Investigations on terthiophene as an electrically conductive polymer for UV laser lithography
-
Thorben Ziemer
, Gerhard Ziegmann
Abstract
Polymers hold great potential for the use in microsensors and organic electronics. They are highly adaptable, easy to process and can contribute new or improved capabilities compared to semiconductors. Direct UV laser lithography also gains increasing attention. Because it avoids expensive photomasks, it is especially attractive where small numbers of specialized microcomponents are needed, like in prototyping. Lithography necessitates materials, which can be shaped by UV radiation. For many microsensor applications, there is the additional requirement of electric conductivity, preferably in the same material. We approached this demand by combining a Novolak and terthiophene doped with copper(II) perchlorate to form an interpenetrating polymer network, which possesses properties of both of its constituents. From this, we manufactured test structures with the UV laser of a micro pattern generator. In previous conference contributions, we showed a first proof of principle. In this publication, we present results of new experiments that demonstrate the characteristics in more detail. We improved our electrical setup to conduct four-terminal measuring. We used it to first verify previous results and investigated the material’s response to alternating currents up to 10 kHz. We then compared the electrical resistivity of differently sized structures for temperatures between 20 and 90 °C and examined long-term stability of their resistance by subjecting samples to temperatures of up to 60 °C for several hours. Additionally, we tested the influence of UV radiation on the resistance. Our samples exhibited good lithographic qualities. Resistivities were around 2 Ω mm and temperature sensitivity up to −407 Ω K−1. UV radiation induced a partially reversible increase of the electric resistance. The long-term stability of the material was temperature-dependent.
Zusammenfassung
Polymere haben großes Potenzial für den Einsatz in Mikrosensoren und organischer Elektronik. Sie sind sehr anpassungsfähig, einfach zu verarbeiten und können neue oder verbesserte Fähigkeiten im Vergleich zu Halbleitern bieten. Auch die direkte UV-Laserlithografie gewinnt zunehmend an Bedeutung. Da sie ohne teure Fotomasken auskommt, ist sie besonders attraktiv, wenn nur kleine Stückzahlen spezialisierter Mikrokomponenten benötigt werden, wie beim Prototyping. Lithografie erfordert Materialien, die durch UV-Strahlung geformt werden können. Für viele Mikrosensorik-Anwendungen besteht außerdem Bedarf an elektrischer Leitfähigkeit, möglichst im selben Material. Um diese beide Anforderungen zu erfüllen, kombinierten wir einen Novolak und Terthiophen, das mit Kupfer(II)-perchlorat dotiert wurde, zu einem interpenetrierenden Polymernetzwerk, welches Eigenschaften beider Bestandteile besitzt. Daraus stellten wir mit dem UV-Laser eines Micro Pattern Generators Teststrukturen her. In früheren Konferenzbeiträgen zeigten wir einen ersten Nachweis des Prinzips. In dieser Veröffentlichung stellen wir die Ergebnisse neuer Experimente vor, welche die Eigenschaften detaillierter demonstrieren. Wir verbesserten unseren elektrischen Aufbau, um vierpolige Messungen durchzuführen. Damit prüften wir das Verhalten des Materials bei Wechselströmen bis zu 10 kHz, um bisherige Ergebnisse zu verifizieren. Darüber hinaus verglichen wir den spezifischen Widerstand unterschiedlich großer Strukturen für Temperaturen zwischen 20 und 90 °C und untersuchten die Langzeitstabilität des elektrischen Widerstands, indem wir Proben über mehrere Stunden Temperaturen bis zu 60 °C aussetzten. Zusätzlich testeten wir den Einfluss von UV-Strahlung auf den Widerstand. Unsere Proben zeigten gute lithografische Eigenschaften. Spezifische Widerstände lagen bei etwa 2 Ω mm und die Temperaturempfindlichkeit bei bis zu −407 Ω K−1. UV-Strahlung führte zu einem teilweise reversiblen Anstieg des elektrischen Widerstands. Die Langzeitstabilität des Materials war temperaturabhängig.
Funding source: European Regional Development Fund
Award Identifier / Grant number: ZW 3-85021239
About the author

Thorben Ziemer is a doctoral student at the Clausthal Centre of Material Technology (CZM) and the Institute for Electrical Information Technology (IEI), TU Clausthal. He studied mechanical engineering and mechatronics (M.Sc.) with an emphasis on metrology and automation control at Clausthal University of Technology. His research focusses on the fabrication of polymer micro sensors.
Acknowledgment
Experimental procedures were carried out at the Clausthal Centre of Material Technology (CZM) micro systems lab.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Research for this contribution was funded by the European Regional Development Fund (ERDF), in conjunction with NBank, Germany, as part of the project “Sensorentwicklung fur Produkte des baulichen Brandschutzes zur Sicherstellung deren Funktion, für Smart Maintenance und I 4.0” (ZW 3–85021239).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] I. Bernardeschi, M. Ilyas, and L. Beccai, “A review on active 3D microstructures via direct laser lithography,” Adv. Intell. Syst., vol. 3, no. 9, p. 2100051, 2021. https://doi.org/10.1002/aisy.202100051.Search in Google Scholar
[2] L. H. Sperling, “Interpenetrating polymer networks and related materials,” J. Polym. Sci. Macromol. Rev., vol. 12, no. 1, pp. 141–180, 1977. https://doi.org/10.1002/pol.1977.230120103.Search in Google Scholar
[3] A. Nishiguchi, A. Mourran, H. Zhang, and M. Möller, “In-gel direct laser writing for 3D-designed hydrogel composites that undergo complex self-shaping,” Adv. Sci., vol. 5, no. 1, p. 1700038, 2018. https://doi.org/10.1002/advs.201700038.Search in Google Scholar PubMed PubMed Central
[4] S. Binder and G. Gerlach, “Intramolecular force-compensated hydrogel-based sensors with reduced response times,” TM – Tech. Mess., vol. 86, no. 4, pp. 227–236, 2019. https://doi.org/10.1515/teme-2019-0004.Search in Google Scholar
[5] A. T. Krause, S. Zschoche, M. Rohn, et al.., “Swelling behavior of bisensitive interpenetrating polymer networks for microfluidic applications,” Soft Matter, vol. 12, no. 25, pp. 5529–5536, 2016. https://doi.org/10.1039/c6sm00720a.Search in Google Scholar PubMed
[6] S. S. Athukorala, T. S. Tran, R. Balu, et al.., “3D printable electrically conductive hydrogel scaffolds for biomedical applications: a review,” Polymers, vol. 13, no. 3, p. 474, 2021. https://doi.org/10.3390/polym13030474.Search in Google Scholar PubMed PubMed Central
[7] R. Abargues, U. Nickel, and P. J. Rodríguez-Cantó, “Charge dissipation in e-beam lithography with Novolak-based conducting polymer films,” Nanotechnology, vol. 19, no. 12, p. 125302, 2008. https://doi.org/10.1088/0957-4484/19/12/125302.Search in Google Scholar PubMed
[8] R. Abargues, P. J. Rodríguez-Cantó, R. García-Calzada, and J. Martínez-Pastor, “Patterning of conducting polymers using UV lithography: the in-situ polymerization approach,” J. Phys. Chem. C, vol. 116, no. 33, pp. 17547–17553, 2012. https://doi.org/10.1021/jp303425g.Search in Google Scholar
[9] H. Koezuka, A. Tsumura, and T. Ando, “Field-effect transistor with polythiophene thin film,” Synth. Met., vol. 18, nos. 1–3, pp. 699–704, 1987. https://doi.org/10.1016/0379-6779(87)90964-7.Search in Google Scholar
[10] M. Scheuble, M. Goll, and S. Ludwigs, “Branched terthiophenes in organic electronics: from small molecules to polymers,” Macromol. Rapid Commun., vol. 36, no. 2, pp. 115–137, 2015. https://doi.org/10.1002/marc.201400525.Search in Google Scholar PubMed
[11] H.-W. Tsai, K.-L. Hsueh, M.-H. Chen, and C.-W. Hong, “Electronic and optical properties of polythiophene molecules and derivatives,” Crystals, vol. 11, no. 11, p. 1292, 2021. https://doi.org/10.3390/cryst11111292.Search in Google Scholar
[12] J. Zhu, C. Yang, L. Ma, et al.., “Terthiophene based non-fused electron acceptors for efficient organic solar cells,” Org. Electron., vol. 105, p. 106512, 2022. https://doi.org/10.1016/j.orgel.2022.106512.Search in Google Scholar
[13] A. Seijas-Da Silva, J. Noguera-Gomez, P. J. Rodríguez-Cantó, et al.., “In situ synthesis of conducting polymers: a novel approach toward polymer thermoelectrics,” J. Phys. Chem. C, vol. 124, no. 42, pp. 22884–22892, 2020. https://doi.org/10.1021/acs.jpcc.0c05333.Search in Google Scholar
[14] V. Untilova, T. Biskup, L. Biniek, V. Vijayakumar, and M. Brinkmann, “Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT:F4TCNQ films,” Macromolecules, vol. 53, no. 7, pp. 2441–2453, 2020. https://doi.org/10.1021/acs.macromol.9b02389.Search in Google Scholar
[15] J. B. Chang, V. Liu, V. Subramanian, et al.., “Printable polythiophene gas sensor array for low-cost electronic noses,” J. Appl. Phys., vol. 100, no. 1, p. 014506, 2006. https://doi.org/10.1063/1.2208743.Search in Google Scholar
[16] S. M. Mousavi, S. A. Hashemi, S. Bahrani, et al.., “Recent advancements in polythiophene-based materials and their biomedical, geno sensor and DNA detection,” Int. J. Mol. Sci., vol. 22, no. 13, p. 6850, 2021. https://doi.org/10.3390/ijms22136850.Search in Google Scholar PubMed PubMed Central
[17] S. T. Navale, A. T. Mane, G. D. Khuspe, M. A. Chougule, and V. B. Patil, “Room temperature NO2 sensing properties of polythiophene films,” Synth. Met., vol. 195, no. 2, pp. 228–233, 2014. https://doi.org/10.1016/j.synthmet.2014.06.017.Search in Google Scholar
[18] D. S. Kelkar, A. B. Chourasia, and V. Balasubramanian, “Use of polythiophene as a temperature sensor,” Sens. Transducers, vol. 129, no. 6, pp. 97–104, 2011.Search in Google Scholar
[19] L. Vallan, E. Istif, I. J. Gómez, N. Alegret, and D. Mantione, “Thiophene-based trimers and their bioapplications: an overview,” Polymers, vol. 13, no. 12, p. 1977, 2021. https://doi.org/10.3390/polym13121977.Search in Google Scholar PubMed PubMed Central
[20] S. Y. Park, E. H. Kwon, and Y. D. Park, “Effect of localized UV irradiation on the crystallinity and electrical properties of dip-coated polythiophene thin films,” RSC Adv., vol. 10, no. 56, pp. 34130–34136, 2020. https://doi.org/10.1039/d0ra06339h.Search in Google Scholar PubMed PubMed Central
[21] E. D. Martínez, A. Prado, M. Gonzalez, et al., “Recent advances on nanocomposite resists with design functionality for lithographic microfabrication,” Front. Mater., vol. 8, pp. 3–4, 2021. https://doi.org/10.3389/fmats.2021.629792.Search in Google Scholar
[22] T. Ziemer, S. Sdrenka, K. Tolchkova, G. Ziegmann, and C. Rembe, “Polymers as microsensors: fabrication of electrically conducting Interpenetrating Polymer Networks for temperature sensors,” in Sensoren und Messsysteme, L. Reindl and J. Wöllenstein, Eds., ITG-Fachbericht, Berlin, VDE Verlag GmbH, 2022.Search in Google Scholar
[23] T. Ziemer, G. Ziegmann, and C. Rembe, “Investigation of the properties of electrically conductive interpenetrating polymer networks for the use as temperature sensors,” TM – Tech. Mess., vol. 89, no. s1, pp. 8–13, 2022. https://doi.org/10.1515/teme-2022-0066.Search in Google Scholar
[24] Micro Resist Technology GmbH, “Processing guidelines – negative tone photoresist series ma-N 1400,” 2006.Search in Google Scholar
[25] International Organization for Standardization, Guide 98-3: Uncertainty of Measurement – Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995), 2008. Available at: https://www.iso.org/standard/50461.html.Search in Google Scholar
[26] B. Amos, G. McConnell, and T. Wilson, “Confocal microscopy,” in Comprehensive Biophysics, vol. 2, E. H. Egelman, Ed., Amsterdam, Elsevier Science, 2012, pp. 3–23.10.1016/B978-0-12-374920-8.00203-4Search in Google Scholar
[27] S. O. Kasap, Principles of Electronic Materials and Devices, 4th ed. New York, McGraw-Hill Education, 2018.Search in Google Scholar
[28] S. Wang, X. Liu, M. Yang, Y. Zhang, K. Xiang, and R. Tang, “Review of time temperature indicators as quality monitors in food packaging,” Packag. Technol. Sci., vol. 28, no. 10, pp. 839–867, 2015. https://doi.org/10.1002/pts.2148.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- XXXVI. Messtechnisches Symposium des AHMT in Magdeburg
- Research Articles
- Studying the effects of siloxane poisoning on a SnO2 metal oxide semiconductor gas sensor in temperature cycled operation enabling self-monitoring and self-compensation
- Investigations on terthiophene as an electrically conductive polymer for UV laser lithography
- Properties and special phenomena of strain sensors made of carbon particle-filled elastomers
- Machine learning approach for impedance locus uncertainties
- Investigation of cross-sensitivities of the potential drop method for structural health monitoring of civil structures
- Modular Direct Laser Writing setup for high precision nanostructuring
Articles in the same Issue
- Frontmatter
- Editorial
- XXXVI. Messtechnisches Symposium des AHMT in Magdeburg
- Research Articles
- Studying the effects of siloxane poisoning on a SnO2 metal oxide semiconductor gas sensor in temperature cycled operation enabling self-monitoring and self-compensation
- Investigations on terthiophene as an electrically conductive polymer for UV laser lithography
- Properties and special phenomena of strain sensors made of carbon particle-filled elastomers
- Machine learning approach for impedance locus uncertainties
- Investigation of cross-sensitivities of the potential drop method for structural health monitoring of civil structures
- Modular Direct Laser Writing setup for high precision nanostructuring