Abstract
This paper sheds light on the role of different sources of uncertainty on agricultural futures markets momentum trading and volatility. Momentum trading is proxied by two technical analysis indicators – the moving average convergence divergence and the relative strength index – while we also consider two different concepts of uncertainty – the CBOE volatility index of the S&P500 and daily news about the stance of economic policy in the US. To capture different effects on the transmission mechanism of uncertainty shocks, we implement a Bayesian VAR approach, which accounts for time-variation in the coefficients and the variance covariance structure of the model’s innovations. The results point in favor of a time-dependent uncertainty effect on expectations of daily momentum traders in agricultural futures markets. The corresponding trades in these periods push futures prices upwards and downwards and result in an increased volatility. Direct effects of both uncertainty sources on the volatility of agricultural futures markets confirm this view.
Acknowledgments
Thanks for valuable comments on a previous draft of the paper are due to two anonymous reviewers.
A Appendix
A.1 Agricultural futures prices and trading indicators

Agricultural futures prices and technical analysis indicators – part I.
The upper panels display the futures prices (in green) for two agricultural commodities (i.e. coffee and corn) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).

Agricultural futures prices and technical analysis indicators – part II.
The upper panels display the futures prices (in green) for two agricultural commodities (i.e. cotton and soybean oil) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).


Agricultural futures prices and technical analysis indicators – part III.
The upper panels display the futures prices (in green) for three agricultural commodities (i.e. soybeans, sugar and wheat) and their trading indicators based on technical analysis for a daily sample period from January 2005 to December 2014. The middle panels show the moving average convergence divergence MACD12,26,t following Eq. (2) (gray solid line), the signal line Signal9,t according to Eq. (4) (red dotted line) and the MACD histogram Hist12,26,9,t given in Eq. (5) (gray areas). The bottom panels show the relative strength index RSI14,t given in Eq. (7) (in blue).
A.2 GARCH models
GARCH models for coffee.
GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(0, 1) | N(0, 1) | N(0, 1) | N(0, 1) | tν | tν | tν | tν | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | stν,κ | stν,κ | stν,κ | stν,κ | GEDν | GEDν | GEDν | GEDν | |
ω | 0.0881 | 0.0335 | 0.0561 | 0.0975 | 0.0696 | 0.0245 | 0.0450 | 0.0746 | 0.0881 | 0.0334 | 0.0543 | 0.0975 | 0.0695 | 0.0244 | 0.0444 | 0.0745 | 0.0755 | 0.0257 | 0.0477 | 0.0804 |
se | 0.0414 | 0.0028 | 0.0358 | 0.0485 | 0.0237 | 0.0017 | 0.0166 | 0.0289 | 0.0414 | 0.0028 | 0.0344 | 0.0483 | 0.0237 | 0.0017 | 0.0162 | 0.0289 | 0.0315 | 0.0018 | 0.0220 | 0.0357 |
p-value | 0.0333 | 0.0000 | 0.1168 | 0.0443 | 0.0033 | 0.0000 | 0.0067 | 0.0099 | 0.0333 | 0.0000 | 0.1142 | 0.0433 | 0.0034 | 0.0000 | 0.0062 | 0.0100 | 0.0164 | 0.0000 | 0.0303 | 0.0242 |
α | 0.0402 | 0.0462 | 0.0471 | 0.0638 | 0.0361 | 0.0409 | 0.0433 | 0.0549 | 0.0402 | 0.0465 | 0.0474 | 0.0639 | 0.0362 | 0.0410 | 0.0435 | 0.0550 | 0.0382 | 0.0422 | 0.0449 | 0.0577 |
se | 0.0123 | 0.0137 | 0.0126 | 0.0231 | 0.0073 | 0.0121 | 0.0079 | 0.0152 | 0.0123 | 0.0136 | 0.0125 | 0.0230 | 0.0073 | 0.0121 | 0.0078 | 0.0152 | 0.0097 | 0.0125 | 0.0092 | 0.0179 |
p-value | 0.0011 | 0.0008 | 0.0002 | 0.0057 | 0.0000 | 0.0007 | 0.0000 | 0.0003 | 0.0010 | 0.0006 | 0.0002 | 0.0054 | 0.0000 | 0.0007 | 0.0000 | 0.0003 | 0.0001 | 0.0007 | 0.0000 | 0.0012 |
β | 0.9374 | 0.9766 | 0.9374 | 0.9333 | 0.9468 | 0.9812 | 0.9457 | 0.9442 | 0.9374 | 0.9767 | 0.9376 | 0.9332 | 0.9467 | 0.9813 | 0.9457 | 0.9441 | 0.9425 | 0.9798 | 0.9428 | 0.9403 |
se | 0.0198 | 0.0013 | 0.0212 | 0.0233 | 0.0098 | 0.0000 | 0.0085 | 0.0134 | 0.0198 | 0.0013 | 0.0210 | 0.0232 | 0.0099 | 0.0000 | 0.0084 | 0.0134 | 0.0149 | 0.0002 | 0.0127 | 0.0174 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
γ | 0.0909 | 0.0828 | 0.0911 | 0.0829 | 0.0866 | |||||||||||||||
se | 0.0115 | 0.0082 | 0.0111 | 0.0078 | 0.0039 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
θ | −0.4623 | −0.4442 | −0.4742 | −0.4489 | −0.4379 | |||||||||||||||
se | 0.1978 | 0.1822 | 0.2009 | 0.1828 | 0.1813 | |||||||||||||||
p-value | 0.0194 | 0.0148 | 0.0183 | 0.0140 | 0.0157 | |||||||||||||||
δ | 1.2291 | 1.2209 | 1.1916 | 1.2040 | 1.2264 | |||||||||||||||
se | 0.3674 | 0.3190 | 0.3566 | 0.3124 | 0.3198 | |||||||||||||||
p-value | 0.0008 | 0.0001 | 0.0008 | 0.0001 | 0.0001 | |||||||||||||||
ϕ | −0.0443 | −0.0356 | −0.0443 | −0.0355 | −0.0377 | |||||||||||||||
se | 0.0226 | 0.0162 | 0.0225 | 0.0161 | 0.0178 | |||||||||||||||
p-value | 0.0500 | 0.0276 | 0.0488 | 0.0278 | 0.0342 | |||||||||||||||
ν | 6.7555 | 7.0265 | 7.0653 | 6.9982 | 6.7667 | 7.0521 | 7.0910 | 7.0075 | 1.3862 | 1.4048 | 1.4054 | 1.4006 | ||||||||
se | 0.9180 | 0.9656 | 0.9686 | 0.9635 | 0.9175 | 0.9687 | 0.9723 | 0.9633 | 0.0570 | 0.0571 | 0.0570 | 0.0571 | ||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||
κ | 1.0131 | 1.0233 | 1.0222 | 1.0119 | 1.0115 | 1.0159 | 1.0153 | 1.0099 | ||||||||||||
se | 0.0300 | 0.0295 | 0.0293 | 0.0290 | 0.0242 | 0.0244 | 0.0243 | 0.0241 | ||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||||||
persis tence | 0.9776 | 0.9766 | 0.9770 | 0.9749 | 0.9829 | 0.9812 | 0.9803 | 0.9813 | 0.9776 | 0.9767 | 0.9772 | 0.9748 | 0.9829 | 0.9813 | 0.9803 | 0.9812 | 0.9807 | 0.9798 | 0.9788 | 0.9792 |
AIC | 4.1649 | 4.1572 | 4.1582 | 4.1596 | 4.1314 | 4.1270 | 4.1282 | 4.1290 | 4.1656 | 4.1576 | 4.1587 | 4.1603 | 4.1321 | 4.1276 | 4.1289 | 4.1297 | 4.1297 | 4.1252 | 4.1263 | 4.1270 |
SBC | 4.1719 | 4.1665 | 4.1698 | 4.1689 | 4.1406 | 4.1386 | 4.1421 | 4.1405 | 4.1749 | 4.1692 | 4.1726 | 4.1719 | 4.1437 | 4.1415 | 4.1451 | 4.1436 | 4.1390 | 4.1368 | 4.1402 | 4.1386 |
WLB | 0.2672 | 0.6837 | 0.5942 | 0.5110 | 0.2748 | 0.6834 | 0.5926 | 0.5015 | 0.2669 | 0.6857 | 0.5988 | 0.5096 | 0.2743 | 0.6827 | 0.5938 | 0.4999 | 0.2662 | 0.6703 | 0.5823 | 0.4956 |
p-value | 0.6052 | 0.4083 | 0.4408 | 0.4747 | 0.6001 | 0.4084 | 0.4414 | 0.4788 | 0.6054 | 0.4076 | 0.4390 | 0.4753 | 0.6004 | 0.4087 | 0.4409 | 0.4795 | 0.6059 | 0.4129 | 0.4454 | 0.4814 |
WLB2 | 2.0105 | 3.4313 | 2.6517 | 1.8427 | 3.0865 | 4.5415 | 3.5096 | 2.7003 | 2.0029 | 3.4063 | 2.7033 | 1.8194 | 3.0709 | 4.5182 | 3.5272 | 2.6813 | 2.4203 | 3.9782 | 3.0942 | 2.2397 |
p-value | 0.1562 | 0.0640 | 0.1034 | 0.1746 | 0.0789 | 0.0331 | 0.0610 | 0.1003 | 0.1570 | 0.0649 | 0.1001 | 0.1774 | 0.0797 | 0.0335 | 0.0604 | 0.1015 | 0.1198 | 0.0461 | 0.0786 | 0.1345 |
SB | 1.4362 | 3.0798 | 2.8698 | 2.2361 | 1.8794 | 3.0970 | 2.7551 | 2.1418 | 1.4299 | 3.0750 | 2.9038 | 2.2196 | 1.8664 | 3.0786 | 2.7611 | 2.1250 | 1.5394 | 2.9166 | 2.6376 | 2.0222 |
p-value | 0.6971 | 0.3795 | 0.4121 | 0.5249 | 0.5978 | 0.3769 | 0.4309 | 0.5435 | 0.6985 | 0.3802 | 0.4067 | 0.5281 | 0.6006 | 0.3797 | 0.4299 | 0.5469 | 0.6732 | 0.4047 | 0.4509 | 0.5678 |
APGof | 104.2021 | 84.2180 | 80.4948 | 83.1042 | 47.7820 | 46.8592 | 38.7765 | 54.8465 | 99.2379 | 81.6404 | 85.4590 | 77.5036 | 47.0819 | 41.1949 | 35.1806 | 51.5370 | 53.9554 | 45.5863 | 44.3453 | 47.0183 |
p-value | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.1581 | 0.1812 | 0.4800 | 0.0475 | 0.0000 | 0.0001 | 0.0000 | 0.0002 | 0.1754 | 0.3748 | 0.6448 | 0.0862 | 0.0561 | 0.2171 | 0.2564 | 0.1771 |
The table provides estimated coefficients and diagnostics for several different GARCH models for coffee futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.
GARCH models for corn.
GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(0, 1) | N(0, 1) | N(0, 1) | N(0, 1) | tν | tν | tν | tν | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | stν,κ | stν,κ | stν,κ | stν,κ | GEDν | GEDν | GEDν | GEDν | |
ω | 0.0656 | 0.0308 | 0.0268 | 0.0769 | 0.0402 | 0.0130 | 0.0195 | 0.0396 | 0.0660 | 0.0309 | 0.0271 | 0.0780 | 0.0400 | 0.0129 | 0.0194 | 0.0395 | 0.0587 | 0.0224 | 0.0278 | 0.0614 |
se | 0.0227 | 0.0032 | 0.0068 | 0.0246 | 0.0192 | 0.0024 | 0.0109 | 0.0199 | 0.0228 | 0.0032 | 0.0071 | 0.0256 | 0.0190 | 0.0024 | 0.0109 | 0.0197 | 0.0305 | 0.0025 | 0.0218 | 0.0426 |
p-value | 0.0038 | 0.0000 | 0.0001 | 0.0017 | 0.0360 | 0.0000 | 0.0741 | 0.0471 | 0.0037 | 0.0000 | 0.0001 | 0.0023 | 0.0347 | 0.0000 | 0.0759 | 0.0450 | 0.0538 | 0.0000 | 0.2013 | 0.1496 |
α | 0.0277 | −0.0105 | 0.0344 | 0.0244 | 0.0625 | 0.0081 | 0.0729 | 0.0635 | 0.0279 | −0.0107 | 0.0347 | 0.0245 | 0.0623 | 0.0078 | 0.0728 | 0.0630 | 0.0477 | −0.0019 | 0.0586 | 0.0464 |
se | 0.0056 | 0.0144 | 0.0057 | 0.0103 | 0.0174 | 0.0110 | 0.0197 | 0.0168 | 0.0055 | 0.0142 | 0.0056 | 0.0102 | 0.0173 | 0.0110 | 0.0198 | 0.0167 | 0.0184 | 0.0133 | 0.0278 | 0.0170 |
p-value | 0.0000 | 0.4641 | 0.0000 | 0.0179 | 0.0003 | 0.4645 | 0.0002 | 0.0002 | 0.0000 | 0.4488 | 0.0000 | 0.0167 | 0.0003 | 0.4796 | 0.0002 | 0.0002 | 0.0093 | 0.8851 | 0.0352 | 0.0064 |
β | 0.9576 | 0.9816 | 0.9572 | 0.9525 | 0.9317 | 0.9891 | 0.9351 | 0.9324 | 0.9574 | 0.9815 | 0.9569 | 0.9520 | 0.9318 | 0.9891 | 0.9352 | 0.9324 | 0.9398 | 0.9834 | 0.9405 | 0.9380 |
se | 0.0024 | 0.0001 | 0.0007 | 0.0082 | 0.0181 | 0.0000 | 0.0180 | 0.0204 | 0.0023 | 0.0001 | 0.0017 | 0.0089 | 0.0180 | 0.0000 | 0.0181 | 0.0201 | 0.0232 | 0.0004 | 0.0288 | 0.0328 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
γ | 0.0743 | 0.1364 | 0.0744 | 0.1363 | 0.1142 | |||||||||||||||
se | 0.0042 | 0.0010 | 0.0042 | 0.0010 | 0.0073 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
θ | 0.1112 | −0.0692 | 0.1144 | −0.0685 | 0.0013 | |||||||||||||||
se | 0.2571 | 0.1005 | 0.2490 | 0.1005 | 0.1568 | |||||||||||||||
p-value | 0.6654 | 0.4913 | 0.6459 | 0.4954 | 0.9931 | |||||||||||||||
δ | 0.6484 | 0.8859 | 0.6529 | 0.8842 | 0.8162 | |||||||||||||||
se | 0.0364 | 0.1744 | 0.0635 | 0.1768 | 0.3048 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0074 | |||||||||||||||
ϕ | 0.0125 | −0.0032 | 0.0128 | −0.0027 | 0.0055 | |||||||||||||||
se | 0.0197 | 0.0218 | 0.0203 | 0.0215 | 0.0286 | |||||||||||||||
p-value | 0.5244 | 0.8823 | 0.5280 | 0.9016 | 0.8472 | |||||||||||||||
ν | 5.1599 | 5.3024 | 5.3675 | 5.1553 | 5.1836 | 5.3262 | 5.3932 | 5.1800 | 1.2506 | 1.2621 | 1.2679 | 1.2512 | ||||||||
se | 0.5687 | 0.6002 | 0.5873 | 0.5726 | 0.5801 | 0.6114 | 0.5997 | 0.5843 | 0.0749 | 0.0782 | 0.0733 | 0.0761 | ||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||
κ | 0.9900 | 0.9912 | 0.9958 | 0.9895 | 1.0365 | 1.0352 | 1.0359 | 1.0363 | ||||||||||||
se | 0.0607 | 0.0618 | 0.0621 | 0.0599 | 0.0355 | 0.0370 | 0.0374 | 0.0357 | ||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||||||
persis tence | 0.9854 | 0.9816 | 0.9848 | 0.9831 | 0.9942 | 0.9891 | 0.9890 | 0.9942 | 0.9853 | 0.9815 | 0.9847 | 0.9829 | 0.9941 | 0.9891 | 0.9890 | 0.9941 | 0.9876 | 0.9834 | 0.9840 | 0.9872 |
AIC | 4.2558 | 4.2445 | 4.2405 | 4.2561 | 4.1195 | 4.1094 | 4.1075 | 4.1203 | 4.2565 | 4.2453 | 4.2413 | 4.2568 | 4.1197 | 4.1096 | 4.1077 | 4.1205 | 4.1572 | 4.1490 | 4.1468 | 4.1580 |
SBC | 4.2627 | 4.2538 | 4.2521 | 4.2654 | 4.1288 | 4.1210 | 4.1214 | 4.1319 | 4.2658 | 4.2568 | 4.2552 | 4.2684 | 4.1312 | 4.1235 | 4.1239 | 4.1343 | 4.1665 | 4.1605 | 4.1607 | 4.1696 |
WLB | 0.1023 | 0.1165 | 0.0680 | 0.1506 | 0.0207 | 0.0101 | 0.0003 | 0.0182 | 0.1026 | 0.1174 | 0.0687 | 0.1521 | 0.0207 | 0.0102 | 0.0003 | 0.0186 | 0.0488 | 0.0442 | 0.0178 | 0.0586 |
p-value | 0.7491 | 0.7329 | 0.7942 | 0.6980 | 0.8855 | 0.9200 | 0.9869 | 0.8928 | 0.7488 | 0.7319 | 0.7932 | 0.6966 | 0.8856 | 0.9196 | 0.9871 | 0.8916 | 0.8251 | 0.8335 | 0.8939 | 0.8087 |
WLB2 | 0.5655 | 0.8783 | 1.4025 | 0.4702 | 0.0024 | 0.1300 | 0.2403 | 0.0033 | 0.5599 | 0.8749 | 1.3912 | 0.4595 | 0.0026 | 0.1296 | 0.2426 | 0.0033 | 0.0578 | 0.2537 | 0.4628 | 0.0473 |
p-value | 0.4520 | 0.3487 | 0.2363 | 0.4929 | 0.9609 | 0.7185 | 0.6240 | 0.9543 | 0.4543 | 0.3496 | 0.2382 | 0.4979 | 0.9596 | 0.7188 | 0.6223 | 0.9543 | 0.8100 | 0.6145 | 0.4963 | 0.8279 |
SB | 2.2469 | 2.1765 | 2.3825 | 2.2570 | 0.4035 | 0.1514 | 0.1618 | 0.3792 | 2.2339 | 2.1764 | 2.3737 | 2.2344 | 0.4015 | 0.1540 | 0.1613 | 0.3815 | 0.4771 | 0.3693 | 0.3778 | 0.5076 |
p-value | 0.5228 | 0.5366 | 0.4969 | 0.5208 | 0.9395 | 0.9850 | 0.9835 | 0.9445 | 0.5253 | 0.5366 | 0.4985 | 0.5252 | 0.9399 | 0.9847 | 0.9836 | 0.9440 | 0.9239 | 0.9465 | 0.9448 | 0.9172 |
APGof | 140.1981 | 129.5590 | 130.7975 | 136.8952 | 75.5058 | 87.1612 | 85.8591 | 73.7273 | 125.0810 | 113.6479 | 119.7455 | 120.2219 | 57.3081 | 65.9146 | 62.0719 | 59.5312 | 122.5721 | 134.0052 | 129.0191 | 121.6511 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0006 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0294 | 0.0045 | 0.0108 | 0.0187 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
The table provides estimated coefficients and diagnostics for several different GARCH models for corn futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.
GARCH models for cotton.
GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(0, 1) | N(0, 1) | N(0, 1) | N(0, 1) | tν | tν | tν | tν | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | stν,κ | stν,κ | stν,κ | stν,κ | GEDν | GEDν | GEDν | GEDν | |
ω | 0.1001 | 0.0359 | 0.0354 | 0.1021 | 0.0742 | 0.0165 | 0.0310 | 0.0628 | 0.1052 | 0.0367 | 0.0364 | 0.1069 | 0.0742 | 0.0165 | 0.0310 | 0.0629 | 0.0960 | 0.0209 | 0.0351 | 0.0897 |
se | 0.0749 | 0.0048 | 0.0199 | 0.0705 | 0.0788 | 0.0028 | 0.0193 | 0.1246 | 0.0698 | 0.0048 | 0.0188 | 0.0665 | 0.0788 | 0.0028 | 0.0193 | 0.1248 | 0.0673 | 0.0030 | 0.0151 | 0.0716 |
p-value | 0.1810 | 0.0000 | 0.0752 | 0.1478 | 0.3466 | 0.0000 | 0.1075 | 0.6140 | 0.1320 | 0.0000 | 0.0530 | 0.1078 | 0.3467 | 0.0000 | 0.1075 | 0.6144 | 0.1538 | 0.0000 | 0.0197 | 0.2103 |
α | 0.1004 | 0.0159 | 0.1019 | 0.1156 | 0.0681 | 0.0117 | 0.0880 | 0.0721 | 0.1018 | 0.0158 | 0.1023 | 0.1170 | 0.0681 | 0.0117 | 0.0880 | 0.0721 | 0.0821 | 0.0139 | 0.0951 | 0.0902 |
se | 0.0335 | 0.0185 | 0.0189 | 0.0349 | 0.0491 | 0.0151 | 0.0299 | 0.0762 | 0.0324 | 0.0184 | 0.0187 | 0.0350 | 0.0491 | 0.0151 | 0.0299 | 0.0763 | 0.0372 | 0.0155 | 0.0192 | 0.0430 |
p-value | 0.0027 | 0.3909 | 0.0000 | 0.0009 | 0.1657 | 0.4381 | 0.0032 | 0.3441 | 0.0017 | 0.3903 | 0.0000 | 0.0008 | 0.1658 | 0.4381 | 0.0032 | 0.3446 | 0.0271 | 0.3693 | 0.0000 | 0.0361 |
β | 0.8814 | 0.9796 | 0.8967 | 0.8827 | 0.9150 | 0.9859 | 0.9133 | 0.9245 | 0.8788 | 0.9789 | 0.8956 | 0.8801 | 0.9150 | 0.9859 | 0.9133 | 0.9245 | 0.8946 | 0.9820 | 0.9035 | 0.9005 |
se | 0.0499 | 0.0008 | 0.0243 | 0.0478 | 0.0654 | 0.0015 | 0.0330 | 0.1068 | 0.0472 | 0.0007 | 0.0234 | 0.0458 | 0.0654 | 0.0015 | 0.0330 | 0.1070 | 0.0517 | 0.0006 | 0.0227 | 0.0565 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
γ | 0.1880 | 0.1441 | 0.1889 | 0.1441 | 0.1619 | |||||||||||||||
se | 0.0263 | 0.0188 | 0.0262 | 0.0187 | 0.0270 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
θ | −0.0852 | −0.0631 | −0.0846 | −0.0631 | −0.0783 | |||||||||||||||
se | 0.1058 | 0.1073 | 0.1055 | 0.1073 | 0.1006 | |||||||||||||||
p-value | 0.4206 | 0.5565 | 0.4225 | 0.5564 | 0.4361 | |||||||||||||||
δ | 0.5471 | 0.6596 | 0.5457 | 0.6596 | 0.6149 | |||||||||||||||
se | 0.1535 | 0.1278 | 0.1536 | 0.1278 | 0.1201 | |||||||||||||||
p-value | 0.0004 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | |||||||||||||||
ϕ | −0.0355 | −0.0223 | −0.0355 | −0.0223 | −0.0256 | |||||||||||||||
se | 0.0384 | 0.0290 | 0.0389 | 0.0290 | 0.0314 | |||||||||||||||
p-value | 0.3556 | 0.4423 | 0.3609 | 0.4432 | 0.4142 | |||||||||||||||
ν | 4.9113 | 5.0338 | 5.1571 | 4.8972 | 4.9114 | 5.0333 | 5.1565 | 4.8969 | 1.2319 | 1.2565 | 1.2696 | 1.2327 | ||||||||
se | 0.5854 | 0.5069 | 0.5541 | 0.6791 | 0.5857 | 0.5069 | 0.5540 | 0.6793 | 0.0705 | 0.0648 | 0.0627 | 0.0702 | ||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||
κ | 0.9771 | 0.9836 | 0.9827 | 0.9780 | 0.9999 | 0.9993 | 0.9998 | 1.0003 | ||||||||||||
se | 0.0405 | 0.0425 | 0.0359 | 0.0400 | 0.0246 | 0.0251 | 0.0251 | 0.0247 | ||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||||||
persis tence | 0.9818 | 0.9796 | 0.9797 | 0.9806 | 0.9831 | 0.9859 | 0.9794 | 0.9855 | 0.9806 | 0.9789 | 0.9789 | 0.9795 | 0.9831 | 0.9859 | 0.9794 | 0.9855 | 0.9767 | 0.9820 | 0.9756 | 0.9778 |
AIC | 4.0844 | 4.0603 | 4.0513 | 4.0839 | 3.9816 | 3.9678 | 3.9649 | 3.9818 | 4.0848 | 4.0609 | 4.0518 | 4.0843 | 3.9823 | 3.9686 | 3.9657 | 3.9826 | 3.9956 | 3.9817 | 3.9777 | 3.9958 |
SBC | 4.0914 | 4.0696 | 4.0629 | 4.0932 | 3.9908 | 3.9794 | 3.9789 | 3.9934 | 4.0940 | 4.0725 | 4.0658 | 4.0959 | 3.9939 | 3.9825 | 3.9820 | 3.9965 | 4.0049 | 3.9933 | 3.9916 | 4.0074 |
WLB | 2.0429 | 2.1436 | 2.6084 | 1.9456 | 1.7883 | 1.9394 | 2.4412 | 1.6822 | 2.0610 | 2.1544 | 2.6179 | 1.9631 | 1.7883 | 1.9394 | 2.4412 | 1.6824 | 1.9498 | 2.0488 | 2.5290 | 1.8519 |
p-value | 0.1529 | 0.1432 | 0.1063 | 0.1631 | 0.1811 | 0.1637 | 0.1182 | 0.1946 | 0.1511 | 0.1422 | 0.1057 | 0.1612 | 0.1811 | 0.1637 | 0.1182 | 0.1946 | 0.1626 | 0.1523 | 0.1118 | 0.1736 |
WLB2 | 0.1594 | 0.0704 | 0.0984 | 0.1865 | 0.0008 | 0.0361 | 0.0002 | 0.0086 | 0.1745 | 0.0763 | 0.1059 | 0.2012 | 0.0008 | 0.0362 | 0.0002 | 0.0086 | 0.0499 | 0.0021 | 0.0372 | 0.0455 |
p-value | 0.6897 | 0.7908 | 0.7538 | 0.6659 | 0.9781 | 0.8492 | 0.9886 | 0.9261 | 0.6762 | 0.7824 | 0.7449 | 0.6538 | 0.9781 | 0.8491 | 0.9886 | 0.9263 | 0.8233 | 0.9638 | 0.8471 | 0.8311 |
SB | 0.5804 | 0.6992 | 0.7922 | 0.3606 | 1.5568 | 1.5821 | 0.9982 | 1.5439 | 0.5610 | 0.6826 | 0.7723 | 0.3404 | 1.5569 | 1.5826 | 0.9982 | 1.5435 | 0.8984 | 1.0537 | 0.7904 | 0.7252 |
p-value | 0.9009 | 0.8734 | 0.8513 | 0.9483 | 0.6692 | 0.6634 | 0.8017 | 0.6722 | 0.9053 | 0.8773 | 0.8561 | 0.9523 | 0.6692 | 0.6633 | 0.8017 | 0.6723 | 0.8258 | 0.7883 | 0.8518 | 0.8673 |
APGof | 143.0565 | 121.6404 | 110.0891 | 134.7510 | 55.5784 | 45.7772 | 45.1408 | 52.8417 | 134.1464 | 123.8998 | 115.0851 | 135.8648 | 56.4694 | 44.9181 | 45.3317 | 52.2371 | 73.8759 | 64.4566 | 66.4614 | 68.3707 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0413 | 0.2114 | 0.2307 | 0.0686 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0348 | 0.2377 | 0.2248 | 0.0763 | 0.0006 | 0.0063 | 0.0040 | 0.0025 |
The table provides estimated coefficients and diagnostics for several different GARCH models for cotton futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.
GARCH models for soybean oil.
GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(0, 1) | N(0, 1) | N(0, 1) | N(0, 1) | tν | tν | tν | tν | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | stν,κ | stν,κ | stν,κ | stν,κ | GEDν | GEDν | GEDν | GEDν | |
ω | 0.0199 | 0.0062 | 0.0219 | 0.0200 | 0.0175 | 0.0039 | 0.0177 | 0.0176 | 0.0186 | 0.0055 | 0.0204 | 0.0188 | 0.0167 | 0.0785 | 0.0170 | 0.0170 | 0.0189 | 0.0043 | 0.0202 | 0.0190 |
se | 0.0089 | 0.0017 | 0.0107 | 0.0089 | 0.0055 | 0.0015 | 0.0060 | 0.0056 | 0.0080 | 0.0017 | 0.0096 | 0.0080 | 0.0052 | 0.0268 | 0.0058 | 0.0053 | 0.0073 | 0.0015 | 0.0081 | 0.0073 |
p-value | 0.0253 | 0.0003 | 0.0410 | 0.0242 | 0.0016 | 0.0067 | 0.0032 | 0.0016 | 0.0198 | 0.0009 | 0.0335 | 0.0187 | 0.0013 | 0.0033 | 0.0033 | 0.0013 | 0.0095 | 0.0044 | 0.0125 | 0.0089 |
α | 0.0473 | 0.0027 | 0.0431 | 0.0462 | 0.0421 | 0.0018 | 0.0420 | 0.0405 | 0.0469 | 0.0013 | 0.0436 | 0.0448 | 0.0418 | −0.0006 | 0.0418 | 0.0397 | 0.0447 | 0.0021 | 0.0420 | 0.0434 |
se | 0.0129 | 0.0091 | 0.0190 | 0.0144 | 0.0076 | 0.0088 | 0.0166 | 0.0091 | 0.0123 | 0.0090 | 0.0178 | 0.0135 | 0.0072 | 0.0194 | 0.0167 | 0.0087 | 0.0108 | 0.0089 | 0.0177 | 0.0120 |
p-value | 0.0003 | 0.7674 | 0.0233 | 0.0014 | 0.0000 | 0.8385 | 0.0112 | 0.0000 | 0.0001 | 0.8845 | 0.0141 | 0.0009 | 0.0000 | 0.9739 | 0.0122 | 0.0000 | 0.0000 | 0.8168 | 0.0176 | 0.0003 |
β | 0.9439 | 0.9931 | 0.9438 | 0.9439 | 0.9501 | 0.9937 | 0.9500 | 0.9500 | 0.9448 | 0.9938 | 0.9446 | 0.9448 | 0.9506 | 0.8954 | 0.9504 | 0.9504 | 0.9468 | 0.9933 | 0.9468 | 0.9468 |
se | 0.0145 | 0.0000 | 0.0156 | 0.0144 | 0.0068 | 0.0001 | 0.0084 | 0.0069 | 0.0134 | 0.0000 | 0.0144 | 0.0134 | 0.0061 | 0.0286 | 0.0080 | 0.0063 | 0.0114 | 0.0000 | 0.0125 | 0.0114 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
γ | 0.1049 | 0.0972 | 0.1046 | 0.2474 | 0.1010 | |||||||||||||||
se | 0.0017 | 0.0035 | 0.0028 | 0.0456 | 0.0030 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
θ | 0.0177 | 0.0204 | 0.0283 | 0.0274 | 0.0200 | |||||||||||||||
se | 0.0604 | 0.0696 | 0.0605 | 0.0690 | 0.0627 | |||||||||||||||
p-value | 0.7693 | 0.7700 | 0.6397 | 0.6915 | 0.7495 | |||||||||||||||
δ | 2.2228 | 2.0075 | 2.1861 | 2.0107 | 2.1530 | |||||||||||||||
se | 0.6510 | 0.6116 | 0.6054 | 0.6192 | 0.6026 | |||||||||||||||
p-value | 0.0006 | 0.0010 | 0.0003 | 0.0012 | 0.0004 | |||||||||||||||
ϕ | 0.0022 | 0.0034 | 0.0045 | 0.0046 | 0.0028 | |||||||||||||||
se | 0.0114 | 0.0107 | 0.0112 | 0.0107 | 0.0109 | |||||||||||||||
p-value | 0.8483 | 0.7520 | 0.6907 | 0.6697 | 0.7959 | |||||||||||||||
ν | 13.1015 | 12.9534 | 13.0992 | 13.1032 | 13.5441 | 9.4481 | 13.5708 | 13.5665 | 1.6955 | 1.6894 | 1.6962 | 1.6954 | ||||||||
se | 3.1330 | 3.1880 | 3.1044 | 3.1389 | 3.2422 | 1.7944 | 3.2391 | 3.2596 | 0.0766 | 0.0796 | 0.0753 | 0.0766 | ||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||
κ | 1.0624 | 1.0677 | 1.0633 | 1.0638 | 1.0455 | 1.0208 | 1.0466 | 1.0466 | ||||||||||||
se | 0.0382 | 0.0394 | 0.0372 | 0.0379 | 0.0372 | 0.0358 | 0.0371 | 0.0370 | ||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||||||
persis tence | 0.9912 | 0.9931 | 0.9909 | 0.9912 | 0.9922 | 0.9937 | 0.9922 | 0.9922 | 0.9918 | 0.9938 | 0.9914 | 0.9918 | 0.9925 | 0.8954 | 0.9924 | 0.9925 | 0.9915 | 0.9933 | 0.9916 | 0.9915 |
AIC | 3.5584 | 3.5615 | 3.5598 | 3.5592 | 3.5489 | 3.5513 | 3.5505 | 3.5497 | 3.5572 | 3.5600 | 3.5587 | 3.5579 | 3.5488 | 3.5829 | 3.5503 | 3.5495 | 3.5522 | 3.5549 | 3.5537 | 3.5530 |
SBC | 3.5653 | 3.5708 | 3.5714 | 3.5684 | 3.5582 | 3.5629 | 3.5644 | 3.5613 | 3.5665 | 3.5716 | 3.5726 | 3.5696 | 3.5604 | 3.5968 | 3.5666 | 3.5635 | 3.5615 | 3.5665 | 3.5676 | 3.5646 |
WLB | 0.6443 | 0.5165 | 0.6442 | 0.6419 | 0.6026 | 0.4873 | 0.5997 | 0.5995 | 0.6501 | 0.5246 | 0.6480 | 0.6457 | 0.6056 | 0.5804 | 0.6021 | 0.6019 | 0.6226 | 0.5004 | 0.6221 | 0.6196 |
p-value | 0.4222 | 0.4723 | 0.4222 | 0.4230 | 0.4376 | 0.4851 | 0.4387 | 0.4388 | 0.4201 | 0.4689 | 0.4208 | 0.4216 | 0.4364 | 0.4461 | 0.4378 | 0.4379 | 0.4301 | 0.4793 | 0.4303 | 0.4312 |
WLB2 | 0.0217 | 0.2766 | 0.0308 | 0.0259 | 0.1239 | 0.4429 | 0.1404 | 0.1401 | 0.0266 | 0.3018 | 0.0394 | 0.0362 | 0.1313 | 1.1462 | 0.1537 | 0.1532 | 0.0591 | 0.3523 | 0.0741 | 0.0684 |
p-value | 0.8829 | 0.5989 | 0.8608 | 0.8720 | 0.7248 | 0.5057 | 0.7078 | 0.7082 | 0.8706 | 0.5827 | 0.8426 | 0.8491 | 0.7171 | 0.2844 | 0.6950 | 0.6955 | 0.8079 | 0.5528 | 0.7855 | 0.7936 |
SB | 4.5530 | 4.3227 | 4.7416 | 4.6513 | 4.6831 | 4.5172 | 4.8311 | 4.8278 | 4.5081 | 4.3641 | 4.7782 | 4.7126 | 4.6496 | 6.7322 | 4.8489 | 4.8442 | 4.6091 | 4.4398 | 4.8006 | 4.7344 |
p-value | 0.2076 | 0.2287 | 0.1917 | 0.1992 | 0.1965 | 0.2108 | 0.1846 | 0.1848 | 0.2116 | 0.2247 | 0.1888 | 0.1941 | 0.1993 | 0.0809 | 0.1832 | 0.1836 | 0.2028 | 0.2177 | 0.1870 | 0.1923 |
APGof | 64.1812 | 67.9088 | 68.2911 | 66.3477 | 62.5564 | 62.5882 | 61.3775 | 61.6324 | 48.7292 | 55.2923 | 47.5185 | 51.5010 | 49.6213 | 57.2039 | 48.0601 | 47.6460 | 68.8646 | 58.7969 | 74.9498 | 68.0362 |
p-value | 0.0067 | 0.0028 | 0.0026 | 0.0041 | 0.0097 | 0.0097 | 0.0126 | 0.0119 | 0.1366 | 0.0436 | 0.1644 | 0.0867 | 0.1186 | 0.0301 | 0.1515 | 0.1613 | 0.0022 | 0.0218 | 0.0005 | 0.0027 |
The table provides estimated coefficients and diagnostics for several different GARCH models for soybean oil futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.
GARCH models for soybeans.
GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(0, 1) | N(0, 1) | N(0, 1) | N(0, 1) | tν | tν | tν | tν | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | stν,κ | stν,κ | stν,κ | stν,κ | GEDν | GEDν | GEDν | GEDν | |
ω | 0.0637 | 0.0285 | 0.0565 | 0.0639 | 0.0292 | 0.0125 | 0.0206 | 0.0250 | 0.0686 | 0.0297 | 0.0550 | 0.0684 | 0.0327 | 0.0103 | 0.0229 | 0.0286 | 0.0448 | 0.0147 | 0.0349 | 0.0435 |
se | 0.0256 | 0.0034 | 0.0247 | 0.0254 | 0.0103 | 0.0022 | 0.0080 | 0.0085 | 0.0275 | 0.0033 | 0.0241 | 0.0274 | 0.0123 | 0.0020 | 0.0097 | 0.0104 | 0.0208 | 0.0023 | 0.0187 | 0.0205 |
p-value | 0.0130 | 0.0000 | 0.0222 | 0.0117 | 0.0044 | 0.0000 | 0.0106 | 0.0032 | 0.0126 | 0.0000 | 0.0223 | 0.0125 | 0.0076 | 0.0000 | 0.0183 | 0.0058 | 0.0317 | 0.0000 | 0.0615 | 0.0342 |
α | 0.0506 | 0.0009 | 0.0562 | 0.0489 | 0.0422 | −0.0107 | 0.0545 | 0.0493 | 0.0519 | 0.0035 | 0.0626 | 0.0531 | 0.0430 | 0.0102 | 0.0569 | 0.0509 | 0.0464 | 0.0051 | 0.0569 | 0.0499 |
se | 0.0147 | 0.0170 | 0.0186 | 0.0219 | 0.0095 | 0.0118 | 0.0111 | 0.0116 | 0.0155 | 0.0165 | 0.0170 | 0.0217 | 0.0108 | 0.0109 | 0.0118 | 0.0128 | 0.0150 | 0.0126 | 0.0153 | 0.0185 |
p-value | 0.0006 | 0.9586 | 0.0026 | 0.0255 | 0.0000 | 0.3633 | 0.0000 | 0.0000 | 0.0008 | 0.8330 | 0.0002 | 0.0145 | 0.0001 | 0.3486 | 0.0000 | 0.0001 | 0.0020 | 0.6890 | 0.0002 | 0.0070 |
β | 0.9280 | 0.9774 | 0.9278 | 0.9281 | 0.9484 | 0.9871 | 0.9467 | 0.9502 | 0.9247 | 0.9761 | 0.9234 | 0.9246 | 0.9468 | 0.9894 | 0.9442 | 0.9485 | 0.9381 | 0.9847 | 0.9371 | 0.9384 |
se | 0.0202 | 0.0006 | 0.0202 | 0.0207 | 0.0102 | 0.0001 | 0.0091 | 0.0072 | 0.0220 | 0.0004 | 0.0208 | 0.0222 | 0.0123 | 0.0000 | 0.0112 | 0.0098 | 0.0200 | 0.0015 | 0.0189 | 0.0198 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
γ | 0.1218 | 0.1171 | 0.1250 | 0.1129 | 0.1162 | |||||||||||||||
se | 0.0271 | 0.0090 | 0.0240 | 0.0047 | 0.0158 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
θ | 0.0094 | −0.0785 | −0.0204 | −0.0841 | −0.0353 | |||||||||||||||
se | 0.1159 | 0.0915 | 0.1175 | 0.0927 | 0.0968 | |||||||||||||||
p-value | 0.9353 | 0.3910 | 0.8623 | 0.3644 | 0.7154 | |||||||||||||||
δ | 1.7177 | 1.3957 | 1.4962 | 1.3366 | 1.4940 | |||||||||||||||
se | 0.4352 | 0.2560 | 0.3475 | 0.2455 | 0.2983 | |||||||||||||||
p-value | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
ϕ | 0.0028 | −0.0142 | −0.0019 | −0.0152 | −0.0062 | |||||||||||||||
se | 0.0205 | 0.0141 | 0.0208 | 0.0145 | 0.0163 | |||||||||||||||
p-value | 0.8928 | 0.3160 | 0.9267 | 0.2956 | 0.7033 | |||||||||||||||
ν | 5.9575 | 5.7868 | 5.9905 | 5.9465 | 5.8731 | 5.8458 | 5.9257 | 5.8679 | 1.3467 | 1.3381 | 1.3454 | 1.3460 | ||||||||
se | 0.6991 | 0.6043 | 0.6872 | 0.6927 | 0.6772 | 0.6431 | 0.6689 | 0.6737 | 0.0666 | 0.0644 | 0.0664 | 0.0667 | ||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||
κ | 0.8748 | 0.8672 | 0.8703 | 0.8746 | 0.8822 | 0.8788 | 0.8793 | 0.8817 | ||||||||||||
se | 0.0297 | 0.0307 | 0.0308 | 0.0299 | 0.0246 | 0.0248 | 0.0248 | 0.0248 | ||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||||||
persis tence | 0.9786 | 0.9774 | 0.9790 | 0.9784 | 0.9905 | 0.9871 | 0.9901 | 0.9924 | 0.9766 | 0.9761 | 0.9772 | 0.9768 | 0.9899 | 0.9894 | 0.9888 | 0.9922 | 0.9845 | 0.9847 | 0.9841 | 0.9852 |
AIC | 3.8360 | 3.8401 | 3.8373 | 3.8368 | 3.7655 | 3.7665 | 3.7651 | 3.7658 | 3.8236 | 3.8258 | 3.8241 | 3.8244 | 3.7579 | 3.7570 | 3.7570 | 3.7581 | 3.7820 | 3.7831 | 3.7826 | 3.7827 |
SBC | 3.8430 | 3.8494 | 3.8489 | 3.8461 | 3.7748 | 3.7780 | 3.7790 | 3.7774 | 3.8329 | 3.8374 | 3.8380 | 3.8360 | 3.7694 | 3.7709 | 3.7732 | 3.7720 | 3.7912 | 3.7947 | 3.7965 | 3.7943 |
WLB | 0.1388 | 0.0338 | 0.0921 | 0.1449 | 0.2109 | 0.0881 | 0.0677 | 0.1717 | 0.1318 | 0.0299 | 0.0485 | 0.1279 | 0.1994 | 0.0521 | 0.0533 | 0.1594 | 0.1755 | 0.0471 | 0.0711 | 0.1606 |
p-value | 0.7095 | 0.8542 | 0.7615 | 0.7035 | 0.6461 | 0.7667 | 0.7948 | 0.6786 | 0.7166 | 0.8627 | 0.8257 | 0.7206 | 0.6552 | 0.8195 | 0.8174 | 0.6897 | 0.6752 | 0.8281 | 0.7897 | 0.6886 |
WLB2 | 0.5329 | 0.9558 | 0.5828 | 0.5415 | 0.9067 | 0.9735 | 0.9827 | 0.9657 | 0.4784 | 0.8828 | 0.5604 | 0.4747 | 0.8894 | 1.1858 | 0.9545 | 0.9411 | 0.6629 | 1.0425 | 0.7385 | 0.6620 |
p-value | 0.4654 | 0.3282 | 0.4452 | 0.4618 | 0.3410 | 0.3238 | 0.3215 | 0.3258 | 0.4891 | 0.3474 | 0.4541 | 0.4908 | 0.3456 | 0.2762 | 0.3286 | 0.3320 | 0.4156 | 0.3072 | 0.3901 | 0.4159 |
SB | 4.4285 | 4.9017 | 4.3225 | 4.2761 | 4.2765 | 3.1976 | 4.7457 | 5.1792 | 4.3698 | 5.0220 | 4.5785 | 4.4780 | 4.3835 | 4.9182 | 4.8513 | 5.3413 | 4.2943 | 4.7819 | 4.5469 | 4.6671 |
p-value | 0.2188 | 0.1791 | 0.2287 | 0.2332 | 0.2331 | 0.3621 | 0.1914 | 0.1591 | 0.2242 | 0.1702 | 0.2054 | 0.2143 | 0.2229 | 0.1779 | 0.1830 | 0.1484 | 0.2314 | 0.1885 | 0.2081 | 0.1979 |
APGof | 110.3977 | 124.0330 | 113.6397 | 110.0799 | 62.3723 | 72.6067 | 80.9023 | 71.1128 | 70.8903 | 89.4521 | 74.8315 | 70.1911 | 51.0890 | 41.5221 | 50.8665 | 48.7688 | 98.9555 | 85.7334 | 88.4350 | 97.0167 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0101 | 0.0009 | 0.0001 | 0.0013 | 0.0013 | 0.0000 | 0.0005 | 0.0016 | 0.0930 | 0.3614 | 0.0966 | 0.1358 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
The table provides estimated coefficients and diagnostics for several different GARCH models for soybeans futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.
GARCH models for sugar.
GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(0, 1) | N(0, 1) | N(0, 1) | N(0, 1) | tν | tν | tν | tν | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | stν,κ | stν,κ | stν,κ | stν,κ | GEDν | GEDν | GEDν | GEDν | |
ω | 0.0258 | 0.0132 | 0.0142 | 0.0253 | 0.0176 | 0.0055 | 0.0098 | 0.0171 | 0.0216 | 0.0117 | 0.0125 | 0.0214 | 0.0171 | 0.0053 | 0.0098 | 0.0168 | 0.0214 | 0.0069 | 0.0118 | 0.0208 |
se | 0.0132 | 0.0022 | 0.0057 | 0.0131 | 0.0068 | 0.0013 | 0.0041 | 0.0067 | 0.0104 | 0.0021 | 0.0053 | 0.0103 | 0.0066 | 0.0013 | 0.0041 | 0.0066 | 0.0082 | 0.0014 | 0.0045 | 0.0081 |
p-value | 0.0496 | 0.0000 | 0.0128 | 0.0537 | 0.0091 | 0.0000 | 0.0159 | 0.0105 | 0.0375 | 0.0000 | 0.0183 | 0.0382 | 0.0095 | 0.0000 | 0.0171 | 0.0106 | 0.0095 | 0.0000 | 0.0085 | 0.0100 |
α | 0.0489 | 0.0141 | 0.0532 | 0.0518 | 0.0387 | 0.0120 | 0.0423 | 0.0404 | 0.0480 | 0.0134 | 0.0525 | 0.0504 | 0.0383 | 0.0107 | 0.0423 | 0.0392 | 0.0433 | 0.0129 | 0.0472 | 0.0455 |
se | 0.0099 | 0.0129 | 0.0099 | 0.0127 | 0.0029 | 0.0089 | 0.0033 | 0.0064 | 0.0087 | 0.0123 | 0.0113 | 0.0115 | 0.0029 | 0.0089 | 0.0034 | 0.0064 | 0.0048 | 0.0102 | 0.0054 | 0.0080 |
p-value | 0.0000 | 0.2741 | 0.0000 | 0.0000 | 0.0000 | 0.1762 | 0.0000 | 0.0000 | 0.0000 | 0.2728 | 0.0000 | 0.0000 | 0.0000 | 0.2312 | 0.0000 | 0.0000 | 0.0000 | 0.2072 | 0.0000 | 0.0000 |
β | 0.9465 | 0.9928 | 0.9525 | 0.9474 | 0.9577 | 0.9954 | 0.9622 | 0.9583 | 0.9484 | 0.9938 | 0.9536 | 0.9490 | 0.9582 | 0.9955 | 0.9621 | 0.9586 | 0.9524 | 0.9943 | 0.9577 | 0.9531 |
se | 0.0099 | 0.0001 | 0.0065 | 0.0097 | 0.0014 | 0.0001 | 0.0013 | 0.0013 | 0.0081 | 0.0001 | 0.0067 | 0.0078 | 0.0013 | 0.0001 | 0.0014 | 0.0012 | 0.0038 | 0.0001 | 0.0030 | 0.0032 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
γ | 0.1055 | 0.0861 | 0.1044 | 0.0862 | 0.0949 | |||||||||||||||
se | 0.0048 | 0.0113 | 0.0045 | 0.0108 | 0.0036 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
θ | −0.1248 | −0.1111 | −0.1114 | −0.0923 | −0.1160 | |||||||||||||||
se | 0.1047 | 0.0920 | 0.1021 | 0.0909 | 0.1042 | |||||||||||||||
p-value | 0.2334 | 0.2272 | 0.2753 | 0.3100 | 0.2658 | |||||||||||||||
δ | 1.2375 | 1.3526 | 1.2919 | 1.3805 | 1.3084 | |||||||||||||||
se | 0.4232 | 0.1002 | 0.4757 | 0.1083 | 0.2198 | |||||||||||||||
p-value | 0.0035 | 0.0000 | 0.0066 | 0.0000 | 0.0000 | |||||||||||||||
ϕ | −0.0076 | −0.0046 | −0.0063 | −0.0026 | −0.0060 | |||||||||||||||
se | 0.0162 | 0.0106 | 0.0153 | 0.0107 | 0.0125 | |||||||||||||||
p-value | 0.6368 | 0.6636 | 0.6809 | 0.8041 | 0.6307 | |||||||||||||||
ν | 6.9706 | 7.0754 | 7.1212 | 6.9950 | 6.9716 | 7.0489 | 7.1048 | 6.9861 | 1.4081 | 1.4162 | 1.4171 | 1.4091 | ||||||||
se | 0.9723 | 0.9738 | 0.9937 | 0.9783 | 0.9651 | 0.9588 | 0.9833 | 0.9693 | 0.0720 | 0.0705 | 0.0724 | 0.0728 | ||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||
κ | 1.0833 | 1.0745 | 1.0776 | 1.0825 | 1.0626 | 1.0579 | 1.0584 | 1.0619 | ||||||||||||
se | 0.0403 | 0.0411 | 0.0389 | 0.0412 | 0.0303 | 0.0307 | 0.0308 | 0.0307 | ||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||||||
persis tence | 0.9954 | 0.9928 | 0.9961 | 0.9953 | 0.9964 | 0.9954 | 0.9961 | 0.9964 | 0.9964 | 0.9938 | 0.9971 | 0.9962 | 0.9965 | 0.9955 | 0.9962 | 0.9965 | 0.9957 | 0.9943 | 0.9953 | 0.9957 |
AIC | 4.1779 | 4.1752 | 4.1752 | 4.1784 | 4.1285 | 4.1282 | 4.1277 | 4.1292 | 4.1743 | 4.1725 | 4.1721 | 4.1749 | 4.1273 | 4.1273 | 4.1268 | 4.1280 | 4.1388 | 4.1380 | 4.1378 | 4.1394 |
SBC | 4.1849 | 4.1845 | 4.1868 | 4.1877 | 4.1377 | 4.1398 | 4.1416 | 4.1408 | 4.1836 | 4.1841 | 4.1861 | 4.1865 | 4.1389 | 4.1412 | 4.1430 | 4.1420 | 4.1481 | 4.1496 | 4.1517 | 4.1510 |
WLB | 0.0424 | 0.0180 | 0.0176 | 0.0402 | 0.0148 | 0.0014 | 0.0021 | 0.0138 | 0.0353 | 0.0146 | 0.0155 | 0.0337 | 0.0138 | 0.0013 | 0.0023 | 0.0133 | 0.0265 | 0.0069 | 0.0076 | 0.0247 |
p-value | 0.8369 | 0.8932 | 0.8945 | 0.8411 | 0.9031 | 0.9699 | 0.9638 | 0.9065 | 0.8510 | 0.9037 | 0.9010 | 0.8543 | 0.9064 | 0.9712 | 0.9617 | 0.9083 | 0.8708 | 0.9339 | 0.9307 | 0.8751 |
WLB2 | 0.7428 | 2.1066 | 1.6424 | 0.5753 | 1.8053 | 3.5609 | 2.6871 | 1.5464 | 0.7681 | 2.1452 | 1.5610 | 0.6156 | 1.8600 | 3.7810 | 2.7966 | 1.7002 | 1.2001 | 2.8002 | 2.1012 | 0.9880 |
p-value | 0.3888 | 0.1467 | 0.2000 | 0.4482 | 0.1791 | 0.0592 | 0.1012 | 0.2137 | 0.3808 | 0.1430 | 0.2115 | 0.4327 | 0.1726 | 0.0518 | 0.0945 | 0.1923 | 0.2733 | 0.0943 | 0.1472 | 0.3202 |
SB | 0.1094 | 0.7206 | 0.5757 | 0.1320 | 0.4617 | 1.2696 | 1.0007 | 0.4738 | 0.0916 | 0.6281 | 0.4565 | 0.1010 | 0.4766 | 1.2791 | 0.9730 | 0.4801 | 0.2440 | 0.9732 | 0.7546 | 0.2653 |
p-value | 0.9907 | 0.8683 | 0.9020 | 0.9877 | 0.9272 | 0.7364 | 0.8011 | 0.9246 | 0.9928 | 0.8900 | 0.9283 | 0.9917 | 0.9240 | 0.7341 | 0.8078 | 0.9233 | 0.9702 | 0.8077 | 0.8603 | 0.9664 |
APGof | 103.3947 | 88.5281 | 89.1011 | 105.9733 | 71.9105 | 66.7851 | 58.7628 | 65.3526 | 67.4536 | 53.9240 | 60.4819 | 63.5698 | 31.4489 | 46.3792 | 31.5125 | 29.4751 | 70.4461 | 66.9125 | 67.6765 | 69.3637 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0037 | 0.0219 | 0.0051 | 0.0031 | 0.0564 | 0.0153 | 0.0077 | 0.7997 | 0.1942 | 0.7974 | 0.8652 | 0.0015 | 0.0036 | 0.0030 | 0.0020 |
The table provides estimated coefficients and diagnostics for several different GARCH models for sugar futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.
GARCH models for wheat.
GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | GARCH | EGARCH | AP-G. | GJR-G. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(0, 1) | N(0, 1) | N(0, 1) | N(0, 1) | tν | tν | tν | tν | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | sN(0, 1)κ | stν,κ | stν,κ | stν,κ | stν,κ | GEDν | GEDν | GEDν | GEDν | |
ω | 0.0350 | 0.0184 | 0.0240 | 0.0356 | 0.0238 | 0.0129 | 0.0193 | 0.0260 | 0.0332 | 0.0181 | 0.0230 | 0.0345 | 0.0229 | 0.0122 | 0.0182 | 0.0250 | 0.0296 | 0.0149 | 0.0218 | 0.0313 |
se | 0.0162 | 0.0019 | 0.0072 | 0.0140 | 0.0115 | 0.0016 | 0.0059 | 0.0110 | 0.0146 | 0.0018 | 0.0069 | 0.0133 | 0.0107 | 0.0016 | 0.0055 | 0.0103 | 0.0129 | 0.0016 | 0.0062 | 0.0118 |
p-value | 0.0304 | 0.0000 | 0.0009 | 0.0111 | 0.0378 | 0.0000 | 0.0011 | 0.0175 | 0.0234 | 0.0000 | 0.0009 | 0.0098 | 0.0319 | 0.0000 | 0.0010 | 0.0153 | 0.0219 | 0.0000 | 0.0004 | 0.0079 |
α | 0.0453 | 0.0338 | 0.0481 | 0.0558 | 0.0460 | 0.0367 | 0.0539 | 0.0594 | 0.0442 | 0.0333 | 0.0492 | 0.0548 | 0.0453 | 0.0354 | 0.0530 | 0.0581 | 0.0452 | 0.0354 | 0.0503 | 0.0571 |
se | 0.0097 | 0.0125 | 0.0097 | 0.0119 | 0.0066 | 0.0107 | 0.0069 | 0.0097 | 0.0085 | 0.0120 | 0.0086 | 0.0109 | 0.0059 | 0.0105 | 0.0069 | 0.0088 | 0.0077 | 0.0115 | 0.0081 | 0.0103 |
p-value | 0.0000 | 0.0070 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0000 | 0.0000 | 0.0000 | 0.0055 | 0.0000 | 0.0000 | 0.0000 | 0.0008 | 0.0000 | 0.0000 | 0.0000 | 0.0020 | 0.0000 | 0.0000 |
β | 0.9481 | 0.9882 | 0.9511 | 0.9512 | 0.9501 | 0.9902 | 0.9486 | 0.9514 | 0.9493 | 0.9883 | 0.9505 | 0.9518 | 0.9509 | 0.9907 | 0.9498 | 0.9523 | 0.9494 | 0.9890 | 0.9503 | 0.9516 |
se | 0.0101 | 0.0000 | 0.0085 | 0.0066 | 0.0060 | 0.0000 | 0.0065 | 0.0048 | 0.0087 | 0.0000 | 0.0082 | 0.0058 | 0.0051 | 0.0000 | 0.0064 | 0.0039 | 0.0075 | 0.0000 | 0.0074 | 0.0051 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
γ | 0.0969 | 0.1064 | 0.0985 | 0.1051 | 0.1005 | |||||||||||||||
se | 0.0032 | 0.0037 | 0.0033 | 0.0034 | 0.0033 | |||||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||||||||
θ | −0.3721 | −0.3994 | −0.3824 | −0.3928 | −0.3925 | |||||||||||||||
se | 0.1612 | 0.1260 | 0.1570 | 0.1279 | 0.1461 | |||||||||||||||
p-value | 0.0209 | 0.0015 | 0.0149 | 0.0021 | 0.0072 | |||||||||||||||
δ | 1.1022 | 0.9438 | 1.0196 | 0.9395 | 1.0262 | |||||||||||||||
se | 0.4524 | 0.2709 | 0.3858 | 0.2899 | 0.3820 | |||||||||||||||
p-value | 0.0148 | 0.0005 | 0.0082 | 0.0012 | 0.0072 | |||||||||||||||
ϕ | −0.0299 | −0.0326 | −0.0290 | −0.0316 | −0.0313 | |||||||||||||||
se | 0.0150 | 0.0132 | 0.0143 | 0.0127 | 0.0138 | |||||||||||||||
p-value | 0.0465 | 0.0133 | 0.0429 | 0.0129 | 0.0237 | |||||||||||||||
ν | 10.0756 | 10.1465 | 10.1947 | 10.1246 | 10.2514 | 10.4111 | 10.4928 | 10.2963 | 1.6041 | 1.6091 | 1.6122 | 1.6098 | ||||||||
se | 2.0462 | 2.0401 | 2.0381 | 2.0157 | 2.0981 | 2.1170 | 2.1215 | 2.0736 | 0.0806 | 0.0818 | 0.0798 | 0.0790 | ||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||
κ | 1.1084 | 1.1150 | 1.1178 | 1.1070 | 1.1127 | 1.1132 | 1.1161 | 1.1118 | ||||||||||||
se | 0.0413 | 0.0420 | 0.0408 | 0.0409 | 0.0359 | 0.0361 | 0.0364 | 0.0357 | ||||||||||||
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||||||||
persis tence | 0.9933 | 0.9882 | 0.9902 | 0.9920 | 0.9961 | 0.9902 | 0.9900 | 0.9945 | 0.9935 | 0.9883 | 0.9899 | 0.9917 | 0.9962 | 0.9907 | 0.9905 | 0.9941 | 0.9946 | 0.9890 | 0.9895 | 0.9930 |
AIC | 4.2904 | 4.2849 | 4.2838 | 4.2876 | 4.2686 | 4.2622 | 4.2614 | 4.2663 | 4.2852 | 4.2790 | 4.2777 | 4.2825 | 4.2642 | 4.2579 | 4.2569 | 4.2620 | 4.2769 | 4.2715 | 4.2707 | 4.2745 |
SBC | 4.2974 | 4.2942 | 4.2954 | 4.2968 | 4.2778 | 4.2738 | 4.2753 | 4.2779 | 4.2944 | 4.2906 | 4.2916 | 4.2941 | 4.2758 | 4.2718 | 4.2731 | 4.2759 | 4.2861 | 4.2831 | 4.2846 | 4.2861 |
WLB | 0.0801 | 0.6149 | 0.5660 | 0.2453 | 0.0418 | 0.5184 | 0.5650 | 0.1891 | 0.0765 | 0.5951 | 0.5933 | 0.2379 | 0.0401 | 0.4919 | 0.5388 | 0.1821 | 0.0611 | 0.5792 | 0.5774 | 0.2228 |
p-value | 0.7771 | 0.4330 | 0.4519 | 0.6204 | 0.8380 | 0.4715 | 0.4522 | 0.6637 | 0.7821 | 0.4405 | 0.4412 | 0.6257 | 0.8412 | 0.4831 | 0.4629 | 0.6696 | 0.8047 | 0.4466 | 0.4473 | 0.6369 |
WLB2 | 0.2802 | 0.2409 | 0.2593 | 0.3126 | 0.2445 | 0.0926 | 0.1298 | 0.2102 | 0.3251 | 0.2071 | 0.2467 | 0.3347 | 0.2756 | 0.1103 | 0.1563 | 0.2419 | 0.2781 | 0.1696 | 0.2024 | 0.2764 |
p-value | 0.5965 | 0.6236 | 0.6106 | 0.5761 | 0.6210 | 0.7609 | 0.7186 | 0.6466 | 0.5685 | 0.6490 | 0.6194 | 0.5629 | 0.5996 | 0.7398 | 0.6926 | 0.6228 | 0.5979 | 0.6804 | 0.6528 | 0.5991 |
SB | 9.7989 | 6.0838 | 6.1214 | 7.9721 | 9.6788 | 5.6860 | 5.3348 | 7.5649 | 9.8660 | 6.0570 | 5.8884 | 8.0423 | 9.7150 | 5.8021 | 5.4557 | 7.6495 | 9.7603 | 5.8332 | 5.6887 | 7.7738 |
p-value | 0.0204 | 0.1076 | 0.1059 | 0.0466 | 0.0215 | 0.1279 | 0.1489 | 0.0559 | 0.0197 | 0.1089 | 0.1172 | 0.0451 | 0.0212 | 0.1216 | 0.1413 | 0.0538 | 0.0207 | 0.1200 | 0.1278 | 0.0509 |
APGof | 59.5803 | 64.2544 | 58.7854 | 56.2734 | 55.2560 | 61.3609 | 59.4213 | 58.1494 | 35.7647 | 38.4992 | 44.8903 | 42.1876 | 25.8442 | 44.2862 | 45.1765 | 31.2814 | 64.9857 | 63.8092 | 61.9968 | 67.0207 |
p-value | 0.0185 | 0.0066 | 0.0218 | 0.0361 | 0.0439 | 0.0126 | 0.0191 | 0.0249 | 0.6182 | 0.4925 | 0.2386 | 0.3348 | 0.9477 | 0.2584 | 0.2296 | 0.8058 | 0.0056 | 0.0073 | 0.0110 | 0.0035 |
The table provides estimated coefficients and diagnostics for several different GARCH models for wheat futures returns. We apply four different GARCH models: GARCH refers to Eq. (10), EGARCH to Eq. (11), AP-GARCH (AP-G.) to Eq. (12) and GJR-GARCH (GJR-G.) to Eq. (13). For all models we have considered five different distributional assumptions for εt: the standard normal (N(0, 1)) and Student’s t with shape ν (tν), the skew standard normal with skewness κ (sN(0, 1)κ), the skew t with shape ν and skewness κ (tν,κ), and the generalized error distribution with shape ν (GEDν). The upper part of the table reports parameter estimates together with robust standard errors (se) following White (1982) and p-values (see Eq. (10) to (13) for the definition of the parameters). The bottom part of the table shows the Akaike information criterion (AIC), the Schwarz Bayesian information criterion (SBC), the weighted Ljung-Box test statistic (WLB) proposed by Fisher and Gallagher (2012) for the null of no serial correlation of order 1 in the standardized residuals and the corresponding p-value, the weighted Ljung-Box test statistic (WLB2) and p-value using squared standardized residuals, the sign bias test statistic (SB) and p-value for the null of no leverage effects in the standardized residuals (i.e. positive and/or negative effects to shocks) according to Engle and Ng (1993), and the adjusted version of Pearson’s χ2 goodness-of-fit test statistic (APGof) provided by Palm (1996) and p-value for the null that the empirical distribution of the standardized residuals matches the chosen theoretical density. The lowest values of AIC and SBC are underlined.
References
Adams, Z., T. Glück. 2015. “Financialization in Commodity Markets: A Passing Trend or the New Normal?” Journal of Banking & Finance 60: 93–111.10.1016/j.jbankfin.2015.07.008Suche in Google Scholar
Appel, G. 2009. Technical Analysis: Power Tools for Active Investors. Upper Saddle River, New Jersey: FT Press.Suche in Google Scholar
Arias, M. A., A. M. Ibáñez, and A. Zambrano. 2019. “Agricultural Production Amid Conflict: Separating the Effects of Conflict into Shocks and Uncertainty.” World Development 119: 165–184.10.1016/j.worlddev.2017.11.011Suche in Google Scholar
Bahloul, W., M. Balcilar, J. Cunado, and R. Gupta. 2018. “The Role of Economic and Financial Uncertainties in Predicting Commodity Futures Returns and Volatility: Evidence from a Nonparametric Causality-in-Quantiles Test.” Journal of Multinational Financial Management 45: 52–71.10.1016/j.mulfin.2018.04.002Suche in Google Scholar
Baker, S. R., N. Bloom, and S. J. Davis. 2016. “Measuring Economic Policy Uncertainty.” Quarterly Journal of Economics 131: 1593–1636.10.3386/w21633Suche in Google Scholar
Baur, D. G., and B. M. Lucey. 2010. “Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold.” Financial Review 45: 217–229.10.1111/j.1540-6288.2010.00244.xSuche in Google Scholar
Beckmann, J., and R. Czudaj. 2014. “Non-Linearities in the Relationship of Agricultural Futures Prices.” European Review of Agricultural Economics 41: 1–23.10.1093/erae/jbt015Suche in Google Scholar
Beckmann, J., and R. Czudaj. 2017. “The Impact of Uncertainty on Professional Exchange Rate Forecasts.” Journal of International Money and Finance 73: 296–316.10.1016/j.jimonfin.2017.02.009Suche in Google Scholar
Bessembinder, H., J. F. Coughenour, P. J. Seguin, and M. M. Smoller. 1995. “Mean Reversion in Equilibrium Asset Prices: Evidence from the Futures Term Structure.” Journal of Finance 50: 361–375.10.1111/j.1540-6261.1995.tb05178.xSuche in Google Scholar
Bloom, N. 2009. “The Impact of Uncertainty Shocks.” Econometrica 77: 623–685.10.3386/w13385Suche in Google Scholar
Bloomberg. 2017. Trump’s Uncertainty Principle. [Bloomberg Business Week 26/01/2017; Online; accessed 06/09/2017].Suche in Google Scholar
Brunetti, C., B. Büyükşahin, and J. H. Harris. 2016. “Speculators, Prices, and Market Volatility.” Journal of Financial and Quantitative Analysis 51: 1545–1574.10.1017/S0022109016000569Suche in Google Scholar
Chang, M. C., C. Tsai, R. C. Wu, and N. Zhu. 2018. “Market Uncertainty and Market Orders in Futures Markets.” Journal of Futures Markets 38: 865–880.10.1002/fut.21918Suche in Google Scholar
Cogley, T., and T. J. Sargent. 2005. “Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US.” Review of Economic Dynamics 8: 262–302.10.1016/j.red.2004.10.009Suche in Google Scholar
Czudaj, R. L. 2019a. “Crude Oil Futures Trading and Uncertainty.” Energy Economics 80: 793–811.10.1016/j.eneco.2019.01.002Suche in Google Scholar
Czudaj, R. L. 2019b. “Dynamics between Trading Volume, Volatility and Open Interest in Agricultural Futures Markets: A Bayesian Time-Varying Coefficient Approach.” Econometrics and Statistics forthcoming. https://doi.org/10.1016/j.ecosta.2019.05.002.10.1016/j.ecosta.2019.05.002Suche in Google Scholar
Darby, J., and G. Roy. 2019. “Political Uncertainty and Stock Market Volatility: New Evidence from the 2014 Scottish Independence Referendum.” Scottish Journal of Political Economy 66: 314–330.10.1111/sjpe.12186Suche in Google Scholar
Del Negro, M., and G. E. Primiceri. 2015. “Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum.” Review of Economic Studies 82: 1342–1345.10.1093/restud/rdv024Suche in Google Scholar
Ding, Z., C. Granger, and R. Engle. 1993. “A Long Memory Property of Stock Market Returns and a New Model.” Journal of Empirical Finance 1: 83–106.10.1016/0927-5398(93)90006-DSuche in Google Scholar
Dovern, J., U. Fritsche, and J. Slacalek. 2012. “Disagreement Among Forecasters in G7 Countries.” Review of Economics and Statistics 94: 1081–1096.10.1162/REST_a_00207Suche in Google Scholar
Engle, R., and V. K. Ng. 1993. “Measuring and Testing the Impact of News on Volatility.” Journal of Finance 48: 1749–1778.10.3386/w3681Suche in Google Scholar
Fama, E. F., and K. R. French. 1987. “Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage.” Journal of Business 60: 55–73.10.1142/9789814566926_0004Suche in Google Scholar
Fan, J., and Q. Yao. 2017. The Elements of Financial Econometrics. Cambridge: Cambridge University Press.10.1017/9781108120616Suche in Google Scholar
Fisher, T. J., and C. M. Gallagher. 2012. “New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing.” Journal of the American Statistical Association 107: 777–787.10.1080/01621459.2012.688465Suche in Google Scholar
Gerritsen, D. F. 2016. “Are Chartists Artists? The Determinants and Profitability of Recommendations Based on Technical Analysis.” International Review of Financial Analysis 47: 179–196.10.1016/j.irfa.2016.06.008Suche in Google Scholar
Gibson, R., and E. S. Schwartz. 1990. “Stochastic Convenience Yield and the Pricing of Oil Contingent Claims.” Journal of Finance 45: 959–976.10.1111/j.1540-6261.1990.tb05114.xSuche in Google Scholar
Gilbert, C. L. 2010. “How to Understand High Food Prices.” Journal of Agricultural Economics 61: 398–425.10.1111/j.1477-9552.2010.00248.xSuche in Google Scholar
Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks.” Journal of Finance 48: 1779–1801.10.1111/j.1540-6261.1993.tb05128.xSuche in Google Scholar
Gutierrez, L. 2013. “Speculative Bubbles in Agricultural Commodity Markets.” European Review of Agricultural Economics 40: 217–238.10.1093/erae/jbs017Suche in Google Scholar
Han, Y., T. Hu, and J. Yang. 2016. “Are There Exploitable Trends in Commodity Futures Prices?” Journal of Banking & Finance 70: 214–234.10.1016/j.jbankfin.2016.04.013Suche in Google Scholar
Han, Y., K. Yang, and G. Zhou. 2013. “A New Anomaly: The Cross-Sectional Profitability of Technical Analysis.” Journal of Financial and Quantitative Analysis 48: 1433–1461.10.1017/S0022109013000586Suche in Google Scholar
Ho, T. S. Y. 1984. “Intertemporal Commodity Futures Hedging and the Production Decision.” Journal of Finance 39: 351–376.10.1111/j.1540-6261.1984.tb02314.xSuche in Google Scholar
Irwin, S. H., D. R. Sanders, and R. P. Merrin. 2009. “Devil or Angel? The Role of Speculation in the Recent Commodity Price Boom (and Bust).” Journal of Agricultural and Applied Economics 41: 393–402.10.1017/S1074070800002856Suche in Google Scholar
Joëts, M., V. Mignon, and T. Razafindrabe. 2017. “Does the Volatility of Commodity Prices Reflect Macroeconomic Uncertainty?” Energy Economics 68: 313–326.10.1016/j.eneco.2017.09.017Suche in Google Scholar
Jurado, K., S. C. Ludvigson, and S. Ng. 2015. “Measuring Uncertainty.” American Economic Review 105: 1177–1216.10.3386/w19456Suche in Google Scholar
Karnizova, L., and J. Li. 2014. “Economic Policy Uncertainty, Financial Markets and Probability of US Recessions.” Economics Letters 125: 261–265.10.1016/j.econlet.2014.09.018Suche in Google Scholar
Kim, A. 2015. “Does Futures Speculation Destabilize Commodity Markets?” Journal of Futures Markets 35: 696–714.10.1002/fut.21716Suche in Google Scholar
Liu, L., and T. Zhang. 2015. “Economic Policy Uncertainty and Stock Market Volatility.” Finance Research Letters 15: 99–105.10.1016/j.frl.2015.08.009Suche in Google Scholar
Liu, Y., L. Han, and L. Yin. 2018. “Does News Uncertainty Matter for Commodity Futures Markets? Heterogeneity in Energy and Non-Energy Sectors.” Journal of Futures Markets 38: 1246–1261.10.1002/fut.21916Suche in Google Scholar
Ma, C. K., J. M. Mercer, and M. A. Walker. 1992. “Rolling Over Futures Contracts: A Note.” Journal of Futures Markets 12: 203–217.10.1002/fut.3990120208Suche in Google Scholar
Masters, M. W. 2008. “Written Testimony before the Committee on Homeland Security and Governmental Affairs.” United States Senate. May 20.http://hsgac.senate.gov/public/_files/052008Masters.pdf (accessed August 22, 2017).Suche in Google Scholar
Mougoué, M., and R. Aggarwal. 2011. “Trading Volume and Exchange Rate Volatility: Evidence for the Sequential Arrival of Information Hypothesis.” Journal of Banking & Finance 35: 2690–2703.10.1016/j.jbankfin.2011.02.028Suche in Google Scholar
Munier, B. R. 2012. Global Uncertainty and the Volatility of Agricultural Commodities Prices. Amsterdam: IOS Press.Suche in Google Scholar
Murphy, J. J. 1999. Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Upper Saddle River, New Jersey: Prentice Hall Press.Suche in Google Scholar
Nelson, D. B. 1991. “Conditional Heteroskedasticity in Asset Returns: A New Approach.” Econometrica 59: 347–370.10.2307/2938260Suche in Google Scholar
Ordu, B. M., A. Oran, and U. Soytas. 2018. “Is Food Financialized? Yes, but only when Liquidity is Abundant.” Journal of Banking & Finance 95: 82–96.10.1016/j.jbankfin.2017.06.001Suche in Google Scholar
Palm, F. 1996. “GARCH Models of Volatility.” Handbook of Statistics 14: 209–240.10.1016/S0169-7161(96)14009-8Suche in Google Scholar
Piesse, J., and C. Thirtle. 2009. “Three Bubbles and a Panic: An Explanatory Review of Recent Food Commodity Price Events.” Food Policy 34: 119–129.10.1016/j.foodpol.2009.01.001Suche in Google Scholar
Primiceri, G. E. 2005. “Time Varying Structural Vector Autoregressions and Monetary Policy.” Review of Economic Studies 72: 821–852.10.1111/j.1467-937X.2005.00353.xSuche in Google Scholar
Sanders, D. R., and S. H. Irwin. 2010. “A Speculative Bubble in Commodity Futures Prices? Cross-Sectional Evidence.” Agricultural Economics 41: 25–32.10.1111/j.1574-0862.2009.00422.xSuche in Google Scholar
Smith, D. M., N. Wang, Y. Wang, and E. J. Zychowicz. 2016. “Sentiment and the Effectiveness of Technical Analysis: Evidence from the Hedge Fund Industry.” Journal of Financial and Quantitative Analysis 51: 1991–2013.10.1017/S0022109016000843Suche in Google Scholar
Timmer, C. P. 2009. “Did Speculation affect World Rice Prices?” ESA Working Paper No. 09-07.Suche in Google Scholar
Watugala, S. W. 2015. “Economic Uncertainty and Commodity Futures Volatility.” Office of Financial Research, US Department of the Treasury Working Papers 15-14.10.2139/ssrn.2648468Suche in Google Scholar
White, H. 1982. “Maximum Likelihood Estimation of Misspecified Models.” Econometrica 50: 1–25.10.2307/1912526Suche in Google Scholar
Yin, L., Q. Yang, and Z. Su. 2017. “Predictability of Structural Co-Movement in Commodity Prices: The Role of Technical Indicators.” Quantitative Finance 17: 795–812.10.1080/14697688.2016.1225977Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/snde-2018-0054).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Research Articles
- Combining sign and parametric restrictions in SVARs by utilising Givens rotations
- A wavelet-based variance ratio unit root test for a system of equations
- Conventional and unconventional monetary policy reaction to uncertainty in advanced economies: evidence from quantile regressions
- Income Inequality and Economic Growth: Heterogeneity and Nonlinearity
- Nonlinear interest rate-setting behaviour of German commercial banks
- The role of uncertainty on agricultural futures markets momentum trading and volatility
Artikel in diesem Heft
- Research Articles
- Combining sign and parametric restrictions in SVARs by utilising Givens rotations
- A wavelet-based variance ratio unit root test for a system of equations
- Conventional and unconventional monetary policy reaction to uncertainty in advanced economies: evidence from quantile regressions
- Income Inequality and Economic Growth: Heterogeneity and Nonlinearity
- Nonlinear interest rate-setting behaviour of German commercial banks
- The role of uncertainty on agricultural futures markets momentum trading and volatility