Startseite Evaluation of 2010 heatwave prediction skill by SLNE coupled model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of 2010 heatwave prediction skill by SLNE coupled model

  • Rostislav Yu. Fadeev EMAIL logo
Veröffentlicht/Copyright: 7. August 2024

Abstract

SLNE is the coupled model, that was developed in 2023. SL and NE here are the first two letters from SLAV (Semi-Lagrangian, based on Absolute Vorticity equation) model of the atmosphere and NEMO (Nucleus for European Modelling of the Ocean) ocean model that have been coupled using OASIS3-MCT software. The initial conditions for SLAV and NEMO are specified from an atmospheric and ocean analyses produced in Hydrometcentre of Russia. The 2010–2021 hindcast accuracy study shows, that SLNE has comparable errors to the operational SLAV model on a sub-seasonal time scale. The SLNE model has improved prediction skill of the 2010 heatwave features in comparison to SLAV, that is a motivation for further work to improve the coupled model.

MSC 2010: 86-08; 86A10

Funding statement: The research presented in Sections 1 and 2 was carried out with the support of the Russian Science Foundation, Project No. 22-11-00053. The research presented in Section 3 was supported by the grant of the youth laboratory ‘Supercomputer technologies for mathematical modelling of the Earth system’ at the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (Agreement with the Ministry of Education and Science of the Russian Federation No. 075-03-2023-509/1).

Funding statement: All computations were performed using the Cray XC40-LC HPC system installed at the Main Computer Center of Federal Service for Hydrometeorology and Environmental Monitoring.

Acknowledgment

The author is grateful to Yury Resnyanskii, Boris Strukov and Alexandr Zelen’ko for NEMO-SI3 model configuration and initial data for it. The author is appreciative of valuable comments from Evgeny Volodin and Mikhail Tolstykh.

References

[1] K. A. Alipova, G. S. Goyman, M. A. Tolstykh, M. V. Mizyak, and V. S. Rogutov, Stochastic perturbation of tendencies and parameters of parameterizations in the global ensemble prediction system based on the SL-AV model. Russian Journal of Numerical Analysis and Mathematical Modelling 37 (2022), No. 6, 331–347.10.1515/rnam-2022-0027Suche in Google Scholar

[2] S. C. Bloom, L. L. Takacs, A. M. da Silva, and D. Ledvina, Data assimilation using incremental analysis updates. Monthly Weather Review 124 (1996), 1256–1271.10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2Suche in Google Scholar

[3] L. Brunner, N. Schaller, J. Anstey, J. Sillmann, and A. K. Steiner, Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophysical Research Letters 45 (2018), 6311–6320.10.1029/2018GL077837Suche in Google Scholar

[4] R. Buizza, P. Bechtold, M. Bonavita, N. Bormann, A. Bozzo, et al., IFS cycle 43r3 brings model and assimilation updates. ECMWF Newsletter 152 (2017), 18–22. www.ecmwf.int/node/18193Suche in Google Scholar

[5] G. Branstator, Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J. Climate 27 (2014), No. 23, 8809–8826.10.1175/JCLI-D-14-00312.1Suche in Google Scholar

[6] C. Cassou, Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455 (2008), 523–527.10.1038/nature07286Suche in Google Scholar

[7] P. Davini, C. Cagnazzo, S. Gualdi, and A. Navarra, Bidimensional diagnostics, variability, and trends of northern hemisphere blocking. J. Climate 25 (2012), No. 7212, 6496–6509.10.1175/JCLI-D-12-00032.1Suche in Google Scholar

[8] A. Davison and D. Hinkley, Bootstrap Methods and their Application (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge, Cambridge University Press, 1997.Suche in Google Scholar

[9] T. DelSole, L. Trenary, M. K. Tippett, and K. Pegion, Predictability of week-3–4 average temperature and precipitation over the contiguous United States. J. Climate 30 (2017), 3499–3512.10.1175/JCLI-D-16-0567.1Suche in Google Scholar

[10] D. I. V. Domeisen, C. J. White, H. Afargan-Gerstman, A. G. Munoz, M. A. Janiga, et. al, Advances in the subseasonal prediction of extreme events: Relevant case dtudies across the globe. Bull. Amer. Meteor. Soc. 103 (2022), E1473–E1501.10.1175/BAMS-D-20-0221.1Suche in Google Scholar

[11] A. Duchez, E. Frajka-Williams, S. A. Josey, D. G. Evans, J. P. Grist, et. al, Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environmental Research Letters 11 (2016), 457–477.10.1088/1748-9326/11/7/074004Suche in Google Scholar

[12] E. J. Dudewicz, Y. Ma, E. S. Mai, and H. Su, Exact solutions to the Behrens–Fisher problem: Asymptotically optimal and finite sample efficient choice among. Journal of Statistical Planning and Inference 137 (2007), No. 5, 1584–1605.10.1016/j.jspi.2006.09.007Suche in Google Scholar

[13] R. Yu. Fadeev, The parallel performance of SLNE atmosphere–ocean–sea ice coupled model. Supercomputing Frontiers and Innovations 10 (2023), 13–22.10.14529/jsfi230305Suche in Google Scholar

[14] J. S. Frederiksen and H. Lin, Tropical–extratropical interactions of intraseasonal oscillations. J. Atmos. Sci. 70 (2013), 3180–3197.10.1175/JAS-D-12-0302.1Suche in Google Scholar

[15] Guidance on Operational Practices for Objective Seasonal Forecasting. WMO 1246 (2020). https://library.wmo.int/viewer/57090Suche in Google Scholar

[16] C. M. Jarque and A. K. Bera, A test for normality of observations and regression residuals. Inter. Stat. Rev. 55 (1987), No. 2, 163–172.10.2307/1403192Suche in Google Scholar

[17] A. M. Jenney, K. M. Nardi, E. A. Barnes, and D. A. Randall, The seasonality and regionality of MJO impacts on North American temperature. Geophysical Research Letters 46 (2019), 9193–9202.10.1029/2019GL083950Suche in Google Scholar

[18] B. Jiménez-Esteve and D. I. V. Domeisen, The role of atmospheric dynamics and large-scale topography in driving heatwaves. Q. J. R. Meteorol. Soc. 148 (2022), 2344–2367.10.1002/qj.4306Suche in Google Scholar PubMed PubMed Central

[19] S. A. Henderson, E. D. Maloney, and E. A. Barnes, The influence of the Madden-–Julian oscillation on the northern hemisphere winter blocking. J. Climate 29 (2016), 4597–4616.10.1175/JCLI-D-15-0502.1Suche in Google Scholar

[20] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, et. al, The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 (2020), 1999–2049.10.1002/qj.3803Suche in Google Scholar

[21] M. T. Kueh and C. Y. Lin, The 2018 summer heatwaves over northwestern Europe and its extended-range prediction. Sci. Rep. 10 (2020), No. 1, 19283.10.1038/s41598-020-76181-4Suche in Google Scholar PubMed PubMed Central

[22] J. Larson, R. Jacob, and E. Ong, The model coupling toolkit: A new fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perf. Comp. App. 19 (2005), 277–292.10.1177/1094342005056115Suche in Google Scholar

[23] R. W. Lee, S. J. Woolnough, A. J. Charlton-Perez, and F. Vitart, ENSO modulation of MJO teleconnections to the North Atlantic and Europe. Geophysical Research Letters 46 (2019), 13535–13545.10.1029/2019GL084683Suche in Google Scholar

[24] H. W. Lilliefors, On the Kolmogorov–Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62 (1967), 399–402.10.1080/01621459.1967.10482916Suche in Google Scholar

[25] H. Lin, K. M. Nardi, E. A. Barnes, and D. A. Randall, Subseasonal forecast skill over the Northern Polar Region in boreal winter. J. Climate 33 (2020), 1935–1951.10.1175/JCLI-D-19-0408.1Suche in Google Scholar

[26] R. A. Madden and P. R. Julian, Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29 (1972), 1109–1123.10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2Suche in Google Scholar

[27] G. Madec and the NEMO System Team, NEMO Ocean Engine Reference Manual. Zenodo (2023). https://zenodo.org/record/8167700Suche in Google Scholar

[28] H. B. Mann and D. R. Whitney, On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18 (1947), 50–60.10.1214/aoms/1177730491Suche in Google Scholar

[29] K. Pegion, B. P. Kirtman, E. Becker, D. C. Collins, E. LaJoie, et al., The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc. 100 (2019), 2043–2060.10.1175/BAMS-D-18-0270.1Suche in Google Scholar

[30] A. S. Pepler, L. B. Diaz, C. Prodhomme, F. J. Doblas-Reyes, and A. Kumar, The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes. Weather and Climate Extremes 9 (2015), 68–77.10.1016/j.wace.2015.06.005Suche in Google Scholar

[31] A. Piacentini, E. Maisonnave, G. Jonville, L. Coquart, and S. Valcke, A parallel SCRIP interpolation library for OASIS. https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_WN_Piacentini_Parallel_SCRIP_cmgc_18_34_2018.pdfSuche in Google Scholar

[32] C. Prodhomme, S. Materia, C. Ardilouze, R. H. White, L. Batte, et al., Seasonal prediction of European summer heatwaves. Clim. Dyn. 58 (2022), 2149–2166.10.1007/s00382-021-05828-3Suche in Google Scholar

[33] M. Pyrina and D. I. V. Domeisen, Subseasonal predictability of onset, duration, and intensity of European heat extremes. Quarterly Journal of the Royal Meteorological Society 149 (2023), 84–101.10.1002/qj.4394Suche in Google Scholar

[34] L. M. Rasmijn, G. van der Schrier, R. Bintanja, A. Sterl, and W. Hazeleger, Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints. Nature Clim. Change 8 (2018), 381–385.10.1038/s41558-018-0114-0Suche in Google Scholar

[35] J. H. Richter, A. A. Glanville, T. King, S. Kumar, S. G. Yeager, et al., Quantifying sources of subseasonal prediction skill in CESM2. Clim. Atmos. Sci. 7 (2024).10.1038/s41612-024-00595-4Suche in Google Scholar

[36] M. Rodney, H. Lin, and J. Derome, Subseasonal prediction of wintertime North American surface air temperature during strong MJO events. Mon. Wea. Rev. 141 (2013), 2897–2909.10.1175/MWR-D-12-00221.1Suche in Google Scholar

[37] S. Saha, S. Moorthi, H.-L. Pan, X. Wu, J. Wang, et al., The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc 91 (2010), 1015–1058.10.1175/2010BAMS3001.1Suche in Google Scholar

[38] P. M. Sousa, R. M. Trigo, D. Barriopedro, P. M. M. Soares, and J. A. Santos, European temperature responses to blocking and ridge regional patterns. Clim. Dyn. 50 (2018), 457–477.10.1007/s00382-017-3620-2Suche in Google Scholar

[39] Sub-seasonal to seasonal prediction project home page. http://s2sprediction.net/Suche in Google Scholar

[40] B. S. Strukov, Y. D. Resnyanskii, and A. A. Zelenko, Relaxation method for assimilation of sea ice concentration data in the NEMO-LIM3 multicategory sea ice model. Russ. Meteorol. Hydrol. 45 (2020), 96–104.10.3103/S1068373920020053Suche in Google Scholar

[41] E. T. Swenson and D. M. Straus, Rossby wave breaking and transient eddy forcing during Euro-Atlantic circulation regimes. J. Atmos. Sci. 74 (2017), 1735–1755.10.1175/JAS-D-16-0263.1Suche in Google Scholar

[42] The World Meteorological Organization, heatwaves. https://wmo.int/topics/heatwaveSuche in Google Scholar

[43] M. A. Tolstykh, E. M. Volodin, S. V. Kostrykin, R. Yu. Fadeev, V. V. Shashkin, et al., Development of the multiscale version of the SL-AV global atmosphere model. Rus. Meteorol. and Hydrol. 40 (2015), 374–382.10.3103/S1068373915060035Suche in Google Scholar

[44] M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, R. B. Zaripov, S. V. Travova, et al., The SLAV072L96 system for long range meteorological forecasts. Rus. Meteorol. and Hydrol. (2023) (submitted).10.3103/S1068373924070021Suche in Google Scholar

[45] K.-C. Tseng, E. A. Barnes, and E. D. Maloney, Prediction of the midlatitude response to strong Madden–Julian oscillation events on S2S time scales. Geophysical Research Letters 45 (2018), 463–470.10.1002/2017GL075734Suche in Google Scholar

[46] M. D. Tsyrulnikov, P. I. Svirenko, D. R. Gayfulin, M. E. Gorbunov, and A. B. Uspensky, Development of the data assimilation scheme of the hydrometcentre of Russia. Hydrometeorological Res. and For. (Proc. of Hydrometcentre of Russia) 4 (2019), 112–126.10.37162/2618-9631-2019-4-112-126Suche in Google Scholar

[47] F. Vitart and A. W. Robertson, The S2S steering group sub-seasonal to seasonal prediction: linking weather and climate. Seamless prediction of the Earth system: from minutes to months. WMO-No 1156 (2015), 385–401.Suche in Google Scholar

[48] S. Valcke, The OASIS3 coupler: a European climate modelling community software. Geosci. Model Devel. 6 (2013), 373–388.10.5194/gmd-6-373-2013Suche in Google Scholar

[49] M. Vancoppenolle, C. Rousset, E. Blockley and the NEMO Sea Ice Working Group, SI3–-Sea Ice modelling Integrated Initiative–-The NEMO Sea Ice Engine. Zenodo (2023).Suche in Google Scholar

[50] F. Vitart and A. W. Robertson, The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. Clim Atmos Sci 1 (2018).10.1038/s41612-018-0013-0Suche in Google Scholar

[51] E. M. Volodin and V. N. Lykossov, Parametrization of heat and moisture transfer in the soil–vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izv., Atm. and Oceanic Phys. 34 (1998), 402–416.Suche in Google Scholar

[52] L. Wang and A. W. Robertson, Week 3–4 predictability over the United States assessed from two operational ensemble prediction systems. Clim. Dyn. 52 (2019), 5861–5875.10.1007/s00382-018-4484-9Suche in Google Scholar

[53] D. J. Webb, On the role of the North Equatorial Counter Current during a strong El Niño. Ocean Sci. 14 (2018), 633–660. 10.5194/os-14-633-2018Suche in Google Scholar

[54] Y. J. Wijaya, U. J. Wisha, and Y. Hisaki, The north equatorial countercurrent east of the dateline, its variations and its relationship to the El Niño event. J. Mar. Sci. Eng. 9 (2021), 1041.10.3390/jmse9101041Suche in Google Scholar

[55] V. Wirth, M. Riemer, E. K. M. Chang, and O. Martius, Rossby–wave packets on the midlatitude waveguide–-a review. Monthly Weather Review 146 (2018), 1965–2001.10.1175/MWR-D-16-0483.1Suche in Google Scholar

[56] P. Yadav and D. M. Straus, Circulation response to fast and slow MJO episodes. Monthly Weather Review 145 (2017), 1577–1596.10.1175/MWR-D-16-0352.1Suche in Google Scholar

[57] S. Zhou, M. L’Heureux, S. Weaver, and A. Kumar, A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States. Clim. Dyn. 38 (2012), 1459–1471.10.1007/s00382-011-1001-9Suche in Google Scholar

Received: 2024-06-17
Accepted: 2024-06-19
Published Online: 2024-08-07
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2024-0019/pdf
Button zum nach oben scrollen