 12, no. 5, p. 647, 2021. https://doi.org/10.3390/atmos12050647.Suche in Google Scholar

[29] A. Schütze, T. Baur, M. Leidinger, et al.., “Highly sensitive and selective VOC sensor systems based on semiconductor gas sensors: how to?” Environments, vol. 4, no. 1, p. 20, 2017. https://doi.org/10.3390/environments4010020.Suche in Google Scholar

[30] T. Baur, A. Schütze, and T. Sauerwald, “Optimierung des temperaturzyklischen Betriebs von Halbleitergassensoren.” Tm – Tech. Mess., vol. 82, no. 4, pp. 187–195, 2015. https://doi.org/10.1515/teme-2014-0007.Suche in Google Scholar

[31] C. Schultealbert, T. Baur, A. Schütze, S. Böttcher, and T. Sauerwald, “A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors,” Sens. Actuator, B., vol. 239, pp. 390–396, 2017. https://doi.org/10.1016/j.snb.2016.08.002.Suche in Google Scholar

[32] C. Schultealbert, “Siloxanvergiftung von Metalloxid-Gassensoren im temperaturzyklischen Betrieb – Effekte, Erkennung, Optimierung,” Dissertation, Universität des Saarlandes, Saarbrücken, Germany, 2021.Suche in Google Scholar

[33] T. Baur, C. Schultealbert, A. Schütze, and T. Sauerwald, “Device for the detection of short trace gas pulses,” Tech. Mess., vol. 85, nos. 7–8, pp. 496–503, 2018b. https://doi.org/10.1515/teme-2017-0137.Suche in Google Scholar

[34] P. Colonna, N. R. Nannan, A. Guardone, and E. W. Lemmon, “Multiparameter equations of state for selected siloxanes,” Fluid Phase Equil., vol. 244, no. 2, pp. 193–211, 2006. https://doi.org/10.1016/j.fluid.2006.04.015.Suche in Google Scholar

[35] N. Helwig, M. Schüler, C. Bur, A. Schütze, and T. Sauerwald, “Gas mixing apparatus for automated gas sensor characterization,” Meas. Sci. Technol., vol. 25, no. 5, 2014, pp. 055903. https://doi.org/10.1088/0957-0233/25/5/055903.Suche in Google Scholar

[36] M. Leidinger, C. Schultealbert, J. Neu, A. Schütze, and T. Sauerwald, “Characterization and calibration of gas sensor systems at ppb level – a versatile test gas generation system,” Meas. Sci. Technol., vol. 29, no. 1, p. 015901, 2018. https://doi.org/10.1088/1361-6501/AA91DA.Suche in Google Scholar

[37] M. Bastuck, Improving the Performance of Gas Sensor Systems with Advanced Data Evaluation, Operation, and Calibration Methods. Dissertation, Linköping, Linköping University Electronic Press, 2019.10.3384/diss.diva-159106Suche in Google Scholar

[38] T. Baur, M. Bastuck, C. Schultealbert, T. Sauerwald, and A. Schütze, “Random gas mixtures for efficient gas sensor calibration,” J. Sens. Sens. Syst., vol. 9, no. 2, pp. 411–424, 2020a. https://doi.org/10.5194/jsss-9-411-2020.Suche in Google Scholar

[39] T. Baur, C. Schultealbert, A. Schütze, and T. Sauerwald, “Novel method for the detection of short trace gas pulses with metal oxide semiconductor gas sensors,” J. Sens. Sens. Syst., vol. 7, no. 1, pp. 411–419, 2018a. https://doi.org/10.5194/jsss-7-411-2018.Suche in Google Scholar

[40] C. Schultealbert, T. Baur, A. Schütze, and T. Sauerwald, “Facile quantification and identification techniques for reducing gases over a wide concentration range using a MOS sensor in temperature-cycled operation,” Sensors, vol. 18, no. 3, p. 744, 2018. https://doi.org/10.3390/s18030744.Suche in Google Scholar PubMed PubMed Central

[41] K. Christmann, Introduction to Surface Physical Chemistry, vol. 1, Heidelberg, Topics in Physical Chemistry, Steinkopff, 1991.10.1007/978-3-662-08009-2_1Suche in Google Scholar

[42] S. J. Gentry and A. Jones, “Poisoning and inhibition of catalytic oxidations: I. The effect of silicone vapour on the gas-phase oxidations of methane, propene, carbon monoxide and hydrogen over platinum and palladium catalysts,” J. Chem. Technol. Biotechnol., vol. 28, no. 11, pp. 727–732, 1978. https://doi.org/10.1002/JCTB.5700281106.Suche in Google Scholar

[43] N. Bârsan and U. Weimar, “Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity,” J. Phys., vol. 15, no. 20, pp. R813–R839, 2003. https://doi.org/10.1088/0953-8984/15/20/201.Suche in Google Scholar

[44] T. Baur, T. Sauerwald, C. Schultealbert, A. Schütze, and I. Uzun. Verfahren und Vorrichtung zum Bestimmen einer Degradation eines Halbleitergassensors. DE102019130990, 2020b.Suche in Google Scholar

Received: 2023-04-10
Accepted: 2023-09-01
Published Online: 2023-10-12
Published in Print: 2023-11-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/teme-2023-0065/html
Button zum nach oben scrollen