Startseite Novel methodology for turbine gas meters error curve modelling across a wide range of operating parameters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel methodology for turbine gas meters error curve modelling across a wide range of operating parameters

  • Bogdan Blagojevič

    Bogdan Blagojevič obtained his PhD in 1996 at the University of Ljubljana, Faculty of Mechanical Engineering. His PhD research was on turbulent transport phenomena of water droplets in air. He began his job at the Faculty of mechanical engineering in the laboratory of Measurement of Process Engineering in 1988. His areas of expertise are experimental design and measurement uncertainty in gas meters. Since 2009 he is the Head of Measurement Department in Plinovodi d.o.o. where he leads the Laboratory for calibration of gas meters in air and volume conversion devices.

    , Brane Širok

    Brane Širok obtained a master degree in 1985 and a PhD in 1990 at the University of Ljubljana, Faculty of Mechanical Engineering. Since 1996 he has been a professor at the department for hydraulic machinery at the Faculty of Mechanical Engineering in Ljubljana, and also the faculty dean between 2013 and 2017. His main research areas are turbomachinery design and applications, mineral wool production and properties, computer-aided flow visualization techniques and experimental analysis of non-linear chaotic phenomena in fluid dynamics.

    und Benjamin Bizjan

    Benjamin Bizjan obtained a master degree in 2012 and a PhD in 2014 at the University of Ljubljana, Faculty of Mechanical Engineering. In 2018, he was promoted from teaching assistant to associate professor at the Faculty of Mechanical Engineering in Ljubljana. In 2019, he completed a postdoc project in the field of mineral wool research. He is a member of an interdisciplinary team involved in challenging R&D projects solving complex problems from the industry: mineral wool technology development, flow velocimetry and thermometry solutions, cavitation avoidance and applications, precision farming, seaport environmental studies and big data analytics.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. Juli 2021

Abstract

In this paper, performance of turbine flowmeters was investigated for different flowmeter ranges and working gas operating pressures. Variation of these parameters was represented in dimensionless form as a function of Reynolds Number and gas density ratio, while the relative flow measurement error was selected as the most important operating characteristic. A novel error curve model based on turbine machine theory and dimensionless analysis was introduced for the purpose of error data fitting across a wide range of gas flow rates and operating pressures. The main advantage of the presented model is the capability of accurate error data fitting with a single continuous equation, as demonstrated by high R 2 values for the vast majority of flowmeters analyzed in this study. The acceptability criterion was designed based on the fact that the expanded measurement uncertainty of the relative error must not exceed 0.5 %. Besides an accurate interpolation, our model can also be utilized for prediction of turbine flowmeter performance at modified flow conditions (pressure and flow rate, working gas properties), and for assessment of the drift of flowmeter performance over time. The novel error curve model is demonstrated to outperform the standard polynomial-based model regardless of the independent variable used.

Zusammenfassung

In diesem Artikel wurde die Leistung von Turbinendurchflussmessern für verschiedene Durchflussmessbereiche und Arbeitsgasbetriebsdrücke untersucht. Die Variation dieser Parameter wurde in dimensionsloser Form als Funktion der Reynoldszahl und des Gasdichteverhältnisses dargestellt, während der relative Durchflussmessfehler als wichtigstes Betriebsmerkmal ausgewählt wurde. Ein neuartiges Fehlerkurvenmodell, das auf der Theorie der Turbomaschine und der dimensionslosen Analyse basiert, wurde eingeführt, um Fehlerdaten über einen weiten Bereich von Gasdurchflussraten und Betriebsdrücken anzupassen. Der Hauptvorteil des vorgestellten Modells ist die Fähigkeit zur genauen Anpassung von Fehlerdaten mit einer einzigen kontinuierlichen Gleichung, wie durch hohe R 2 -Werte für die überwiegende Mehrheit der in dieser Studie analysierten Durchflussmesser gezeigt wird. Das Akzeptanzkriterium wurde auf Grund der Tatsache entworfen, dass die erweiterte Messunsicherheit des relativen Fehlers 0,5 % nicht überschreiten darf. Neben einer genauen Interpolation kann unser Modell auch zur Vorhersage der Leistung des Turbinen-Durchflussmessers bei veränderten Durchflussbedingungen (Druck und Durchflussrate, Arbeitsgaseigenschaften) und zur Bewertung der zeitlichen Abweichung der Leistung des Durchflussmessers verwendet werden. Es wurde gezeigt, dass das neuartige Fehlerkurvenmodell das auf Polynomen basierende Standardmodell unabhängig von der verwendeten unabhängigen Variablen übertrifft.

About the authors

Bogdan Blagojevič

Bogdan Blagojevič obtained his PhD in 1996 at the University of Ljubljana, Faculty of Mechanical Engineering. His PhD research was on turbulent transport phenomena of water droplets in air. He began his job at the Faculty of mechanical engineering in the laboratory of Measurement of Process Engineering in 1988. His areas of expertise are experimental design and measurement uncertainty in gas meters. Since 2009 he is the Head of Measurement Department in Plinovodi d.o.o. where he leads the Laboratory for calibration of gas meters in air and volume conversion devices.

Brane Širok

Brane Širok obtained a master degree in 1985 and a PhD in 1990 at the University of Ljubljana, Faculty of Mechanical Engineering. Since 1996 he has been a professor at the department for hydraulic machinery at the Faculty of Mechanical Engineering in Ljubljana, and also the faculty dean between 2013 and 2017. His main research areas are turbomachinery design and applications, mineral wool production and properties, computer-aided flow visualization techniques and experimental analysis of non-linear chaotic phenomena in fluid dynamics.

Benjamin Bizjan

Benjamin Bizjan obtained a master degree in 2012 and a PhD in 2014 at the University of Ljubljana, Faculty of Mechanical Engineering. In 2018, he was promoted from teaching assistant to associate professor at the Faculty of Mechanical Engineering in Ljubljana. In 2019, he completed a postdoc project in the field of mineral wool research. He is a member of an interdisciplinary team involved in challenging R&D projects solving complex problems from the industry: mineral wool technology development, flow velocimetry and thermometry solutions, cavitation avoidance and applications, precision farming, seaport environmental studies and big data analytics.

Appendix A Derivation of the error curve equation

Step-by-step methodology for derivation of error curve equation defined by Eq. (11):

  1. Polynomial adjustment – least square curve fit [23], [24]

    (A1) E = a 0 + a 1 x p + a 2 x q + a 3 x r + ... + a n 1 x n 1 + ...

    For Straatsma: p = 0 , 2; q = 0 , 33; r = 2 and x = Q / Q max .

  2. Calibration curve proposed by PTB (Certificate PTB, XXXXK00A_KS_mit_Anlage.dot 30.01.2004)

    The deviation E is calculating according to the equalized error curve with the following equation:

    (A2) E = A Q 2 + B Q + C + D · Q + D · Q 2

  3. In the paper [25] different quantities can be used for x:

    Q , Q / Q max , log ( R e / 10 6 ) , log ( Q / Q max )

  4. Eqs. (A3) and (A4) can be written:

    (A3) E = b 0 + b 1 x 0 , 2 + b 2 x 0 , 33 + b 3 x 2
    (A4) E = A x 2 + B x + C + D · x + D · x 2

  5. If Eqs. (A3) and (A4) are compared, E depends on:

    (A5) E = E ( x 0 , 2 , x 0 , 33 , x 2 , x 1 , x , x 2 )

  6. The error curve equation can be written:

    (A6) E = a 1 x 1 + a 2 + a 3 x + a 4 x 2 + a 5 x 2 + a 6 x 0.33 + a 7 x 0.2

    Terms 1–5 = Straatsma 1978 (discussed in Van der Grinten [23])

    Terms 2, 5, 6, 7 = PTB 2003

  7. Eq. (A6) is a somewhat similar to the Eq. (3) in the paper [26]

    (A7) E = b 0 ρ · Q 2 + b 1 ρ · Q + I = 1 4 a j log ( R e / 10 6 ) + c p Q 2 ρ p

  8. Definition area of Eq. (11)/Eq. (A6):

    It depends on experimental data of flowrate, pressure, temperature, viscosity of air at atmospheric condition and from experimental data of flowrate, temperature, pressure, viscosity of natural gas at high pressure. The obtained parameters a 1 , to a 7 are valid only for tested gas meter.

References

1. Bowles E.B., Hawley G.A. (2012) Natural gas metering technology – past, present and the future. Pipeline & Gas Journal, 239(12), 66–68.Suche in Google Scholar

2. Bunyamin A., Husni N.L., Basri H., Yani I. (2019) Challenges in Turbine Flow Metering System: An Overview. Journal of Physics: Conference Series, 1198, 042010.10.1088/1742-6596/1198/4/042010Suche in Google Scholar

3. Dieck R.H. (2017) Measurement uncertainty – Methods and applications. Fifth Edition, ISA.Suche in Google Scholar

4. Eck B. (1973) Fans; Design and Operation of Centrifugal, Axial-flow and Cross-Flow Fans. New York: Pergamon Press.Suche in Google Scholar

5. EN 12261:2018. Gas meters. Turbine meters.Suche in Google Scholar

6. Gacek Z., Jaworski J. (2020) Optimisation of measuring system construction in the context of high flow variability. Journal of Natural Gas Science & Engineering, 81, 103447, doi: 10.1016/j.jngse.2020.103447.Suche in Google Scholar

7. Guo S., Sun L., Zhang T., Yang W., Yang Z. (2013) Analysis of viscosity effect on turbine flow meter performance based on experiments and CFD simulations. Flow Measurement and Instrumentation, 34, 42–52.10.1016/j.flowmeasinst.2013.07.016Suche in Google Scholar

8. Instromet turbine gas meter SM-RI-X. Available at: https://www.gas-as.cz/www/prilohy/plynom%C4%9Bry/smrix.pdf. Accessed on: 2021-01-14.Suche in Google Scholar

9. ISO 17089-1:2019. Measurement of fluid flow in closed conduits. Ultrasonic meters for gas.Suche in Google Scholar

10. ISO/IEC Guide 98-3:2008. Uncertainty of measurement – Part 3. Guide to the expression of uncertainty in measurement (GUM: 1995). International Organisation for Standardization Geneva.Suche in Google Scholar

11. Liu C., Xu D., Ma W., Yuan Z., Li X. (2015) Analysis of Unsteady Rotor-Stator Flow with Variable Viscosity Based on Experiments and CFD Simulations. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 68(12), 1351–1368.10.1080/10407782.2015.1052298Suche in Google Scholar

12. Mickan B., Kramer R., Dopheide D. (2007) The Linking of the CIPM Key Comparisons CCM.FF-KC5a (for Natural Gas) and CCM.FF-KC5b (Compressed Air/Nitrogen) Using Model Based Analysis of the Data, in: Proceedings of the 14th International Flow Measurement Conference Flomeko 2007, Johannesburg, South Africa, 14–17 September 2007.Suche in Google Scholar

13. OIML R137-1 & 2. Gas meters. Part 1: Metrological and technical requirements; Part 2: Metrological controls and performance tests. Edition 2012 (E), Including Amendment 2014.Suche in Google Scholar

14. Osiadacz A.J., Witos M. (2010) The analysis of factors affecting the operating characteristic of turbine gas meter. Archives of Mining Sciences, 55(1), 163–180.Suche in Google Scholar

15. Pedišius N., Zygmantas G., Maslauskas E. (2015) Influence of Gas and Liquid Viscosity on Turbine and Positive Displacement Meters Calibration, in: 17th International Congress of Metrology, 2015, Paris.Suche in Google Scholar

16. PTB-Prüfregeln. Band 30. Messgeräte für Gas, Hochdruckprüfung von Gaszählern, Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, 2003.Suche in Google Scholar

17. PTB-Prüfregeln. Band 29. Messgeräte für Gas. Gaszähler, Prüfung von Volumengaszählern mit Luft bei Armosphärendruck, Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, 2003.Suche in Google Scholar

18. Ruiz V., Pereira M.T., Taira M.N. (2013) Turbine flowmeter and viscosity effects of liquid hydrocarbons, in: 16th International flow measurement conference, 2013, Paris (FLOMEKO, 2013). 5 p.Suche in Google Scholar

19. Santhosh K.V., Roy B.K. (2015) Adaptive Calibration of Turbine Flow Measurement using ANN, in: 2015 International Symposium on Advanced Computing and Communication (ISACC), Silchar, 2015, pp. 5–9, doi: 10.1109/ISACC.2015.7377306.Suche in Google Scholar

20. Tang P.W. (2009) Getting the best measurement from your turbine meters. Canadian School of Hydrocarbon Measurement, Calgary. Available at: https://www.cdn.fortisbc.com/libraries/docs/default-source/services-documents/measurement-getting-the-best-measurement-from-your-turbine-meters.pdf?sfvrsn=c901b18c_2. Accessed on: 2021-01-14.Suche in Google Scholar

21. Tang P.W. (2015) Pressure, Temperature, and Other Effects on Turbine Meter Gas Flow Measurement. American School of Gas Measurement Technology, 3, 1–8.Suche in Google Scholar

22. Tegtmeier C.L., Anusonti-Inthra P., Winchester J.E. (2015) Analysis of a Turbine Flow Meter Calibration Curve using CFD, in: 53rd AIAA Aerospace Sciences Meeting, 5–9 January 2015, Kissimmee, Florida.10.2514/6.2015-1959Suche in Google Scholar

23. Van der Grinten J.G.M. (1990) Error curves of turbine gas meters. The Netherlands Measurement Institute: Delft.Suche in Google Scholar

24. Van der Grinten J.G.M. (2014) Adjustment procedures and their corresponding uncertainties, in: 2nd European Flow Measurement Workshop, Lisbon, 25–27 March 2014.Suche in Google Scholar

25. Van der Grinten J.G.M., Foulon H., Gunnarsson A., Mickan B. (2018) Reducing measurement uncertainties of high-pressure gas flow calibrations by using reference values based on multiple independent traceability chains. Technisches Messen, 85(12), 754–763.10.1515/teme-2018-0019Suche in Google Scholar

26. Van der Grinten J.G.M., Gunnarsson A., Van der Beek M., Mickan B. (2020) An intercomparison between primary high-pressure gas flow standards with sub-permille uncertainties. Cal. Lab: The international journal of metrology, 27(4), 28–35.Suche in Google Scholar

Received: 2021-05-11
Accepted: 2021-06-30
Published Online: 2021-07-13
Published in Print: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/teme-2021-0083/html
Button zum nach oben scrollen