Startseite Polyunphased: an extension to polytomous outcomes of the Unphased package for family-based genetic association analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polyunphased: an extension to polytomous outcomes of the Unphased package for family-based genetic association analysis

  • Alexandre Bureau EMAIL logo und Jordie Croteau
Veröffentlicht/Copyright: 10. Februar 2017

Abstract

Polytomous phenotypes arise when a disease has multiple subtypes or when two dichotomous phenotypes are analyzed simultaneously. Few software programs offer the option to analyze such phenotypes in family studies, and none implements conditional polytomous logistic regression for within-family analysis robust to population stratification. We introduce Polyunphased, an extension to polytomous phenotypes of the Unphased package, a flexible software tool for genetic association analysis in nuclear families. Like Unphased, Polyunphased is written in C++ and runs from the command line or from a Java graphical user interface. Most Unphased options remain available in Polyunphased, including those handling missing parental genotypes while preserving robustness to population stratification, and the modelling options. Simulation studies confirmed the expected statistical behaviour of the maximum likelihood estimates of the association parameters of the conditional logistic regression model when the corresponding association parameters in the parental term of the likelihood function are set to 0, but revealed convergence problems when estimating these parental association parameters separately. The former approach is thus recommended with polytomous phenotypes.

References

Bureau, A., Y. C. Chagnon, J. Croteau, A. Fournier, M. A. Roy, T. Paccalet, C. Merette and M. Maziade (2013): “Follow-up of a major psychosis linkage site in 13q13-q14 reveals significant association in both case-control and family samples,” Biol Psychiatry, 74, 444–450.10.1016/j.biopsych.2013.03.004Suche in Google Scholar PubMed PubMed Central

Bureau, A. and J. Croteau (2016): “When is an endophenotype useful to detect association to a disease? Exploring the relationships between disease status, endophenotype and genetic polymorphisms,” Hum Hered, 81, 11–25.10.1159/000446475Suche in Google Scholar PubMed

Bureau, A., J. Croteau, Y. C. Chagnon, M. A. Roy and M. Maziade (2014): “Extension of the generalized disequilibrium test to polytomous phenotypes and two-locus models,” Front Genet, 5, 258.10.3389/fgene.2014.00258Suche in Google Scholar PubMed PubMed Central

Bureau, A. and T. Duchesne (2015): “On the validity of within-nuclear-family genetic association analysis in samples of extended families,” Stat Appl Genet Mol Biol, 14, 533–549.10.1515/sagmb-2015-0056Suche in Google Scholar PubMed PubMed Central

Cocco, P., M. Zucca, S. Sanna, G. Satta, T. Nonne, E. Angelucci, A. Gabbas, M. Rais, G. Malpeli, M. Campagna, A. Scarpa and M. G. Ennas (2016): “N-acetyltransferase polymorphisms are associated with risk of lymphoma subtypes,” Hematol Oncol, 34, 79–83.10.1002/hon.2193Suche in Google Scholar PubMed

Dudbridge, F. (2008): “Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data,” Hum Hered, 66, 87–98.10.1159/000119108Suche in Google Scholar PubMed PubMed Central

Dudbridge, F., P. A. Holmans and S. G. Wilson (2011): “A flexible model for association analysis in sibships with missing genotype data,” Ann Hum Genet, 75, 428–438.10.1111/j.1469-1809.2010.00636.xSuche in Google Scholar PubMed

Guey, L. T., M. Garcia-Closas, C. Murta-Nascimento, J. Lloreta, L. Palencia, M. Kogevinas, N. Rothman, G. Vellalta, M. L. Calle, G. Marenne, A. Tardón, A. Carrato, R. García-Closas, C. Serra, D. T. Silverman, S. Chanock, F. X. Real, N. Malats and EPICURO/Spanish Bladder Cancer Study investigators (2010): “Genetic susceptibility to distinct bladder cancer subphenotypes,” Eur Urol, 57, 283–292.10.1016/j.eururo.2009.08.001Suche in Google Scholar PubMed PubMed Central

Witte, J. S., W. J. Gauderman and D. C. Thomas (1999): “Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs,” Am J Epidemiol, 149, 693–705.10.1093/oxfordjournals.aje.a009877Suche in Google Scholar PubMed

Published Online: 2017-2-10
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/sagmb-2016-0035/html?lang=de
Button zum nach oben scrollen