Home Evaluation and comparison of NIR multi-product calibration methods for Brix prediction
Article
Licensed
Unlicensed Requires Authentication

Evaluation and comparison of NIR multi-product calibration methods for Brix prediction

  • Michael Kopf

    Michael Kopf is a student at the Karlsruhe Institute of Technology KIT and a research assistant at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe. His research interests include computer vision and machine learning.

    Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

    , Robin Gruna

    Robin Gruna is research group manager at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe. His research interests include hyperspectral imaging, machine vision, computational imaging and machine learning.

    Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

    EMAIL logo
    , Thomas Längle

    Thomas Längle is adjunct professor at the Karlsruhe Institute of Technology KIT, Karlsruhe, and the head of the business unit “Vision Based Inspection Systems” at the Fraunhofer IOSB in Karlsruhe, Germany. His research interests include different aspects of image processing and real-time algorithms for inspection systems.

    Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

    and Jürgen Beyerer

    Jürgen Beyerer is full professor for informatics at the Institute for Anthropomatics and Robotics at the Karlsruhe Institute of Technology KIT since March 2004 and director of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Ettlingen, Karlsruhe, Ilmenau and Lemgo. Research interests include automated visual inspection, signal and image processing, variable image acquisition and processing, active vision, metrology, information theory, fusion of data and information from heterogeneous sources, system theory, autonomous systems and automation.

    Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

Published/Copyright: February 20, 2018

Abstract

Near-infrared (NIR) spectroscopy is a widespread technology for fruit and vegetable quality assessment. New fields of application of this technology, like mobile food analysis with handheld low-cost spectrometers, increase the demand for chemometric calibration models that are able to deal with multiple products and varieties thereof at once (so-called multi-product calibration models). While there are well studied methods for single-product calibration as partial least squares regression (PLSR), multi-product calibration is still challenging. Conventional approaches that work well for single-product calibration can lead to high errors for multi-product calibration. However, nonlinear methods as local regression and artificial neural networks were found to be suitable[1][2]. Preliminary studies in multi-product calibration for quantitative analysis of food with near-infrared spectroscopy showed good results for memory-based learning (MBL) and a classification prediction hierarchy (CPH)[3]. In this study, three varieties of apples, pears and tomatoes with known sugar content (in Brix) are analysed with NIR hyperspectral imaging spectroscopy in the range from 900 nm to 2400 nm. Predictive performance of a linear PLSR model, two nonlinear models (CPH and MBL) and different pre-processing techniques are tested and evaluated. For error estimation, leave-one-product-out and leave-one-out cross-validation are used.

Zusammenfassung

Nahinfrarotspektroskopie ist eine etablierte Methode zur Qualitätsbestimmung von Obst und Gemüse. Neue Anwendungsgebiete, wie z. B. die mobile Lebensmittelanalyse mittels handgetragener und preisgünstiger Mikrospektrometer, verlangen nach neuen Ansätzen zur Multiprodukt-Kalibrierung. Zur produktspezifischen Kalibrierung existieren bereits geeignete Methoden wie partial least squares regression (PLSR). Der Versuch von Micklander et al. zeigt jedoch auf, dass die Multiprodukt-Kalibrierung noch eine ungelöste Herausforderung darstellt. Nichtlineare Ansätze wie neuronale Netze und lokale Regression erzielten hier bessere Ergebnisse als konventionelle Methoden wie PLSR. Vorläufige Untersuchungen zur Multiprodukt-Kalibrierung zur quantitativen Analyse von Lebensmitteln mittels NIR Spektroskopie lieferten vielversprechende Ergebnisse durch Memory-Based Learning (MBL) und Classification-Prediction-Hierarchy (CPH). In dieser Arbeit werden drei Ansätze zur Multiprodukt-Kalibrierung untersucht. Hierzu werden drei unterschiedliche Apfelsorten, Birnen und Tomaten mit bekanntem Zuckergehalt (in Brix) mittels bildgebender NIR Spektroskopie im Bereich von 900 nm bis 2400 nm analysiert. Die Genauigkeit eines linearen PLSR-Modells und zweier nichtlinearer Modelle (CPH und MBL) sowie unterschiedliche Vorverarbeitungsmethoden werden untersucht und evaluiert. Zur Bestimmung von Fehlermaßen dienen Leave-One-Out- und Leave-One-Product-Out-Kreuzvalidierungen.

About the authors

Michael Kopf

Michael Kopf is a student at the Karlsruhe Institute of Technology KIT and a research assistant at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe. His research interests include computer vision and machine learning.

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

Robin Gruna

Robin Gruna is research group manager at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe. His research interests include hyperspectral imaging, machine vision, computational imaging and machine learning.

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

Thomas Längle

Thomas Längle is adjunct professor at the Karlsruhe Institute of Technology KIT, Karlsruhe, and the head of the business unit “Vision Based Inspection Systems” at the Fraunhofer IOSB in Karlsruhe, Germany. His research interests include different aspects of image processing and real-time algorithms for inspection systems.

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

Jürgen Beyerer

Jürgen Beyerer is full professor for informatics at the Institute for Anthropomatics and Robotics at the Karlsruhe Institute of Technology KIT since March 2004 and director of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Ettlingen, Karlsruhe, Ilmenau and Lemgo. Research interests include automated visual inspection, signal and image processing, variable image acquisition and processing, active vision, metrology, information theory, fusion of data and information from heterogeneous sources, system theory, autonomous systems and automation.

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Karlsruhe, Germany

Received: 2017-7-3
Revised: 2018-1-23
Accepted: 2018-1-24
Published Online: 2018-2-20
Published in Print: 2018-3-26

©2018 Walter de Gruyter Berlin/Boston

Downloaded on 17.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2017-0069/html
Scroll to top button