Abstract
This paper is devoted to study the fractional Pascal noise functionals on compound configuration spaces with special emphasis on the chaotic decomposition of the Hilbert spaces of quadratic integrable functionals with respect to the correlation measure corresponding to the fractional Pascal measure in infinite dimensions.
References
[1] S. Albeverio, Y. G. Kondratiev and M. Röckner, Analysis and geometry on configuration spaces, J. Funct. Anal. 154 (1998), no. 2, 444–500. 10.1006/jfan.1997.3183Suche in Google Scholar
[2] A. Barhoumi, H. Ouerdiane and A. Riahi, Pascal white noise calculus, Stochastics 81 (2009), no. 3–4, 323–343. 10.1080/17442500902919603Suche in Google Scholar
[3] R. Biard and B. Saussereau, Fractional Poisson process: Long-range dependence and applications in ruin theory, J. Appl. Probab. 51 (2014), no. 3, 727–740. 10.1239/jap/1409932670Suche in Google Scholar
[4] F. Cipriano, H. Ouerdiane and R. Vilela Mendes, Stochastic solution of a KPP-type nonlinear fractional differential equation, Fract. Calc. Appl. Anal. 12 (2009), no. 1, 47–56. Suche in Google Scholar
[5] Y. G. Kondratiev, T. Kuna and M. J. A. Oliveira, On the relations between Poissonian white noise analysis and harmonic analysis on configuration spaces, J. Funct. Anal. 213 (2004), no. 1, 1–30. 10.1016/j.jfa.2004.04.010Suche in Google Scholar
[6] Y. G. Kondratiev, J. L. Silva and L. Streit, Differential geometry on compound Poisson space, Methods Funct. Anal. Topology 4 (1998), no. 1, 32–58. Suche in Google Scholar
[7] N. Laskin, Some applications of the fractional Poisson probability distribution, J. Math. Phys. 50 (2009), no. 11, Article ID 113513. 10.1063/1.3255535Suche in Google Scholar
[8] F. Mainardi, R. Gorenflo and E. Scalas, A fractional generalization of the Poisson processes, Vietnam J. Math. 32 (2004), 53–64. Suche in Google Scholar
[9]
G. M. Mittag-Leffler,
Sur la nouvelle fonction
[10]
H. Pollard,
The completely monotonic character of the Mittag-Leffler function
[11] A. Riahi and H. Rebei, Pascal white noise harmonic analysis on configuration spaces and applications, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21 (2018), no. 4, Article ID 1850024. 10.1142/S0219025718500248Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Partial information maximum principle for optimal control problem with regime switching in the conditional mean-field model
- 𝕃2-solutions of multidimensional generalized BSDEs with weak monotonicity and general growth generators in a general filtration
- The truncated Euler–Maruyama method of one-dimensional stochastic differential equations involving the local time at point zero
- Le Cam–Stratonovich–Boole theory for Itô diffusions
- A chaotic decomposition for the fractional Lebesgue–Pascal noise space
- Lp -solution for BSDEs driven by a Lévy process
- Radonification of a cylindrical Lévy process
Artikel in diesem Heft
- Frontmatter
- Partial information maximum principle for optimal control problem with regime switching in the conditional mean-field model
- 𝕃2-solutions of multidimensional generalized BSDEs with weak monotonicity and general growth generators in a general filtration
- The truncated Euler–Maruyama method of one-dimensional stochastic differential equations involving the local time at point zero
- Le Cam–Stratonovich–Boole theory for Itô diffusions
- A chaotic decomposition for the fractional Lebesgue–Pascal noise space
- Lp -solution for BSDEs driven by a Lévy process
- Radonification of a cylindrical Lévy process