Startseite Le Cam–Stratonovich–Boole theory for Itô diffusions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Le Cam–Stratonovich–Boole theory for Itô diffusions

  • Jaya P. N. Bishwal EMAIL logo
Veröffentlicht/Copyright: 28. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We connect the theory of local asymptotic normality (LAN) of Le Cam to Boole’s approximation of the Stratonovich stochastic integral by estimating the parameter in the nonlinear drift coefficient of an ergodic diffusion process satisfying a homogeneous Itô stochastic differential equation based on discretely spaced dense observations of the process. The asymptotic normality and local asymptotic minimaxity (in the Hajek–Le Cam sense) of approximate maximum likelihood estimators, approximate maximum probability estimators and approximate Bayes estimators based on Itô and Boole’s approximations of the continuous likelihood are obtained under an almost slowly increasing experimental design (ASIED) condition ( T n 6 / 7 0 as T and n , where T is the length of the observation time and n is the number of observations) through the weak convergence of the approximate likelihood ratio random fields. Among other things, the Bernstein–von Mises type theorems concerning the convergence of suitably normalized and centered approximate posterior distributions to normal distribution under the same design condition are proved. Asymptotic normality and asymptotic efficiency of the conditional least squares estimator under the same design condition are obtained as a by-product. The log-likelihood derivatives based on Itô approximations are martingales, but the log-likelihood derivatives based on Boole’s approximations are not martingales but weighted averages of forward and backward martingales. These new approximations have faster rate of convergence than the martingale approximations. The methods would have advantages over Euler and Milstein approximations for Monte Carlo simulations.


Communicated by Nikolai Leonenko


References

[1] Y. Aït-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach, Econometrica 70 (2002), no. 1, 223–262. 10.1111/1468-0262.00274Suche in Google Scholar

[2] Y. Aït-Sahalia and P. A. Mykland, The effects of random and discrete sampling when estimating continuous-time diffusions, Econometrica 71 (2003), no. 2, 483–549. 10.1111/1468-0262.t01-1-00416Suche in Google Scholar

[3] Y. Aït-Sahalia and P. A. Mykland, Estimators of diffusions with randomly spaced discrete observations: A general theory, Ann. Statist. 32 (2004), no. 5, 2186–2222. 10.1214/009053604000000427Suche in Google Scholar

[4] M. Arató, Linear Stochastic Systems with Constant Coefficients: A Statistical Approach, Lect. Notes Control Inf. Sci. 45, Springer, Berlin, 1982. 10.1007/BFb0043631Suche in Google Scholar

[5] M. Arató, A. N. Kolmogorov and Y. G. Sinai, On parameter estimation of a complex stationary Gaussian Markov process, Dok. Acad. Sci. 146 (1962), no. 4, 747–750. Suche in Google Scholar

[6] I. V. Basawa and B. L. S. Prakasa Rao, Statistical Inference for Stochastic Processes, Probab. Math. Statist., Academic Press, New York, 1980. 10.1016/B978-0-12-080250-0.50019-1Suche in Google Scholar

[7] A. Basu, The Bernstein–von Mises theorem for a certain class of diffusion processes, Sankhyā Ser. A 45 (1983), no. 2, 150–160. Suche in Google Scholar

[8] B. M. Bibby and M. Sørensen, Martingale estimation functions for discretely observed diffusion processes, Bernoulli 1 (1995), no. 1–2, 17–39. 10.2307/3318679Suche in Google Scholar

[9] B. M. Bibby and M. Sørensen, On estimation for discretely observed diffusions: A review, Research Report no. 334, Department of Theoretical Statistics, University of Aarhus, 1995. Suche in Google Scholar

[10] J. P. N. Bishwal, Rates of weak convergence of approximate minimum contrast estimators for the discretely observed Ornstein–Uhlenbeck process, Statist. Probab. Lett. 76 (2006), no. 13, 1397–1409. 10.1016/j.spl.2006.02.010Suche in Google Scholar

[11] J. P. N. Bishwal, A new estimating function for discretely sampled diffusions, Random Oper. Stoch. Equ. 15 (2007), no. 1, 65–88. 10.1515/ROSE.2007.005Suche in Google Scholar

[12] J. P. N. Bishwal, Parameter Estimation in Stochastic Differential Equations, Lecture Notes in Math. 1923, Springer, Berlin, 2008. 10.1007/978-3-540-74448-1Suche in Google Scholar

[13] J. P. N. Bishwal, M-estimation for discretely sampled diffusions, Theory Stoch. Process. 15 (2009), no. 2, 62–83. 10.1515/MCMA.2009.013Suche in Google Scholar

[14] J. P. N. Bishwal, Milstein approximation of posterior density for diffusions, Int. J. Pure Appl. Math. 68 (2011), no. 4, 403–414. Suche in Google Scholar

[15] J. P. N. Bishwal, Parameter Estimation in Stochastic Volatility Models, Springer, Cham, 2022. 10.1007/978-3-031-03861-7Suche in Google Scholar

[16] J. P. N. Bishwal and A. Bose, Rates of convergence of approximate maximum likelihood estimators in the Ornstein–Uhlenbeck process, Comput. Math. Appl. 42 (2001), no. 1–2, 23–38. 10.1016/S0898-1221(01)00127-4Suche in Google Scholar

[17] M. Brandt and P. Santa-Clara, Simulated likelihood estimation of diffusion with an application to exchange rate dynamics, J. Financial Econ. 63 (2002), 161–210. 10.1016/S0304-405X(01)00093-9Suche in Google Scholar

[18] E. Clement, Inference statistique des processes de diffusion, Research Report no. 9404, CREST-INSEE, 1993. Suche in Google Scholar

[19] E. Clement, Estimation de processus de diffusion par methodes simulees, Research Report no. 9507, CREST-INSEE, 1995. Suche in Google Scholar

[20] E. Clement, Estimation of diffusion processes by simulated moment methods, Scand. J. Statist. 24 (1997), no. 3, 353–369. 10.1111/1467-9469.00069Suche in Google Scholar

[21] A. J. Dorogovcev, Consistency of a certain estimate of the parameter of a stochastic differential equation, Theory Probab. Math. Statist. 10 (1974), 72–82. Suche in Google Scholar

[22] D. Duffie and P. Glynn, Estimation of continuous-time Markov processes sampled at random timeintervals, Econometrica 72 (2004), no. 6, 1773–1808. 10.1111/j.1468-0262.2004.00553.xSuche in Google Scholar

[23] O. Elerian, A note on the existence of a closed form conditional transition density for the Milstein scheme, Economics Discussion Paper 1998-W18, Nuffield College, Oxford, 1998. Suche in Google Scholar

[24] O. Elerian, S. Chib and N. Shephard, Likelihood inference for discretely observed nonlinear diffusions, Econometrica 69 (2001), no. 4, 959–993. 10.1111/1468-0262.00226Suche in Google Scholar

[25] D. Florens-Zmirou, Approximate discrete-time schemes for statistics of diffusion processes, Statistics 20 (1989), no. 4, 547–557. 10.1080/02331888908802205Suche in Google Scholar

[26] A. R. Gallant and J. R. Long, Estimating stochastic differential equations efficiently by minimum chi-squared, Biometrika 84 (1997), no. 1, 125–141. 10.1093/biomet/84.1.125Suche in Google Scholar

[27] V. Genon-Catalot, Maximum contrast estimation for diffusion processes from discrete observations, Statistics 21 (1990), no. 1, 99–116. 10.1080/02331889008802231Suche in Google Scholar

[28] S. Ghosal, J. K. Ghosh and T. Samanta, On convergence of posterior distributions, Ann. Statist. 23 (1995), no. 6, 2145–2152. 10.1214/aos/1034713651Suche in Google Scholar

[29] I. I. Gikhman and A. V. Skorohod, Stochastic Differential Equations, Springer, Berlin, 1972. 10.1007/978-3-642-88264-7Suche in Google Scholar

[30] C. Gouriroux, A. Monfort and E. Renault, Indirect inference, J. Appl. Econ. 3 (1993), S85–S118. 10.1002/jae.3950080507Suche in Google Scholar

[31] P. Hall and C. C. Heyde, Martingale Limit Theory and its Application, Probab. Math. Statist., Academic Press, New York, 1980. Suche in Google Scholar

[32] L. P. Hansen and J. A. Scheinkman, Back to the future: generating moment implications for continuous-time Markov processes, Econometrica 63 (1995), no. 4, 767–804. 10.2307/2171800Suche in Google Scholar

[33] V. Harison, Drift estimation of a certain class of diffusion processes from discrete observation, Comput. Math. Appl. 31 (1996), no. 6, 121–133. 10.1016/0898-1221(96)00011-9Suche in Google Scholar

[34] I. A. Ibragimov and R. Z. Has’minskii, Statistical Estimation: Asymptotic Theory, Springer, Berlin, 1981. Suche in Google Scholar

[35] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd ed., North-Holland Math. Libr. 24, North-Holland, Amsterdam, 1989. Suche in Google Scholar

[36] P. Jeganathan, On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal, Sankhyā Ser. A 44 (1982), no. 2, 173–212. Suche in Google Scholar

[37] R. A. Kasonga, The consistency of a nonlinear least squares estimator from diffusion processes, Stochastic Process. Appl. 30 (1988), no. 2, 263–275. 10.1016/0304-4149(88)90088-9Suche in Google Scholar

[38] M. Kessler, Estimation of an ergodic diffusion from discrete observations, Scand. J. Stat. 24 (1997), no. 2, 211–229. 10.1111/1467-9469.00059Suche in Google Scholar

[39] M. Kessler and M. Sørensen, Estimating equations based on eigenfunctions for a discretely observed diffusion process, Bernoulli 5 (1999), no. 2, 299–314. 10.2307/3318437Suche in Google Scholar

[40] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 2nd ed., Springer, Berlin, 1995. Suche in Google Scholar

[41] P. E. Kloeden, E. Platen, H. Schurz and M. Sørensen, On effects of discretization on estimators of drift parameters for diffusion processes, J. Appl. Probab. 33 (1996), no. 4, 1061–1076. 10.2307/3214986Suche in Google Scholar

[42] Y. A. Kutoyants, Parameter Estimation for Stochastic Processes, Res. Exp. Math. 6, Heldermann, Berlin, 1984. Suche in Google Scholar

[43] Y. A. Kutoyants, Identification of Dynamical Systems with Small Noise, Math. Appl. 300, Kluwer Academic, Dordrecht, 1994. 10.1007/978-94-011-1020-4Suche in Google Scholar

[44] Y. A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, Springer Ser. Statist., Springer, London, 2004. 10.1007/978-1-4471-3866-2Suche in Google Scholar

[45] V. Lánská, Minimum contrast estimation in diffusion processes, J. Appl. Probab. 16 (1979), no. 1, 65–75. 10.2307/3213375Suche in Google Scholar

[46] A. Le Breton, On continuous and discrete sampling for parameter estimation in diffusion type processes, Math. Program. Stud. 5 (1976), 124–144. 10.1007/BFb0120770Suche in Google Scholar

[47] L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer Ser. Statist., Springer, New York, 1986. 10.1007/978-1-4612-4946-7Suche in Google Scholar

[48] L. Le Cam and G. L. Yang, Asymptotics in Statistics: Some Basic Concepts, Springer Ser. Statist., Springer, New York, 1990. 10.1007/978-1-4684-0377-0Suche in Google Scholar

[49] R. S. Liptser and A. N. Shiryayev, Statistics of Random Processes. I, Appl. Math. 5, Springer, New York, 1977. 10.1007/978-1-4757-1665-8Suche in Google Scholar

[50] A. W. Lo, Maximum likelihood estimation of generalized Itô processes with discretely sampled data, Econometric Theory 4 (1988), no. 2, 231–247. 10.1017/S0266466600012044Suche in Google Scholar

[51] M. N. Mishra and J. P. N. Bishwal, Approximate maximum likelihood estimation for diffusion processes from discrete observations, Stochastics Stochastics Rep. 52 (1995), no. 1–2, 1–13. 10.1080/17442509508833960Suche in Google Scholar

[52] A. R. Pedersen, A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scand. J. Stat. 22 (1995), no. 1, 55–71. Suche in Google Scholar

[53] A. R. Pedersen, Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes, Bernoulli 1 (1995), no. 3, 257–279. 10.2307/3318480Suche in Google Scholar

[54] B. L. S. Prakasa Rao, Maximum probability estimation for diffusion processes, Statistics and Probability: Essays in Honor of C. R. Rao, North-Holland, Amsterdam (1982), 575–590. Suche in Google Scholar

[55] B. L. S. Prakasa Rao, Asymptotic theory for nonlinear least squares estimator for diffusion processes, Math. Operationsforsch. Statist. Ser. Statist. 14 (1983), no. 2, 195–209. 10.1080/02331888308801695Suche in Google Scholar

[56] B. L. S. Prakasa Rao, Statistical inference from sampled data for stochastic processes, Statistical Inference from Stochastic Processes (Ithaca 1987), Contemp. Math. 80, American Mathematical Society, Providence (1988), 249–284. 10.1090/conm/080/999016Suche in Google Scholar

[57] B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes, Edward Arnold, London, 1999. Suche in Google Scholar

[58] B. L. S. Prakasa Rao and H. Rubin, Asymptotic theory of estimation in nonlinear stochastic differential equations, Sankhyā Ser. A 43 (1981), no. 2, 170–189. Suche in Google Scholar

[59] B. L. S. Prakasa Rao and H. Rubin, Uniform approximation for families of stochastic integrals, Sankhyā Ser. A 60 (1998), no. 1, 57–73. Suche in Google Scholar

[60] I. Shoji, A note on asymptotic properties of the estimator derived from the Euler method for diffusion processes at discrete times, Statist. Probab. Lett. 36 (1997), no. 2, 153–159. 10.1016/S0167-7152(97)00058-8Suche in Google Scholar

[61] J. Timmer, Parameter estimation in nonlinear stochastic differential equations, Chaos Solitons Fractals 11 (2000), 2571–2578. 10.1016/S0960-0779(00)00015-1Suche in Google Scholar

[62] J. Wolfowitz, Maximum probability estimators in the classical case and in the “almost smooth” case, Theory Probab. Appl. 20 (1975), no. 2, 371–379. 10.1137/1120039Suche in Google Scholar

[63] N. Yoshida, Asymptotic behavior of M-estimator and related random field for diffusion process, Ann. Inst. Statist. Math. 42 (1990), no. 2, 221–251. 10.1007/BF00050834Suche in Google Scholar

[64] N. Yoshida, Estimation for diffusion processes from discrete observation, J. Multivariate Anal. 41 (1992), no. 2, 220–242. 10.1016/0047-259X(92)90068-QSuche in Google Scholar

Received: 2021-12-25
Accepted: 2022-03-24
Published Online: 2023-02-28
Published in Print: 2023-06-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2023-2004/html
Button zum nach oben scrollen