Startseite The role of uncertainty on agricultural futures markets momentum trading and volatility
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of uncertainty on agricultural futures markets momentum trading and volatility

  • Robert L. Czudaj ORCID logo EMAIL logo
Veröffentlicht/Copyright: 20. Juli 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper sheds light on the role of different sources of uncertainty on agricultural futures markets momentum trading and volatility. Momentum trading is proxied by two technical analysis indicators – the moving average convergence divergence and the relative strength index – while we also consider two different concepts of uncertainty – the CBOE volatility index of the S&P500 and daily news about the stance of economic policy in the US. To capture different effects on the transmission mechanism of uncertainty shocks, we implement a Bayesian VAR approach, which accounts for time-variation in the coefficients and the variance covariance structure of the model’s innovations. The results point in favor of a time-dependent uncertainty effect on expectations of daily momentum traders in agricultural futures markets. The corresponding trades in these periods push futures prices upwards and downwards and result in an increased volatility. Direct effects of both uncertainty sources on the volatility of agricultural futures markets confirm this view.

JEL Classification: C32; G13; Q14

Acknowledgments

Thanks for valuable comments on a previous draft of the paper are due to two anonymous reviewers.

A Appendix

A.1 Agricultural futures prices and trading indicators

Figure 12: Agricultural futures prices and technical analysis indicators – part I.The upper panels display the futures prices (in green) for two agricultural commodities (i.e. coffee and corn) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).
Figure 12:

Agricultural futures prices and technical analysis indicators – part I.

The upper panels display the futures prices (in green) for two agricultural commodities (i.e. coffee and corn) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).

Figure 13: Agricultural futures prices and technical analysis indicators – part II.The upper panels display the futures prices (in green) for two agricultural commodities (i.e. cotton and soybean oil) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).
Figure 13:

Agricultural futures prices and technical analysis indicators – part II.

The upper panels display the futures prices (in green) for two agricultural commodities (i.e. cotton and soybean oil) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).

Figure 14: Agricultural futures prices and technical analysis indicators – part III.The upper panels display the futures prices (in green) for three agricultural commodities (i.e. soybeans, sugar and wheat) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).
Figure 14: Agricultural futures prices and technical analysis indicators – part III.The upper panels display the futures prices (in green) for three agricultural commodities (i.e. soybeans, sugar and wheat) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).
Figure 14:

Agricultural futures prices and technical analysis indicators – part III.

The upper panels display the futures prices (in green) for three agricultural commodities (i.e. soybeans, sugar and wheat) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).

A.2 GARCH models

Table 2:

GARCH models for coffee.

GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.
N(0, 1)N(0, 1)N(0, 1)N(0, 1)tνtνtνtνsN(0, 1)κsN(0, 1)κsN(0, 1)κsN(0, 1)κstν,κstν,κstν,κstν,κGEDνGEDνGEDνGEDν
ω0.08810.03350.05610.09750.06960.02450.04500.07460.08810.03340.05430.09750.06950.02440.04440.07450.07550.02570.04770.0804
se0.04140.00280.03580.04850.02370.00170.01660.02890.04140.00280.03440.04830.02370.00170.01620.02890.03150.00180.02200.0357
p-value0.03330.00000.11680.04430.00330.00000.00670.00990.03330.00000.11420.04330.00340.00000.00620.01000.01640.00000.03030.0242
α0.04020.04620.04710.06380.03610.04090.04330.05490.04020.04650.04740.06390.03620.04100.04350.05500.03820.04220.04490.0577
se0.01230.01370.01260.02310.00730.01210.00790.01520.01230.01360.01250.02300.00730.01210.00780.01520.00970.01250.00920.0179
p-value0.00110.00080.00020.00570.00000.00070.00000.00030.00100.00060.00020.00540.00000.00070.00000.00030.00010.00070.00000.0012
β0.93740.97660.93740.93330.94680.98120.94570.94420.93740.97670.93760.93320.94670.98130.94570.94410.94250.97980.94280.9403
se0.01980.00130.02120.02330.00980.00000.00850.01340.01980.00130.02100.02320.00990.00000.00840.01340.01490.00020.01270.0174
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
γ0.09090.08280.09110.08290.0866
se0.01150.00820.01110.00780.0039
p-value0.00000.00000.00000.00000.0000
θ−0.4623−0.4442−0.4742−0.4489−0.4379
se0.19780.18220.20090.18280.1813
p-value0.01940.01480.01830.01400.0157
δ1.22911.22091.19161.20401.2264
se0.36740.31900.35660.31240.3198
p-value0.00080.00010.00080.00010.0001
ϕ−0.0443−0.0356−0.0443−0.0355−0.0377
se0.02260.01620.02250.01610.0178
p-value0.05000.02760.04880.02780.0342
ν6.75557.02657.06536.99826.76677.05217.09107.00751.38621.40481.40541.4006
se0.91800.96560.96860.96350.91750.96870.97230.96330.05700.05710.05700.0571
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
κ1.01311.02331.02221.01191.01151.01591.01531.0099
se0.03000.02950.02930.02900.02420.02440.02430.0241
p-value0.00000.00000.00000.00000.00000.00000.00000.0000
persis tence0.97760.97660.97700.97490.98290.98120.98030.98130.97760.97670.97720.97480.98290.98130.98030.98120.98070.97980.97880.9792
AIC4.16494.15724.15824.15964.13144.12704.12824.12904.16564.15764.15874.16034.13214.12764.12894.12974.12974.12524.12634.1270
SBC4.17194.16654.16984.16894.14064.13864.14214.14054.17494.16924.17264.17194.14374.14154.14514.14364.13904.13684.14024.1386
WLB0.26720.68370.59420.51100.27480.68340.59260.50150.26690.68570.59880.50960.27430.68270.59380.49990.26620.67030.58230.4956
p-value0.60520.40830.44080.47470.60010.40840.44140.47880.60540.40760.43900.47530.60040.40870.44090.47950.60590.41290.44540.4814
WLB22.01053.43132.65171.84273.08654.54153.50962.70032.00293.40632.70331.81943.07094.51823.52722.68132.42033.97823.09422.2397
p-value0.15620.06400.10340.17460.07890.03310.06100.10030.15700.06490.10010.17740.07970.03350.06040.10150.11980.04610.07860.1345
SB1.43623.07982.86982.23611.87943.09702.75512.14181.42993.07502.90382.21961.86643.07862.76112.12501.53942.91662.63762.0222
p-value0.69710.37950.41210.52490.59780.37690.43090.54350.69850.38020.40670.52810.60060.37970.42990.54690.67320.40470.45090.5678
APGof104.202184.218080.494883.104247.782046.859238.776554.846599.237981.640485.459077.503647.081941.194935.180651.537053.955445.586344.345347.0183
p-value0.00000.00000.00010.00000.15810.18120.48000.04750.00000.00010.00000.00020.17540.37480.64480.08620.05610.21710.25640.1771
  1. The table provides estimated coefficients and diagnostics for several different GARCH models for coffee futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.

Table 3:

GARCH models for corn.

GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.
N(0, 1)N(0, 1)N(0, 1)N(0, 1)tνtνtνtνsN(0, 1)κsN(0, 1)κsN(0, 1)κsN(0, 1)κstν,κstν,κstν,κstν,κGEDνGEDνGEDνGEDν
ω0.06560.03080.02680.07690.04020.01300.01950.03960.06600.03090.02710.07800.04000.01290.01940.03950.05870.02240.02780.0614
se0.02270.00320.00680.02460.01920.00240.01090.01990.02280.00320.00710.02560.01900.00240.01090.01970.03050.00250.02180.0426
p-value0.00380.00000.00010.00170.03600.00000.07410.04710.00370.00000.00010.00230.03470.00000.07590.04500.05380.00000.20130.1496
α0.0277−0.01050.03440.02440.06250.00810.07290.06350.0279−0.01070.03470.02450.06230.00780.07280.06300.0477−0.00190.05860.0464
se0.00560.01440.00570.01030.01740.01100.01970.01680.00550.01420.00560.01020.01730.01100.01980.01670.01840.01330.02780.0170
p-value0.00000.46410.00000.01790.00030.46450.00020.00020.00000.44880.00000.01670.00030.47960.00020.00020.00930.88510.03520.0064
β0.95760.98160.95720.95250.93170.98910.93510.93240.95740.98150.95690.95200.93180.98910.93520.93240.93980.98340.94050.9380
se0.00240.00010.00070.00820.01810.00000.01800.02040.00230.00010.00170.00890.01800.00000.01810.02010.02320.00040.02880.0328
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
γ0.07430.13640.07440.13630.1142
se0.00420.00100.00420.00100.0073
p-value0.00000.00000.00000.00000.0000
θ0.1112−0.06920.1144−0.06850.0013
se0.25710.10050.24900.10050.1568
p-value0.66540.49130.64590.49540.9931
δ0.64840.88590.65290.88420.8162
se0.03640.17440.06350.17680.3048
p-value0.00000.00000.00000.00000.0074
ϕ0.0125−0.00320.0128−0.00270.0055
se0.01970.02180.02030.02150.0286
p-value0.52440.88230.52800.90160.8472
ν5.15995.30245.36755.15535.18365.32625.39325.18001.25061.26211.26791.2512
se0.56870.60020.58730.57260.58010.61140.59970.58430.07490.07820.07330.0761
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
κ0.99000.99120.99580.98951.03651.03521.03591.0363
se0.06070.06180.06210.05990.03550.03700.03740.0357
p-value0.00000.00000.00000.00000.00000.00000.00000.0000
persis tence0.98540.98160.98480.98310.99420.98910.98900.99420.98530.98150.98470.98290.99410.98910.98900.99410.98760.98340.98400.9872
AIC4.25584.24454.24054.25614.11954.10944.10754.12034.25654.24534.24134.25684.11974.10964.10774.12054.15724.14904.14684.1580
SBC4.26274.25384.25214.26544.12884.12104.12144.13194.26584.25684.25524.26844.13124.12354.12394.13434.16654.16054.16074.1696
WLB0.10230.11650.06800.15060.02070.01010.00030.01820.10260.11740.06870.15210.02070.01020.00030.01860.04880.04420.01780.0586
p-value0.74910.73290.79420.69800.88550.92000.98690.89280.74880.73190.79320.69660.88560.91960.98710.89160.82510.83350.89390.8087
WLB20.56550.87831.40250.47020.00240.13000.24030.00330.55990.87491.39120.45950.00260.12960.24260.00330.05780.25370.46280.0473
p-value0.45200.34870.23630.49290.96090.71850.62400.95430.45430.34960.23820.49790.95960.71880.62230.95430.81000.61450.49630.8279
SB2.24692.17652.38252.25700.40350.15140.16180.37922.23392.17642.37372.23440.40150.15400.16130.38150.47710.36930.37780.5076
p-value0.52280.53660.49690.52080.93950.98500.98350.94450.52530.53660.49850.52520.93990.98470.98360.94400.92390.94650.94480.9172
APGof140.1981129.5590130.7975136.895275.505887.161285.859173.7273125.0810113.6479119.7455120.221957.308165.914662.071959.5312122.5721134.0052129.0191121.6511
p-value0.00000.00000.00000.00000.00040.00000.00000.00060.00000.00000.00000.00000.02940.00450.01080.01870.00000.00000.00000.0000
  1. The table provides estimated coefficients and diagnostics for several different GARCH models for corn futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.

Table 4:

GARCH models for cotton.

GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.
N(0, 1)N(0, 1)N(0, 1)N(0, 1)tνtνtνtνsN(0, 1)κsN(0, 1)κsN(0, 1)κsN(0, 1)κstν,κstν,κstν,κstν,κGEDνGEDνGEDνGEDν
ω0.10010.03590.03540.10210.07420.01650.03100.06280.10520.03670.03640.10690.07420.01650.03100.06290.09600.02090.03510.0897
se0.07490.00480.01990.07050.07880.00280.01930.12460.06980.00480.01880.06650.07880.00280.01930.12480.06730.00300.01510.0716
p-value0.18100.00000.07520.14780.34660.00000.10750.61400.13200.00000.05300.10780.34670.00000.10750.61440.15380.00000.01970.2103
α0.10040.01590.10190.11560.06810.01170.08800.07210.10180.01580.10230.11700.06810.01170.08800.07210.08210.01390.09510.0902
se0.03350.01850.01890.03490.04910.01510.02990.07620.03240.01840.01870.03500.04910.01510.02990.07630.03720.01550.01920.0430
p-value0.00270.39090.00000.00090.16570.43810.00320.34410.00170.39030.00000.00080.16580.43810.00320.34460.02710.36930.00000.0361
β0.88140.97960.89670.88270.91500.98590.91330.92450.87880.97890.89560.88010.91500.98590.91330.92450.89460.98200.90350.9005
se0.04990.00080.02430.04780.06540.00150.03300.10680.04720.00070.02340.04580.06540.00150.03300.10700.05170.00060.02270.0565
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
γ0.18800.14410.18890.14410.1619
se0.02630.01880.02620.01870.0270
p-value0.00000.00000.00000.00000.0000
θ−0.0852−0.0631−0.0846−0.0631−0.0783
se0.10580.10730.10550.10730.1006
p-value0.42060.55650.42250.55640.4361
δ0.54710.65960.54570.65960.6149
se0.15350.12780.15360.12780.1201
p-value0.00040.00000.00040.00000.0000
ϕ−0.0355−0.0223−0.0355−0.0223−0.0256
se0.03840.02900.03890.02900.0314
p-value0.35560.44230.36090.44320.4142
ν4.91135.03385.15714.89724.91145.03335.15654.89691.23191.25651.26961.2327
se0.58540.50690.55410.67910.58570.50690.55400.67930.07050.06480.06270.0702
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
κ0.97710.98360.98270.97800.99990.99930.99981.0003
se0.04050.04250.03590.04000.02460.02510.02510.0247
p-value0.00000.00000.00000.00000.00000.00000.00000.0000
persis tence0.98180.97960.97970.98060.98310.98590.97940.98550.98060.97890.97890.97950.98310.98590.97940.98550.97670.98200.97560.9778
AIC4.08444.06034.05134.08393.98163.96783.96493.98184.08484.06094.05184.08433.98233.96863.96573.98263.99563.98173.97773.9958
SBC4.09144.06964.06294.09323.99083.97943.97893.99344.09404.07254.06584.09593.99393.98253.98203.99654.00493.99333.99164.0074
WLB2.04292.14362.60841.94561.78831.93942.44121.68222.06102.15442.61791.96311.78831.93942.44121.68241.94982.04882.52901.8519
p-value0.15290.14320.10630.16310.18110.16370.11820.19460.15110.14220.10570.16120.18110.16370.11820.19460.16260.15230.11180.1736
WLB20.15940.07040.09840.18650.00080.03610.00020.00860.17450.07630.10590.20120.00080.03620.00020.00860.04990.00210.03720.0455
p-value0.68970.79080.75380.66590.97810.84920.98860.92610.67620.78240.74490.65380.97810.84910.98860.92630.82330.96380.84710.8311
SB0.58040.69920.79220.36061.55681.58210.99821.54390.56100.68260.77230.34041.55691.58260.99821.54350.89841.05370.79040.7252
p-value0.90090.87340.85130.94830.66920.66340.80170.67220.90530.87730.85610.95230.66920.66330.80170.67230.82580.78830.85180.8673
APGof143.0565121.6404110.0891134.751055.578445.777245.140852.8417134.1464123.8998115.0851135.864856.469444.918145.331752.237173.875964.456666.461468.3707
p-value0.00000.00000.00000.00000.04130.21140.23070.06860.00000.00000.00000.00000.03480.23770.22480.07630.00060.00630.00400.0025
  1. The table provides estimated coefficients and diagnostics for several different GARCH models for cotton futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.

Table 5:

GARCH models for soybean oil.

GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.
N(0, 1)N(0, 1)N(0, 1)N(0, 1)tνtνtνtνsN(0, 1)κsN(0, 1)κsN(0, 1)κsN(0, 1)κstν,κstν,κstν,κstν,κGEDνGEDνGEDνGEDν
ω0.01990.00620.02190.02000.01750.00390.01770.01760.01860.00550.02040.01880.01670.07850.01700.01700.01890.00430.02020.0190
se0.00890.00170.01070.00890.00550.00150.00600.00560.00800.00170.00960.00800.00520.02680.00580.00530.00730.00150.00810.0073
p-value0.02530.00030.04100.02420.00160.00670.00320.00160.01980.00090.03350.01870.00130.00330.00330.00130.00950.00440.01250.0089
α0.04730.00270.04310.04620.04210.00180.04200.04050.04690.00130.04360.04480.0418−0.00060.04180.03970.04470.00210.04200.0434
se0.01290.00910.01900.01440.00760.00880.01660.00910.01230.00900.01780.01350.00720.01940.01670.00870.01080.00890.01770.0120
p-value0.00030.76740.02330.00140.00000.83850.01120.00000.00010.88450.01410.00090.00000.97390.01220.00000.00000.81680.01760.0003
β0.94390.99310.94380.94390.95010.99370.95000.95000.94480.99380.94460.94480.95060.89540.95040.95040.94680.99330.94680.9468
se0.01450.00000.01560.01440.00680.00010.00840.00690.01340.00000.01440.01340.00610.02860.00800.00630.01140.00000.01250.0114
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
γ0.10490.09720.10460.24740.1010
se0.00170.00350.00280.04560.0030
p-value0.00000.00000.00000.00000.0000
θ0.01770.02040.02830.02740.0200
se0.06040.06960.06050.06900.0627
p-value0.76930.77000.63970.69150.7495
δ2.22282.00752.18612.01072.1530
se0.65100.61160.60540.61920.6026
p-value0.00060.00100.00030.00120.0004
ϕ0.00220.00340.00450.00460.0028
se0.01140.01070.01120.01070.0109
p-value0.84830.75200.69070.66970.7959
ν13.101512.953413.099213.103213.54419.448113.570813.56651.69551.68941.69621.6954
se3.13303.18803.10443.13893.24221.79443.23913.25960.07660.07960.07530.0766
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
κ1.06241.06771.06331.06381.04551.02081.04661.0466
se0.03820.03940.03720.03790.03720.03580.03710.0370
p-value0.00000.00000.00000.00000.00000.00000.00000.0000
persis tence0.99120.99310.99090.99120.99220.99370.99220.99220.99180.99380.99140.99180.99250.89540.99240.99250.99150.99330.99160.9915
AIC3.55843.56153.55983.55923.54893.55133.55053.54973.55723.56003.55873.55793.54883.58293.55033.54953.55223.55493.55373.5530
SBC3.56533.57083.57143.56843.55823.56293.56443.56133.56653.57163.57263.56963.56043.59683.56663.56353.56153.56653.56763.5646
WLB0.64430.51650.64420.64190.60260.48730.59970.59950.65010.52460.64800.64570.60560.58040.60210.60190.62260.50040.62210.6196
p-value0.42220.47230.42220.42300.43760.48510.43870.43880.42010.46890.42080.42160.43640.44610.43780.43790.43010.47930.43030.4312
WLB20.02170.27660.03080.02590.12390.44290.14040.14010.02660.30180.03940.03620.13131.14620.15370.15320.05910.35230.07410.0684
p-value0.88290.59890.86080.87200.72480.50570.70780.70820.87060.58270.84260.84910.71710.28440.69500.69550.80790.55280.78550.7936
SB4.55304.32274.74164.65134.68314.51724.83114.82784.50814.36414.77824.71264.64966.73224.84894.84424.60914.43984.80064.7344
p-value0.20760.22870.19170.19920.19650.21080.18460.18480.21160.22470.18880.19410.19930.08090.18320.18360.20280.21770.18700.1923
APGof64.181267.908868.291166.347762.556462.588261.377561.632448.729255.292347.518551.501049.621357.203948.060147.646068.864658.796974.949868.0362
p-value0.00670.00280.00260.00410.00970.00970.01260.01190.13660.04360.16440.08670.11860.03010.15150.16130.00220.02180.00050.0027
  1. The table provides estimated coefficients and diagnostics for several different GARCH models for soybean oil futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.

Table 6:

GARCH models for soybeans.

GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.
N(0, 1)N(0, 1)N(0, 1)N(0, 1)tνtνtνtνsN(0, 1)κsN(0, 1)κsN(0, 1)κsN(0, 1)κstν,κstν,κstν,κstν,κGEDνGEDνGEDνGEDν
ω0.06370.02850.05650.06390.02920.01250.02060.02500.06860.02970.05500.06840.03270.01030.02290.02860.04480.01470.03490.0435
se0.02560.00340.02470.02540.01030.00220.00800.00850.02750.00330.02410.02740.01230.00200.00970.01040.02080.00230.01870.0205
p-value0.01300.00000.02220.01170.00440.00000.01060.00320.01260.00000.02230.01250.00760.00000.01830.00580.03170.00000.06150.0342
α0.05060.00090.05620.04890.0422−0.01070.05450.04930.05190.00350.06260.05310.04300.01020.05690.05090.04640.00510.05690.0499
se0.01470.01700.01860.02190.00950.01180.01110.01160.01550.01650.01700.02170.01080.01090.01180.01280.01500.01260.01530.0185
p-value0.00060.95860.00260.02550.00000.36330.00000.00000.00080.83300.00020.01450.00010.34860.00000.00010.00200.68900.00020.0070
β0.92800.97740.92780.92810.94840.98710.94670.95020.92470.97610.92340.92460.94680.98940.94420.94850.93810.98470.93710.9384
se0.02020.00060.02020.02070.01020.00010.00910.00720.02200.00040.02080.02220.01230.00000.01120.00980.02000.00150.01890.0198
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
γ0.12180.11710.12500.11290.1162
se0.02710.00900.02400.00470.0158
p-value0.00000.00000.00000.00000.0000
θ0.0094−0.0785−0.0204−0.0841−0.0353
se0.11590.09150.11750.09270.0968
p-value0.93530.39100.86230.36440.7154
δ1.71771.39571.49621.33661.4940
se0.43520.25600.34750.24550.2983
p-value0.00010.00000.00000.00000.0000
ϕ0.0028−0.0142−0.0019−0.0152−0.0062
se0.02050.01410.02080.01450.0163
p-value0.89280.31600.92670.29560.7033
ν5.95755.78685.99055.94655.87315.84585.92575.86791.34671.33811.34541.3460
se0.69910.60430.68720.69270.67720.64310.66890.67370.06660.06440.06640.0667
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
κ0.87480.86720.87030.87460.88220.87880.87930.8817
se0.02970.03070.03080.02990.02460.02480.02480.0248
p-value0.00000.00000.00000.00000.00000.00000.00000.0000
persis tence0.97860.97740.97900.97840.99050.98710.99010.99240.97660.97610.97720.97680.98990.98940.98880.99220.98450.98470.98410.9852
AIC3.83603.84013.83733.83683.76553.76653.76513.76583.82363.82583.82413.82443.75793.75703.75703.75813.78203.78313.78263.7827
SBC3.84303.84943.84893.84613.77483.77803.77903.77743.83293.83743.83803.83603.76943.77093.77323.77203.79123.79473.79653.7943
WLB0.13880.03380.09210.14490.21090.08810.06770.17170.13180.02990.04850.12790.19940.05210.05330.15940.17550.04710.07110.1606
p-value0.70950.85420.76150.70350.64610.76670.79480.67860.71660.86270.82570.72060.65520.81950.81740.68970.67520.82810.78970.6886
WLB20.53290.95580.58280.54150.90670.97350.98270.96570.47840.88280.56040.47470.88941.18580.95450.94110.66291.04250.73850.6620
p-value0.46540.32820.44520.46180.34100.32380.32150.32580.48910.34740.45410.49080.34560.27620.32860.33200.41560.30720.39010.4159
SB4.42854.90174.32254.27614.27653.19764.74575.17924.36985.02204.57854.47804.38354.91824.85135.34134.29434.78194.54694.6671
p-value0.21880.17910.22870.23320.23310.36210.19140.15910.22420.17020.20540.21430.22290.17790.18300.14840.23140.18850.20810.1979
APGof110.3977124.0330113.6397110.079962.372372.606780.902371.112870.890389.452174.831570.191151.089041.522150.866548.768898.955585.733488.435097.0167
p-value0.00000.00000.00000.00000.01010.00090.00010.00130.00130.00000.00050.00160.09300.36140.09660.13580.00000.00000.00000.0000
  1. The table provides estimated coefficients and diagnostics for several different GARCH models for soybeans futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.

Table 7:

GARCH models for sugar.

GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.
N(0, 1)N(0, 1)N(0, 1)N(0, 1)tνtνtνtνsN(0, 1)κsN(0, 1)κsN(0, 1)κsN(0, 1)κstν,κstν,κstν,κstν,κGEDνGEDνGEDνGEDν
ω0.02580.01320.01420.02530.01760.00550.00980.01710.02160.01170.01250.02140.01710.00530.00980.01680.02140.00690.01180.0208
se0.01320.00220.00570.01310.00680.00130.00410.00670.01040.00210.00530.01030.00660.00130.00410.00660.00820.00140.00450.0081
p-value0.04960.00000.01280.05370.00910.00000.01590.01050.03750.00000.01830.03820.00950.00000.01710.01060.00950.00000.00850.0100
α0.04890.01410.05320.05180.03870.01200.04230.04040.04800.01340.05250.05040.03830.01070.04230.03920.04330.01290.04720.0455
se0.00990.01290.00990.01270.00290.00890.00330.00640.00870.01230.01130.01150.00290.00890.00340.00640.00480.01020.00540.0080
p-value0.00000.27410.00000.00000.00000.17620.00000.00000.00000.27280.00000.00000.00000.23120.00000.00000.00000.20720.00000.0000
β0.94650.99280.95250.94740.95770.99540.96220.95830.94840.99380.95360.94900.95820.99550.96210.95860.95240.99430.95770.9531
se0.00990.00010.00650.00970.00140.00010.00130.00130.00810.00010.00670.00780.00130.00010.00140.00120.00380.00010.00300.0032
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
γ0.10550.08610.10440.08620.0949
se0.00480.01130.00450.01080.0036
p-value0.00000.00000.00000.00000.0000
θ−0.1248−0.1111−0.1114−0.0923−0.1160
se0.10470.09200.10210.09090.1042
p-value0.23340.22720.27530.31000.2658
δ1.23751.35261.29191.38051.3084
se0.42320.10020.47570.10830.2198
p-value0.00350.00000.00660.00000.0000
ϕ−0.0076−0.0046−0.0063−0.0026−0.0060
se0.01620.01060.01530.01070.0125
p-value0.63680.66360.68090.80410.6307
ν6.97067.07547.12126.99506.97167.04897.10486.98611.40811.41621.41711.4091
se0.97230.97380.99370.97830.96510.95880.98330.96930.07200.07050.07240.0728
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
κ1.08331.07451.07761.08251.06261.05791.05841.0619
se0.04030.04110.03890.04120.03030.03070.03080.0307
p-value0.00000.00000.00000.00000.00000.00000.00000.0000
persis tence0.99540.99280.99610.99530.99640.99540.99610.99640.99640.99380.99710.99620.99650.99550.99620.99650.99570.99430.99530.9957
AIC4.17794.17524.17524.17844.12854.12824.12774.12924.17434.17254.17214.17494.12734.12734.12684.12804.13884.13804.13784.1394
SBC4.18494.18454.18684.18774.13774.13984.14164.14084.18364.18414.18614.18654.13894.14124.14304.14204.14814.14964.15174.1510
WLB0.04240.01800.01760.04020.01480.00140.00210.01380.03530.01460.01550.03370.01380.00130.00230.01330.02650.00690.00760.0247
p-value0.83690.89320.89450.84110.90310.96990.96380.90650.85100.90370.90100.85430.90640.97120.96170.90830.87080.93390.93070.8751
WLB20.74282.10661.64240.57531.80533.56092.68711.54640.76812.14521.56100.61561.86003.78102.79661.70021.20012.80022.10120.9880
p-value0.38880.14670.20000.44820.17910.05920.10120.21370.38080.14300.21150.43270.17260.05180.09450.19230.27330.09430.14720.3202
SB0.10940.72060.57570.13200.46171.26961.00070.47380.09160.62810.45650.10100.47661.27910.97300.48010.24400.97320.75460.2653
p-value0.99070.86830.90200.98770.92720.73640.80110.92460.99280.89000.92830.99170.92400.73410.80780.92330.97020.80770.86030.9664
APGof103.394788.528189.1011105.973371.910566.785158.762865.352667.453653.924060.481963.569831.448946.379231.512529.475170.446166.912567.676569.3637
p-value0.00000.00000.00000.00000.00100.00370.02190.00510.00310.05640.01530.00770.79970.19420.79740.86520.00150.00360.00300.0020
  1. The table provides estimated coefficients and diagnostics for several different GARCH models for sugar futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.

Table 8:

GARCH models for wheat.

GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.GARCHEGARCHAP-G.GJR-G.
N(0, 1)N(0, 1)N(0, 1)N(0, 1)tνtνtνtνsN(0, 1)κsN(0, 1)κsN(0, 1)κsN(0, 1)κstν,κstν,κstν,κstν,κGEDνGEDνGEDνGEDν
ω0.03500.01840.02400.03560.02380.01290.01930.02600.03320.01810.02300.03450.02290.01220.01820.02500.02960.01490.02180.0313
se0.01620.00190.00720.01400.01150.00160.00590.01100.01460.00180.00690.01330.01070.00160.00550.01030.01290.00160.00620.0118
p-value0.03040.00000.00090.01110.03780.00000.00110.01750.02340.00000.00090.00980.03190.00000.00100.01530.02190.00000.00040.0079
α0.04530.03380.04810.05580.04600.03670.05390.05940.04420.03330.04920.05480.04530.03540.05300.05810.04520.03540.05030.0571
se0.00970.01250.00970.01190.00660.01070.00690.00970.00850.01200.00860.01090.00590.01050.00690.00880.00770.01150.00810.0103
p-value0.00000.00700.00000.00000.00000.00060.00000.00000.00000.00550.00000.00000.00000.00080.00000.00000.00000.00200.00000.0000
β0.94810.98820.95110.95120.95010.99020.94860.95140.94930.98830.95050.95180.95090.99070.94980.95230.94940.98900.95030.9516
se0.01010.00000.00850.00660.00600.00000.00650.00480.00870.00000.00820.00580.00510.00000.00640.00390.00750.00000.00740.0051
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
γ0.09690.10640.09850.10510.1005
se0.00320.00370.00330.00340.0033
p-value0.00000.00000.00000.00000.0000
θ−0.3721−0.3994−0.3824−0.3928−0.3925
se0.16120.12600.15700.12790.1461
p-value0.02090.00150.01490.00210.0072
δ1.10220.94381.01960.93951.0262
se0.45240.27090.38580.28990.3820
p-value0.01480.00050.00820.00120.0072
ϕ−0.0299−0.0326−0.0290−0.0316−0.0313
se0.01500.01320.01430.01270.0138
p-value0.04650.01330.04290.01290.0237
ν10.075610.146510.194710.124610.251410.411110.492810.29631.60411.60911.61221.6098
se2.04622.04012.03812.01572.09812.11702.12152.07360.08060.08180.07980.0790
p-value0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
κ1.10841.11501.11781.10701.11271.11321.11611.1118
se0.04130.04200.04080.04090.03590.03610.03640.0357
p-value0.00000.00000.00000.00000.00000.00000.00000.0000
persis tence0.99330.98820.99020.99200.99610.99020.99000.99450.99350.98830.98990.99170.99620.99070.99050.99410.99460.98900.98950.9930
AIC4.29044.28494.28384.28764.26864.26224.26144.26634.28524.27904.27774.28254.26424.25794.25694.26204.27694.27154.27074.2745
SBC4.29744.29424.29544.29684.27784.27384.27534.27794.29444.29064.29164.29414.27584.27184.27314.27594.28614.28314.28464.2861
WLB0.08010.61490.56600.24530.04180.51840.56500.18910.07650.59510.59330.23790.04010.49190.53880.18210.06110.57920.57740.2228
p-value0.77710.43300.45190.62040.83800.47150.45220.66370.78210.44050.44120.62570.84120.48310.46290.66960.80470.44660.44730.6369
WLB20.28020.24090.25930.31260.24450.09260.12980.21020.32510.20710.24670.33470.27560.11030.15630.24190.27810.16960.20240.2764
p-value0.59650.62360.61060.57610.62100.76090.71860.64660.56850.64900.61940.56290.59960.73980.69260.62280.59790.68040.65280.5991
SB9.79896.08386.12147.97219.67885.68605.33487.56499.86606.05705.88848.04239.71505.80215.45577.64959.76035.83325.68877.7738
p-value0.02040.10760.10590.04660.02150.12790.14890.05590.01970.10890.11720.04510.02120.12160.14130.05380.02070.12000.12780.0509
APGof59.580364.254458.785456.273455.256061.360959.421358.149435.764738.499244.890342.187625.844244.286245.176531.281464.985763.809261.996867.0207
p-value0.01850.00660.02180.03610.04390.01260.01910.02490.61820.49250.23860.33480.94770.25840.22960.80580.00560.00730.01100.0035
  1. The table provides estimated coefficients and diagnostics for several different GARCH models for wheat futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.

References

Adams, Z., T. Glück. 2015. “Financialization in Commodity Markets: A Passing Trend or the New Normal?” Journal of Banking & Finance 60: 93–111.10.1016/j.jbankfin.2015.07.008Suche in Google Scholar

Appel, G. 2009. Technical Analysis: Power Tools for Active Investors. Upper Saddle River, New Jersey: FT Press.Suche in Google Scholar

Arias, M. A., A. M. Ibáñez, and A. Zambrano. 2019. “Agricultural Production Amid Conflict: Separating the Effects of Conflict into Shocks and Uncertainty.” World Development 119: 165–184.10.1016/j.worlddev.2017.11.011Suche in Google Scholar

Bahloul, W., M. Balcilar, J. Cunado, and R. Gupta. 2018. “The Role of Economic and Financial Uncertainties in Predicting Commodity Futures Returns and Volatility: Evidence from a Nonparametric Causality-in-Quantiles Test.” Journal of Multinational Financial Management 45: 52–71.10.1016/j.mulfin.2018.04.002Suche in Google Scholar

Baker, S. R., N. Bloom, and S. J. Davis. 2016. “Measuring Economic Policy Uncertainty.” Quarterly Journal of Economics 131: 1593–1636.10.3386/w21633Suche in Google Scholar

Baur, D. G., and B. M. Lucey. 2010. “Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold.” Financial Review 45: 217–229.10.1111/j.1540-6288.2010.00244.xSuche in Google Scholar

Beckmann, J., and R. Czudaj. 2014. “Non-Linearities in the Relationship of Agricultural Futures Prices.” European Review of Agricultural Economics 41: 1–23.10.1093/erae/jbt015Suche in Google Scholar

Beckmann, J., and R. Czudaj. 2017. “The Impact of Uncertainty on Professional Exchange Rate Forecasts.” Journal of International Money and Finance 73: 296–316.10.1016/j.jimonfin.2017.02.009Suche in Google Scholar

Bessembinder, H., J. F. Coughenour, P. J. Seguin, and M. M. Smoller. 1995. “Mean Reversion in Equilibrium Asset Prices: Evidence from the Futures Term Structure.” Journal of Finance 50: 361–375.10.1111/j.1540-6261.1995.tb05178.xSuche in Google Scholar

Bloom, N. 2009. “The Impact of Uncertainty Shocks.” Econometrica 77: 623–685.10.3386/w13385Suche in Google Scholar

Bloomberg. 2017. Trump’s Uncertainty Principle. [Bloomberg Business Week 26/01/2017; Online; accessed 06/09/2017].Suche in Google Scholar

Brunetti, C., B. Büyükşahin, and J. H. Harris. 2016. “Speculators, Prices, and Market Volatility.” Journal of Financial and Quantitative Analysis 51: 1545–1574.10.1017/S0022109016000569Suche in Google Scholar

Chang, M. C., C. Tsai, R. C. Wu, and N. Zhu. 2018. “Market Uncertainty and Market Orders in Futures Markets.” Journal of Futures Markets 38: 865–880.10.1002/fut.21918Suche in Google Scholar

Cogley, T., and T. J. Sargent. 2005. “Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US.” Review of Economic Dynamics 8: 262–302.10.1016/j.red.2004.10.009Suche in Google Scholar

Czudaj, R. L. 2019a. “Crude Oil Futures Trading and Uncertainty.” Energy Economics 80: 793–811.10.1016/j.eneco.2019.01.002Suche in Google Scholar

Czudaj, R. L. 2019b. “Dynamics between Trading Volume, Volatility and Open Interest in Agricultural Futures Markets: A Bayesian Time-Varying Coefficient Approach.” Econometrics and Statistics forthcoming. https://doi.org/10.1016/j.ecosta.2019.05.002.10.1016/j.ecosta.2019.05.002Suche in Google Scholar

Darby, J., and G. Roy. 2019. “Political Uncertainty and Stock Market Volatility: New Evidence from the 2014 Scottish Independence Referendum.” Scottish Journal of Political Economy 66: 314–330.10.1111/sjpe.12186Suche in Google Scholar

Del Negro, M., and G. E. Primiceri. 2015. “Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum.” Review of Economic Studies 82: 1342–1345.10.1093/restud/rdv024Suche in Google Scholar

Ding, Z., C. Granger, and R. Engle. 1993. “A Long Memory Property of Stock Market Returns and a New Model.” Journal of Empirical Finance 1: 83–106.10.1016/0927-5398(93)90006-DSuche in Google Scholar

Dovern, J., U. Fritsche, and J. Slacalek. 2012. “Disagreement Among Forecasters in G7 Countries.” Review of Economics and Statistics 94: 1081–1096.10.1162/REST_a_00207Suche in Google Scholar

Engle, R., and V. K. Ng. 1993. “Measuring and Testing the Impact of News on Volatility.” Journal of Finance 48: 1749–1778.10.3386/w3681Suche in Google Scholar

Fama, E. F., and K. R. French. 1987. “Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage.” Journal of Business 60: 55–73.10.1142/9789814566926_0004Suche in Google Scholar

Fan, J., and Q. Yao. 2017. The Elements of Financial Econometrics. Cambridge: Cambridge University Press.10.1017/9781108120616Suche in Google Scholar

Fisher, T. J., and C. M. Gallagher. 2012. “New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing.” Journal of the American Statistical Association 107: 777–787.10.1080/01621459.2012.688465Suche in Google Scholar

Gerritsen, D. F. 2016. “Are Chartists Artists? The Determinants and Profitability of Recommendations Based on Technical Analysis.” International Review of Financial Analysis 47: 179–196.10.1016/j.irfa.2016.06.008Suche in Google Scholar

Gibson, R., and E. S. Schwartz. 1990. “Stochastic Convenience Yield and the Pricing of Oil Contingent Claims.” Journal of Finance 45: 959–976.10.1111/j.1540-6261.1990.tb05114.xSuche in Google Scholar

Gilbert, C. L. 2010. “How to Understand High Food Prices.” Journal of Agricultural Economics 61: 398–425.10.1111/j.1477-9552.2010.00248.xSuche in Google Scholar

Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks.” Journal of Finance 48: 1779–1801.10.1111/j.1540-6261.1993.tb05128.xSuche in Google Scholar

Gutierrez, L. 2013. “Speculative Bubbles in Agricultural Commodity Markets.” European Review of Agricultural Economics 40: 217–238.10.1093/erae/jbs017Suche in Google Scholar

Han, Y., T. Hu, and J. Yang. 2016. “Are There Exploitable Trends in Commodity Futures Prices?” Journal of Banking & Finance 70: 214–234.10.1016/j.jbankfin.2016.04.013Suche in Google Scholar

Han, Y., K. Yang, and G. Zhou. 2013. “A New Anomaly: The Cross-Sectional Profitability of Technical Analysis.” Journal of Financial and Quantitative Analysis 48: 1433–1461.10.1017/S0022109013000586Suche in Google Scholar

Ho, T. S. Y. 1984. “Intertemporal Commodity Futures Hedging and the Production Decision.” Journal of Finance 39: 351–376.10.1111/j.1540-6261.1984.tb02314.xSuche in Google Scholar

Irwin, S. H., D. R. Sanders, and R. P. Merrin. 2009. “Devil or Angel? The Role of Speculation in the Recent Commodity Price Boom (and Bust).” Journal of Agricultural and Applied Economics 41: 393–402.10.1017/S1074070800002856Suche in Google Scholar

Joëts, M., V. Mignon, and T. Razafindrabe. 2017. “Does the Volatility of Commodity Prices Reflect Macroeconomic Uncertainty?” Energy Economics 68: 313–326.10.1016/j.eneco.2017.09.017Suche in Google Scholar

Jurado, K., S. C. Ludvigson, and S. Ng. 2015. “Measuring Uncertainty.” American Economic Review 105: 1177–1216.10.3386/w19456Suche in Google Scholar

Karnizova, L., and J. Li. 2014. “Economic Policy Uncertainty, Financial Markets and Probability of US Recessions.” Economics Letters 125: 261–265.10.1016/j.econlet.2014.09.018Suche in Google Scholar

Kim, A. 2015. “Does Futures Speculation Destabilize Commodity Markets?” Journal of Futures Markets 35: 696–714.10.1002/fut.21716Suche in Google Scholar

Liu, L., and T. Zhang. 2015. “Economic Policy Uncertainty and Stock Market Volatility.” Finance Research Letters 15: 99–105.10.1016/j.frl.2015.08.009Suche in Google Scholar

Liu, Y., L. Han, and L. Yin. 2018. “Does News Uncertainty Matter for Commodity Futures Markets? Heterogeneity in Energy and Non-Energy Sectors.” Journal of Futures Markets 38: 1246–1261.10.1002/fut.21916Suche in Google Scholar

Ma, C. K., J. M. Mercer, and M. A. Walker. 1992. “Rolling Over Futures Contracts: A Note.” Journal of Futures Markets 12: 203–217.10.1002/fut.3990120208Suche in Google Scholar

Masters, M. W. 2008. “Written Testimony before the Committee on Homeland Security and Governmental Affairs.” United States Senate. May 20.http://hsgac.senate.gov/public/_files/052008Masters.pdf (accessed August 22, 2017).Suche in Google Scholar

Mougoué, M., and R. Aggarwal. 2011. “Trading Volume and Exchange Rate Volatility: Evidence for the Sequential Arrival of Information Hypothesis.” Journal of Banking & Finance 35: 2690–2703.10.1016/j.jbankfin.2011.02.028Suche in Google Scholar

Munier, B. R. 2012. Global Uncertainty and the Volatility of Agricultural Commodities Prices. Amsterdam: IOS Press.Suche in Google Scholar

Murphy, J. J. 1999. Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Upper Saddle River, New Jersey: Prentice Hall Press.Suche in Google Scholar

Nelson, D. B. 1991. “Conditional Heteroskedasticity in Asset Returns: A New Approach.” Econometrica 59: 347–370.10.2307/2938260Suche in Google Scholar

Ordu, B. M., A. Oran, and U. Soytas. 2018. “Is Food Financialized? Yes, but only when Liquidity is Abundant.” Journal of Banking & Finance 95: 82–96.10.1016/j.jbankfin.2017.06.001Suche in Google Scholar

Palm, F. 1996. “GARCH Models of Volatility.” Handbook of Statistics 14: 209–240.10.1016/S0169-7161(96)14009-8Suche in Google Scholar

Piesse, J., and C. Thirtle. 2009. “Three Bubbles and a Panic: An Explanatory Review of Recent Food Commodity Price Events.” Food Policy 34: 119–129.10.1016/j.foodpol.2009.01.001Suche in Google Scholar

Primiceri, G. E. 2005. “Time Varying Structural Vector Autoregressions and Monetary Policy.” Review of Economic Studies 72: 821–852.10.1111/j.1467-937X.2005.00353.xSuche in Google Scholar

Sanders, D. R., and S. H. Irwin. 2010. “A Speculative Bubble in Commodity Futures Prices? Cross-Sectional Evidence.” Agricultural Economics 41: 25–32.10.1111/j.1574-0862.2009.00422.xSuche in Google Scholar

Smith, D. M., N. Wang, Y. Wang, and E. J. Zychowicz. 2016. “Sentiment and the Effectiveness of Technical Analysis: Evidence from the Hedge Fund Industry.” Journal of Financial and Quantitative Analysis 51: 1991–2013.10.1017/S0022109016000843Suche in Google Scholar

Timmer, C. P. 2009. “Did Speculation affect World Rice Prices?” ESA Working Paper No. 09-07.Suche in Google Scholar

Watugala, S. W. 2015. “Economic Uncertainty and Commodity Futures Volatility.” Office of Financial Research, US Department of the Treasury Working Papers 15-14.10.2139/ssrn.2648468Suche in Google Scholar

White, H. 1982. “Maximum Likelihood Estimation of Misspecified Models.” Econometrica 50: 1–25.10.2307/1912526Suche in Google Scholar

Yin, L., Q. Yang, and Z. Su. 2017. “Predictability of Structural Co-Movement in Commodity Prices: The Role of Technical Indicators.” Quantitative Finance 17: 795–812.10.1080/14697688.2016.1225977Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/snde-2018-0054).


Published Online: 2019-07-20

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/snde-2018-0054/pdf
Button zum nach oben scrollen