Abstract
Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal, and electrical properties. In this research, a multiscale finite element analysis is proposed to study the interaction between nanotubes and matrix at the nanoscale near a crack tip. The influence of the chirality and length of single-walled CNT (SWCNTs) on the stress intensity factor of epoxy/SWCNT were studied. It was found that the chirality, length, and radius of CNT have significant effects on the stress intensity factor of nanocomposites. Multiscale simulations from macro to nano or the reverse improved specification of toughness mechanisms.
1 Introduction
Over the past two decades, carbon nanotubes (CNTs) have attracted much attention among researchers of different fields due to their novelty and exceptionally high stiffness, strength, and resilience [1]. As a matrix material, epoxy has been widely applied in composites structures, especially in the automobile and aerospace industries. In recent years, many researchers have found through large numbers of experiments that adding nanoparticles to epoxy has some positive effects on the fracture toughness and the energy release rate [2–6].
The supreme mechanical properties of CNTs rendered them as a potential candidate for reinforcing agents for a new generation of polymeric composites [7–10]. There is some evidence in the literature [11–13] mentioning the significant enhancement in mechanical properties of polymeric resins by utilizing small amounts of CNTs. Consequently, prediction of mechanical properties of CNT-based composites plays an important role in understanding their behavior and can pave the road toward their industrial application. CNT is a reinforcing agent at nanoscale, whereas mechanical properties of CNT-reinforced polymer composites are characterized at microscale.
Whereas a significant number of the existing studies have been focused on the stiffness and strength of CNT-reinforced composites, relatively few research studies have dealt with the fracture behavior of these nanocomposites in the presence of a preexisting crack. Recent investigations have shown that CNTs when aligned perpendicular to cracks are able to slow the crack growth by bridging up the crack faces [14–16]. The effect of CNT dimensions on the fracture properties of nanocomposites is another important issue that requires careful investigation. A few researchers have investigated the effect of CNT dimensions on different properties of nanocomposites [17, 18].
In this research, a multiscale analysis and finite element (FE) method are proposed to study the interaction of nanotubes and matrix at the nanoscale near a crack tip. The effects of the chirality, length, and radius of single-walled CNTs (SWCNTs) in a polymer matrix in the presence of van der Waals (vdW) interaction as interphase region on the fracture behavior were studied.
2 Modeling
Multiscale simulation, from the nanoscale to the macroscale or in the reverse order, has the capability to help better understand the toughness mechanism. Multiscale modeling is accomplished with either of two opposite approaches. One way is starting from the representative volume element (RVE) or unit cell and moving up to higher scales [19, 20], i.e., the bottom-up or upscaling or micromechanics analysis method. The other one starts from the structural scale, moving down to lower scales [21], i.e., the top-down or downscaling or global-local method. The advantage here is that the model can accurately reflect the load and boundary conditions according to the experimental setup. In this research, top-down method is utilized for stress intensity factor analysis of epoxy/SWCNTs.
The stress intensity factor of the epoxy/SWCNT nanocomposites was measured using the compact tension (CT) model according to ASTM D5045. First, the half CT model is analyzed on the basis of an effective modulus of elasticity. Reaction forces that are calculated on the cut boundary of the appropriately loaded global model are specified as boundary conditions for the local model. Due to the large difference in dimensional scales from the CT sample to the nanoscale RVE model, several local models with smaller sizes are built. Through data transfer among several local models, the size of the last submodel approaches the nanoscale.
The three-dimensional (3D) model is developed using the ANSYS commercial FE code. Isotropic properties are considered for the first step of modeling (half CT sample) [22]. Load and boundary conditions are applied to the CT model as shown in Figure 1. Reaction forces calculated from crack tip elements in the first step are implemented to the second step. Although a two- or three-level model can yield sufficiently proper results, by increasing the steps the accuracy of analysis will be improved. Then, a six-level FE model is simulated. In the smallest local model, RVE models are considered. The opening mode for bridging condition (SWCNT is orthogonal to crack and crack is in middle of RVE) in epoxy/SWCNT 0.1 wt% is considered. The crack propagation in a toughened material is slowed by the crack bridging mechanism. In this mechanism, CNT bridges on the path of the crack and resists the growth of crack.

Fracture simulation of epoxy/SWCNT by global-local method.
For the modeling of the CNT bonds, the 3D elastic BEAM4 element is used. The specific element is a uniaxial element with tension, compression, torsion, and bending capabilities. It has six degrees of freedom at each node: translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z axes. The properties of these elements are obtained by linking the potential energy of bonds and the strain energy of mechanical elements. A circular beam of length l, diameter d, Young’s modulus E, and shear modulus G representing the covalent bond between carbon atoms is considered [1]. For matrix modeling, SOLID45 element was utilized [16]. The Young’s modulus of epoxy is given as 2.599 MPa [23]. The vdW interactions between carbon atoms of CNT and the nodes of the inner surface of the surrounding resin are modeled by using 3D nonlinear spring (COMBIN39) based on Lennard-Jones potential [16, 24, 25].
3 Results and discussion
3.1 The effect of chirality on stress intensity factor
The 3D FE model is proposed to study the effect of chirality of nanotubes on the stress intensity factor of RVE (Figure 2). CNTs possessing similar radius with (10, 10) CNT but with different chirality are represented in Table 1. These nanotubes have the same length that is equal to 100 Å. Stress intensity factors of RVEs containing SWCNT with different chirality subjected to similar loading are given in Table 1.
Stress intensity factor of RVEs having CNTs possessing similar radius and length.
KI (MPa | Length (Å) | Radius (Å) | Chirality |
---|---|---|---|
0.420 | 99.68 | 6.785 | (10,10) |
0.433 | 100.293 | 6.796 | (11,9) |
0.391 | 100.245 | 6.830 | (12,8) |
0.395 | 100.279 | 6.886 | (13,7) |
0.387 | 100.211 | 6.682 | (14,5) |
0.428 | 100.293 | 6.796 | (15,4) |
0.394 | 100.288 | 6.694 | (16,2) |
0.425 | 100.181 | 6.659 | (17,0) |

(A) FE meshes of RVE (iso view), (B) displacement, and (C) stress contours of RVE.
Figure 3 shows that RVEs with chiral nanotubes (14, 5) and (11, 9) have minimum and maximum stress intensity factors, respectively. These results originated from the fact that nanotube (14, 5) has the highest Young’s modulus compared to others. In addition, a comparison of armchair (10, 10) and zigzag (17, 0) nanotubes shows that armchair CNT has lower stress intensity factor.

Stress intensity factor of RVEs having CNTs possessing similar radius and length.
3.2 The effect of CNT length on stress intensity factor
The effect of length on the stress intensity factor of RVE is investigated by modeling (10, 10), (17, 0) and (14, 5) nanotubes with different lengths (25, 50, 75, 100 Å) as given in Table 2. The stress intensity factors are represented in Figure 4 showing that with increasing the length, the stress intensity factor decreases. Furthermore, for different lengths of nanotube, the chiral nanotube (14, 5) has the lowest stress intensity factor.

Stress intensity factor of RVEs with (10, 10), (17, 0), (14, 5) nanotubes for length of (25, 50, 75, 100 Å).
Stress intensity factor of RVEs with (10, 10), (17, 0), (14, 5) nanotubes for length of (25, 50, 75, 100 Å) KI (MPa
(14, 5) | (17, 0) | (10, 10) | Chirality |
---|---|---|---|
Length (Å) | |||
0.5010 | 0.5310 | 0.5140 | 25 |
0.4820 | 0.5140 | 0.4990 | 50 |
0.4420 | 0.4760 | 0.4710 | 75 |
0.3870 | 0.4270 | 0.4200 | 100 |
3.3 The influence of chirality and radius of CNTs on stress intensity factor for RVE
For calculating the stress intensity factor, RVEs with armchair (5, 5), (10, 10), (15, 15), (20, 20) and zigzag nanotubes (5, 0), (10, 0), (15, 0), (20, 0) are considered. Table 3 represents the properties and stress intensity factor of RVE corresponding to these nanotubes. As can be seen in Table 3, increasing chirality reduces the stress intensity factor. In both kinds of nanotubes, by increasing chirality the stress intensity factor decreases. Decrease of the stress intensity factor is due to improvement of the fracture behavior of nanocomposites.
Stress intensity factor of RVEs with armchair and zigzag nanotubes.
Nanotube | Chirality | Radius (Å) | Length (Å) | KI (MPa |
---|---|---|---|---|
Armchair | (5, 5) | 3.392 | 99.68 | 0.488 |
(10, 10) | 6.785 | 99.68 | 0.420 | |
(15, 15) | 10.177 | 99.68 | 0.381 | |
(20, 20) | 13.57 | 99.68 | 0.342 | |
Zigzag | (5, 0) | 1.959 | 100.181 | 0.570 |
(10, 0) | 3.917 | 100.181 | 0.482 | |
(15, 0) | 5.876 | 100.181 | 0.457 | |
(20, 0) | 7.834 | 100.181 | 0.384 |
4 Conclusion
The global-local multiscale method is proposed for analysis of the stress intensity factor of epoxy/SWCNT. Results show that CNTs have evident influences on the crack resistance of nanocomposites. Also, chirality has a significant effect on the stress intensity factor of RVE. Results show that in a constant load, chiral nanotubes (14, 5) and (11, 9) have minimum and maximum stress intensity factors, respectively. Moreover, by increasing the length of RVE in a constant chirality, the stress intensity factor decreases, and consequently, the crack resistance improves. In addition, in a certain length, when radiuses of armchair and zigzag nanotubes increase, the stress intensity factor decreases. Multiscale simulations from macro to nano or the reverse improved the specification of toughness mechanisms.
References
[1] Fereidoon A, Rajabpour M, Hemmatian H. IPCBEE 2011, 25, 11–15.Search in Google Scholar
[2] Zhang H, Zhang Z, Friedrich K, Eger C. Acta Mater. 2006, 54, 1833–1842.Search in Google Scholar
[3] Fu S, Feng X, Lauke B, Mai Y. Compos. Part B: Eng. 2008, 39, 933–961.Search in Google Scholar
[4] Fereidoon A, Rajabpour M, Hemmatian H. Mechanics of Nano, Micro and Macro Composite Structures, Politecnico di Torino, Italy, June 18–20, 2012, Paper No. 461.Search in Google Scholar
[5] Rosso P, Ye L, Friedrich K, Sprenger S. J. Appl. Polym. Sci. 2006, 100, 1849–1855.Search in Google Scholar
[6] Rajabpour M, Hemmatian H, Fereidoon A. In 15th Iranian Physical Chemistry Conference, University of Tehran, Tehran, September 3–6, 2012, 2633–2635.Search in Google Scholar
[7] Dai H. Surf. Sci. 2002, 500, 218–241.Search in Google Scholar
[8] Salvetat-Delmotte JP, Rubio, A. Carbon 2002, 40, 1729–1734.10.1016/S0008-6223(02)00012-XSearch in Google Scholar
[9] Lau KT, Gu C, Hui D. Compos. Part B: Eng. 2006, 37, 425–436.Search in Google Scholar
[10] Shokrieh MM, Rafiee R. J. Mech. Res. Commun. 2010, 37, 235–240.Search in Google Scholar
[11] Qian D, Dickey EC, Andrews R, Rantell T. Appl. Phys. Lett. 2000, 76, 2868–2870.Search in Google Scholar
[12] Fereidoon A, Hamed Mashhadzadeh A, Rostamiyan Y. Sci. Eng. Compos. Mater. 20, 265–276.10.1515/secm-2012-0178Search in Google Scholar
[13] Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV. Adv. Funct. Mater. 2004, 14, 643–648.Search in Google Scholar
[14] Lau KT, Hui D. Carbon 2002, 40, 1605–1606.10.1016/S0008-6223(02)00157-4Search in Google Scholar
[15] Qian D, Dickey EC, Andrews R, Rantell T. Appl. Phys. Lett. 2000, 76, 2868–2890.Search in Google Scholar
[16] Hemmatian H, Fereidoon A, Rajabpour M. J. Ultrafine Grained Nanostruct. Mater. 2012, 45, 13–18.Search in Google Scholar
[17] Wu D, Wu L, Zhou W, Sun Y, Zhang M. J. Polym. Sci. Part B: Polym. Phys. 2010, 48, 479–489.Search in Google Scholar
[18] Hernández-Pérez A, Avilés F, May-Pat A, Valadez-González A, Herrera-Franco PJ, Bartolo-Pérez P. Compos. Sci. Technol. 2008, 68, 1422–1431.Search in Google Scholar
[19] Tserpes KI, Papanikos P, Labeas G, Pantelakis SpG. Theor. Appl. Fract. Mech. 2008, 49, 51–60.Search in Google Scholar
[20] Gibson RF. Principles of Composite Material Mechanics, 2nd ed. CRC Press: Boca Raton, FL, 2007.Search in Google Scholar
[21] Talreja R. J. Mater. Sci. 2006, 41, 6800–6812.Search in Google Scholar
[22] Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Compos. Sci. Technol. 2005, 65, 2300–2313.Search in Google Scholar
[23] Fereidoon A, Rajabpour M, Hemmatian H. Composites: Part B 2013, 54, 400–408.10.1016/j.compositesb.2013.05.020Search in Google Scholar
[24] Battezzati L, Pisani C, Ricca F. J. Chem. Soc. Faraday. Trans. 1975, 71, 1629–1639.Search in Google Scholar
[25] Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS. Compos. Sci. Technol. 2003, 63, 1655–1661.Search in Google Scholar
©2014 by Walter de Gruyter Berlin Boston
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Articles in the same Issue
- Frontmatter
- Original articles
- Microstructures and physical properties of laser amorphous reinforced composite coatings
- The thermal resistance, flame retardance, and smoke control mechanism of nano MH/GF/NBR composite material
- The effect of sodium hydroxide treatment and fiber length on the tensile property of coir fiber-reinforced epoxy composites
- Evaluation of morphological characteristics and mechanical performance of Rockforce mineral fiber- and glass fiber-reinforced polyamide-6 composites
- Synthesis of superabsorbent resin with the properties of temperature tolerant, salt tolerant, and water absorbency deferred
- A study on tribological characterization of Al-Cu-Mg-B composites subjected to mechanical wear
- Microstructure and wear behavior of TiAl3 matrix self-lubricating composites by addition of fluoride solid lubricants
- Mechanical properties of Ni-nano-Al2O3 composite coatings on AISI 304 stainless steel by pulsed electrodeposition
- Improvement of Khorasan mortar with fly ash for restoration of historical buildings
- Combined effect of waste colemanite and silica fume on properties of cement mortar
- Effect of heat treatment temperature on ground pumice activation in geopolymer composites
- Stress intensity factor analysis of epoxy/SWCNTs based on global-local multiscale method
- Numerical elastoplastic analysis of the shear stress distribution in the adhesive layer for single-lap joints
- Analysis of three-layer composite plates with a new higher-order layerwise formulation
- Ceramic-polytetrafluoroethylene composite material-based miniaturized split-ring patch antenna
- Prediction of the influence of processing parameters on synthesis of Al2024-B4C composite powders in a planetary mill using an artificial neural network
- Different method to make laminates by shear thickening fluid
- Thermal control design for an automated fiber placement machine
- Estimate of cutting forces and surface roughness in end milling of glass fiber reinforced plastic composites using fuzzy logic system
- Electrical discharge machining of Al-TiB2 with a low-frequency vibrating tool
- Vibration behavior of a radially functionally graded annular disc with variable geometry
- Buckling behaviors of the impacted composite plates
Articles in the same Issue
- Frontmatter
- Original articles
- Microstructures and physical properties of laser amorphous reinforced composite coatings
- The thermal resistance, flame retardance, and smoke control mechanism of nano MH/GF/NBR composite material
- The effect of sodium hydroxide treatment and fiber length on the tensile property of coir fiber-reinforced epoxy composites
- Evaluation of morphological characteristics and mechanical performance of Rockforce mineral fiber- and glass fiber-reinforced polyamide-6 composites
- Synthesis of superabsorbent resin with the properties of temperature tolerant, salt tolerant, and water absorbency deferred
- A study on tribological characterization of Al-Cu-Mg-B composites subjected to mechanical wear
- Microstructure and wear behavior of TiAl3 matrix self-lubricating composites by addition of fluoride solid lubricants
- Mechanical properties of Ni-nano-Al2O3 composite coatings on AISI 304 stainless steel by pulsed electrodeposition
- Improvement of Khorasan mortar with fly ash for restoration of historical buildings
- Combined effect of waste colemanite and silica fume on properties of cement mortar
- Effect of heat treatment temperature on ground pumice activation in geopolymer composites
- Stress intensity factor analysis of epoxy/SWCNTs based on global-local multiscale method
- Numerical elastoplastic analysis of the shear stress distribution in the adhesive layer for single-lap joints
- Analysis of three-layer composite plates with a new higher-order layerwise formulation
- Ceramic-polytetrafluoroethylene composite material-based miniaturized split-ring patch antenna
- Prediction of the influence of processing parameters on synthesis of Al2024-B4C composite powders in a planetary mill using an artificial neural network
- Different method to make laminates by shear thickening fluid
- Thermal control design for an automated fiber placement machine
- Estimate of cutting forces and surface roughness in end milling of glass fiber reinforced plastic composites using fuzzy logic system
- Electrical discharge machining of Al-TiB2 with a low-frequency vibrating tool
- Vibration behavior of a radially functionally graded annular disc with variable geometry
- Buckling behaviors of the impacted composite plates