Home Force measurement of electrodes on a human head model
Article
Licensed
Unlicensed Requires Authentication

Force measurement of electrodes on a human head model

  • Thomas Fröhlich

    Univ.-Prof. Dr.-Ing. habil. Thomas Fröhlich is the head of the department process measuring technology at Faculty of Mechanical Engineering at the Technische Universität Ilmenau.

    ORCID logo EMAIL logo
    , Johannes Sindram

    Johannes Sindram studied from 2012 to 2018 at the Technische Universität Ilmenau and received his master’s degree in 2018. From 2018 to 2021, he was a research associate at the Technische Universität Ilmenau at the Institute of Process Measurement and Sensor Technology. Since 2021, he has been working as a engineer and project manager at GPE GmbH in the field of medical technology.

    , Jens Haueisen

    Jens Haueisen received a M. S. and a Ph. D. in electrical engineering from the Technische Universität Ilmenau, Germany, in 1992 and 1996, respectively. From 1996 to 1998 he worked as a Post-Doc and from 1998 to 2005 as the head of the Biomagnetic Center, Friedrich-Schiller-University, Jena, Germany. In 2003 he received the habilitation (professorial thesis). Since 2005 he is full Professor of Biomedical Engineering and directs the Institute of Biomedical Engineering and Informatics at the Technische Universität Ilmenau, Germany. His research interests include the investigation of active and passive bioelectric and biomagnetic phenomena.

    ORCID logo
    and Alexander Hunold

    Alexander Hunold received B. S. and M. S. (with honors) degrees in biomedical engineering in 2011 and 2012 from Technische Universität Ilmenau and spent six months each at University of Utah and Boston Children’s Hospital/Harvard Medical School. Mr. Hunold is persuing his doctoral study in which he works on theoretical and practical aspects of transcranial electric current stimulation. His research interests include volume conductor modeling, as well as bio-electromagnetic field simulations and measurements. He authored and co-authored 20 peer reviewed journal articles and over 60 conference contributions.

    ORCID logo
Published/Copyright: September 23, 2021

Abstract

Electroencephalography (EEG) and transcranial electric stimulation (TES) require caps for holding the respective electrodes in place. To support the optimal design of such caps, knowledge of the force-displacement curves for each electrode position is desirable. We propose a calibrated setup to traceably measure force-displacement curves which consists of a human head model, a force sensor, a linear guide, a stepper motor, and a multiplexing multimeter. Repeated measures of a textile EEG-cap and a TES-cap show significant non-linearity and hysteresis effects for the force-displacement curves. Our setup will allow for the assessment of the fit of EEG and TES-caps for various head shapes and sizes.

Zusammenfassung

Für die Elektroenzephalographie (EEG) und die transkranielle elektrische Stimulation (TES) werden Kappen zur Fixierung der jeweiligen Elektroden benötigt. Um das optimale Design solcher Kappen zu unterstützen, ist die Kenntnis der Kraft-Weg-Kurven für jede Elektrodenposition wünschenswert. Wir schlagen einen kalibrierten Aufbau zur rückführbaren Messung von Kraft-Weg-Kennlinien vor, der aus einem menschlichen Kopfmodell, einem Kraftsensor, einer Linearführung, einem Schrittmotor und einem Multimeter besteht. Wiederholte Messungen einer textilen EEG-Kappe und einer TES-Kappe zeigen eine signifikante Nichtlinearität und Hystereseeffekte für die Kraft-Weg-Kurven. Unser Aufbau ermöglicht die Bewertung der Passform von EEG- und TES-Kappen für verschiedene Kopfformen und -größen.

Funding source: Freistaat Thüringen

Award Identifier / Grant number: 2018 IZN 004

Funding statement: This project has received funding from the Free State of Thuringia under 2018 IZN 004 co-financed by the European Union under the European Regional Development Fund (ERDF).

About the authors

Thomas Fröhlich

Univ.-Prof. Dr.-Ing. habil. Thomas Fröhlich is the head of the department process measuring technology at Faculty of Mechanical Engineering at the Technische Universität Ilmenau.

Johannes Sindram

Johannes Sindram studied from 2012 to 2018 at the Technische Universität Ilmenau and received his master’s degree in 2018. From 2018 to 2021, he was a research associate at the Technische Universität Ilmenau at the Institute of Process Measurement and Sensor Technology. Since 2021, he has been working as a engineer and project manager at GPE GmbH in the field of medical technology.

Jens Haueisen

Jens Haueisen received a M. S. and a Ph. D. in electrical engineering from the Technische Universität Ilmenau, Germany, in 1992 and 1996, respectively. From 1996 to 1998 he worked as a Post-Doc and from 1998 to 2005 as the head of the Biomagnetic Center, Friedrich-Schiller-University, Jena, Germany. In 2003 he received the habilitation (professorial thesis). Since 2005 he is full Professor of Biomedical Engineering and directs the Institute of Biomedical Engineering and Informatics at the Technische Universität Ilmenau, Germany. His research interests include the investigation of active and passive bioelectric and biomagnetic phenomena.

Alexander Hunold

Alexander Hunold received B. S. and M. S. (with honors) degrees in biomedical engineering in 2011 and 2012 from Technische Universität Ilmenau and spent six months each at University of Utah and Boston Children’s Hospital/Harvard Medical School. Mr. Hunold is persuing his doctoral study in which he works on theoretical and practical aspects of transcranial electric current stimulation. His research interests include volume conductor modeling, as well as bio-electromagnetic field simulations and measurements. He authored and co-authored 20 peer reviewed journal articles and over 60 conference contributions.

References

1. P. Fiedler, P. Pedrosa, S. Griebel, C. Fonseca, F. Vaz, E. Supriyanto, F. Zanow, and J. Haueisen. Novel multipin electrode cap system for dry electroencephalography. Brain Topography, 28 (5): 647–656, SEP 2015. ISSN 0896-0267. 10.1007/s10548-015-0435-5.Search in Google Scholar PubMed

2. MA Nitsche and W Paulus. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology-London, 527 (3): 633–639, SEP 15 2000. ISSN 0022-3751. 10.1111/j.1469-7793.2000.t01-1-00633.x.Search in Google Scholar PubMed PubMed Central

3. Stephan A. Goerigk, Frank Padberg, Markus Buhner, Nina Sarubin, Tyler S. Kaster, Zafiris J. Daskalakis, Daniel M. Blumberger, Lucas Borrione, Lais B. Razza, and Andre R. Brunoni. Distinct trajectories of response to prefrontal tDCS in major depression: results from a 3-arm randomized controlled trial. Neuropsychopharmacology, 46 (4): 774–782, MAR 2021. ISSN 0893-133X. 10.1038/s41386-020-00935-x.Search in Google Scholar PubMed PubMed Central

4. Sophia Wunder, Alexander Hunold, Patrique Fiedler, Falk Schlegelmilch, Klaus Schellhorn, and Jens Haueisen. Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation. Scientific Reports, 8, MAY 8 2018. ISSN 2045-2322. 10.1038/s41598-018-25562-x.Search in Google Scholar PubMed PubMed Central

5. Alexander Hunold, Daniela Ortega, Klaus Schellhorn, and Jens Haueisen. Novel flexible cap for application of transcranial electrical stimulation: A usability study. Biomed. Eng. Online, 19 (1), 2020. ISSN 1475925X. 10.1186/s12938-020-00792-1.Search in Google Scholar PubMed PubMed Central

6. P. Fiedler, R. Mühle, S. Griebel, P. Pedrosa, C. Fonseca, F. Vaz, F. Zanow, and J. Haueisen. Contact pressure and flexibility of multipin dry eeg electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26 (4): 750–757, 2018. 10.1109/TNSRE.2018.2811752.Search in Google Scholar PubMed

7. M. L. Cuadrado, B. Valle, C. Fernandez-de-las Penas, P. Madeleine, F. J. Barriga, J. A. Arias, L. Arendt-Nielsen, and J. A. Pareja. Pressure pain sensitivity of the scalp in patients with nummular headache: A cartographic study. Cephalalgia, 30 (2): 200–206, FEB 2010. ISSN 0333-1024. 10.1111/j.1468-2982.2009.01895.x.Search in Google Scholar PubMed

8. S. Ploumpis, E. Ververas, E. O’ Sullivan, S. Moschoglou, H. Wang, N. Pears, W. Smith, B. Gecer, and S. P. Zafeiriou. Towards a complete 3d morphable model of the human head. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2020. 10.1109/TPAMI.2020.2991150.Search in Google Scholar PubMed

9. C. Diethold, M. Kühnel, F. Hilbrunner, T. Fröhlich, and E. Manske. Determination of force to displacement curves using a nanopositioning system based on electromagnetic force compensated balances. Measurement, 51: 343–348, 2014. 10.1016/j.measurement.2014.02.034.Search in Google Scholar

10. Rafael R. Marangoni, Jan Schleichert, Ilko Rahneberg, Rostyslav Mastylo, Eberhard Manske, and Thomas Fröhlich. Multi-component force measurement in micromachining. Technisches Messen, 84: 587, 2017. 10.1515/teme-2016-0066.Search in Google Scholar

11. M. Gläser and M. Borys. Precision mass measurements. Reports on Progress in Physics, 72 (12): 126101, 2009. 10.1088/0034-4885/72/12/126101.Search in Google Scholar

12. Christian Buchner and Manuela Manlik. Konzeptionierung einer Totlastanlage zur Darstellung der Kraft auf Basis der Messunsicherheitsbetrachtung. tm – Technisches Messen, 86 (12): 719–743, 2019. 10.1515/teme-2018-0063.Search in Google Scholar

13. Jan Schleichert, Ilko Rahneberg, and Thomas Fröhlich. Dynamische Kalibrierung eines Mehrkomponentensensors für Kraft und Drehmoment. tm – Technisches Messen, 83 (3), 2016. 10.1515/teme-2015-0090.Search in Google Scholar

14. Jan Schleichert, Ilko Rahneberg, Falko Hilbrunner, and Thomas Fröhlich. Mehrkomponenten-Kraft- und -Drehmomentsensor nach dem Prinzip der elektromagnetischen Kompensation. Technisches Messen, 83: 445, 2016. 10.1515/teme-2015-0088.Search in Google Scholar

Received: 2021-05-10
Accepted: 2021-08-28
Published Online: 2021-09-23
Published in Print: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2021-0082/html
Scroll to top button