Abstract
The paper presents the dynamical core of the new sea ice model SIMUG (Sea Ice Model on Unstructured Grid) on the A- and CD-types of unstructured triangular grids in the local-element basis on sphere. Three standardized box tests to reproduce the Linear Kinematic Features (LKFs), and the short-term forecast in the real Arctic Ocean geometry with the realistic atmosphere and ocean forcing demonstrate the model quality compared to other sea ice models like CICE, FESOM, MITgcm, and ICON-O. The distinctive features of the model presented are a wide choice of transport schemes, and the new numerical implementation with the serial and parallel C++ coding and INMOST, Ani2D, and Ani3D packages to deal with unstructured grids. Code profiling and scalability assessment are carried out. In general, the A-version of the ice drift model works faster, but has fewer degrees of freedom on the same grid. Due to the increase in the degrees of freedom, the model on the CD grid gives ultra-resolution of LKFs, but requires more strict conditions for stability.
-
Funding: The study was carried out at the Marchuk Institute of Numerical Mathematics (INM RAS), Moscow, Russia. The work of Sergey S. Petrov (investigation of numerical methods on CD-grid, writing, coding, interpretation of results) was supported by the Moscow Center of Fundamental and Applied Mathematics at INM RAS (Agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2022-286). The work of Nikolay G. Iakovlev (investigation of numerical methods on A-grid, writing, reviewing, editing) was supported by the Russian Science Foundation (project 21-71-30023).
References
[1] T. E. Arbetter, J. A. Curry, and J. A. Maslanik, Effects of rheology and ice thickness distribution in a dynamic–thermodynamic sea ice model. J. Phys. Oceanography 29 (1999), No. 10, 2656–2670.10.1175/1520-0485(1999)029<2656:EORAIT>2.0.CO;2Suche in Google Scholar
[2] S. Bidadi and S. Rani, Quantification of numerical diffusivity due to tvd schemes in the advection equation. J. Comput. Phys. 261 (2014), No. 3, 65–82.10.1016/j.jcp.2013.12.011Suche in Google Scholar
[3] S. Bouillon, T. Fichefet, V. Legat, and G. Madec, The elastic–viscous–plastic method revisited. Ocean Modelling 71 (2013), 2–12.10.1016/j.ocemod.2013.05.013Suche in Google Scholar
[4] S. Brenner, Korn’s inequalities for piecewise H1 vector fields. Mathematics of Computation 73 (2004), 1067–1087.10.1090/S0025-5718-03-01579-5Suche in Google Scholar
[5] A. Danilov, Unstructured tetrahedral mesh generation technology. Comput. Math. Math. Phys. 50 (2010), No. 2, 139–156.10.1134/S0965542510010124Suche in Google Scholar
[6] A. Danilov, K. M. Terekhov, I. N. Konshin, and Y. V. Vassilevski, Parallel software platform INMOST: A framework for numerical modeling. Supercomput. Front. Innov. 2 (2015), 55–66.Suche in Google Scholar
[7] S. Danilov, Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter, Finite-element sea ice model (FESIM), version 2. Geoscientific Model Development 8 (2015), No. 6, 1747–1761.10.5194/gmd-8-1747-2015Suche in Google Scholar
[8] S. Danilov, C. Mehlmann, and V. Fofonova, On discretizing sea-ice dynamics on triangular meshes using vertex, cell or edge velocities. Ocean Modelling 170 (2021), No. 12, 101937.10.1016/j.ocemod.2021.101937Suche in Google Scholar
[9] R. Falk, Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57 (1991), No. 10, 529–529.10.1090/S0025-5718-1991-1094947-6Suche in Google Scholar
[10] P. Hansbo and M. G. Larson, Discontinuous Galerkin and the Crouzeix–Raviart element: Application to elasticity. ESAIM: Mathematical Modelling and Numerical Analysis – Mod’elisation Math’ematique et Analyse Num’erique 37 (2003), No. 1, 63–72.10.1051/m2an:2003020Suche in Google Scholar
[11] W. D. Hibler, A dynamic thermodynamic sea ice model. J. Phys. Oceanography 9 (1979), 815–846.10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2Suche in Google Scholar
[12] E. C. Hunke and J. K. Dukowicz, The elastic–viscous–plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere–incorporation of metric terms. Monthly Weather Review 130 (2002), No. 7, 1848–1865.10.1175/1520-0493(2002)130<1848:TEVPSI>2.0.CO;2Suche in Google Scholar
[13] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comp. 20 (1999), No. 1. 359–392.10.1137/S1064827595287997Suche in Google Scholar
[14] M. Kimmritz, On the convergence of the modified elastic–viscous–plastic method for solving the sea ice momentum equation. J. Comput. Phys. 296 (2015), 90–100.10.1016/j.jcp.2015.04.051Suche in Google Scholar
[15] R. Kwok and D. Sulsky, Arctic Ocean sea ice thickness and kinematics: Satellite retrievals and modeling. Oceanography (2010).10.5670/oceanog.2010.11Suche in Google Scholar
[16] R. Löhner, K. Morgan, J. Peraire, and M. Vahdati, Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier–Stokes equations. Int. J. Numer. Methods in Fluids 7 (1987), No. 10, 1093–1109.10.1002/fld.1650071007Suche in Google Scholar
[17] M. Losch, D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill, On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling 33 (2010), No. 1, 129–144.10.1016/j.ocemod.2009.12.008Suche in Google Scholar
[18] M. Losch, A. Fuchs, J.-F. Lemieux, and A. Vanselow, A parallel jacobian-free Newton–Krylov solver for a coupled sea ice-ocean model. J. Comput. Phys. 257 (2014), 901–911.10.1016/j.jcp.2013.09.026Suche in Google Scholar
[19] C. Mehlmann and P. Korn, Sea-ice dynamics on triangular grids. J. Comput. Phys. 428 (2020), No. 12, 110086.10.1016/j.jcp.2020.110086Suche in Google Scholar
[20] C. Mehlmann, S. Danilov, M. Losch, J. F. Lemieux, N. Hutter, T. Richter, P. Blain, E. C. Hunke, and P. Korn, Simulating linear kinematic features in viscous-plastic sea ice models on quadrilateral and triangular grids with different variable staggering. J. Advances in Modeling Earth Systems 13 (2021), No. 11, e2021MS002523.10.1029/2021MS002523Suche in Google Scholar
[21] C. Mehlmann and O. Gutjahr, Discretization of sea ice dynamics in the tangent plane to the sphere by a CD-grid-type finite element. J. Advances in Modeling Earth Systems 14 (2022), No. 12, e2022MS003010.10.1029/2022MS003010Suche in Google Scholar
[22] S. Petrov and N. Iakovlev, The optimized finite element dynamical core of the arctic ocean sea ice model. Mathematical Modeling and Supercomputer Technologies. MMST 2020. Communications in Computer and Information Science 1413 (2021), 389–400.10.1007/978-3-030-78759-2_32Suche in Google Scholar
[23] S. S. Petrov and N. G. Iakovlev, The suite of Taylor–Galerkin class schemes for ice transport on sphere implemented by the inmost package. Russ. J. Numer. Anal. Math. Modelling 36 (2021), No. 4, 227–238.10.1515/rnam-2021-0019Suche in Google Scholar
[24] V.-H. Peuch, R. Engelen, M. Rixen, D. Dee, J. Flemming, M. Suttie, M. Ades, A. Agustí-Panareda, C. Ananasso, E. Andersson, D. Armstrong, J. Barré, N. Bousserez, J. J. Dominguez, S. Garrigues, A. Inness, L. Jones, Z. Kipling, J. Letertre-Danczak, M. Parrington, M. Razinger, R. Ribas, S. Vermoote, X. Yang, A. Simmons, J. G. de Marcilla, and J.-N. Thépaut, The copernicus atmosphere monitoring service: From research to operations. Bulletin of the American Meteorological Society 103 (2022), No. 12, E2650–E2668.10.1175/BAMS-D-21-0314.1Suche in Google Scholar
[25] P. Sakov, F. Counillon, L. Bertino, K. A. Lisæter, P. R. Oke, and A. Korablev, TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Science 8 (2012), No. 4, 633–656.10.5194/os-8-633-2012Suche in Google Scholar
[26] P. Tamamidis, A new upwind scheme on triangular meshes using the finite volume method. Comput. Methods Appl. Mech. Engrg. 124 (1995), No. 1, 15–31.10.1016/0045-7825(94)00751-8Suche in Google Scholar
A Appendix. Preudocode for main procedures
Algorithm 1
Pseudocode of mEVP method for A-grid
| for i = 0, Nits do | ▹ subiterations |
| ComputeStrainRateTensor() | |
| UpdateStressTensorMevp() | ▹ Update sigma (22) |
| AssembleForceVector() | ▹ calculate (σ, ∇ φ) |
| UpdateVelocityMevp() | ▹ Update velocity (23) |
| end for |
Algorithm 2
Pseudocode of nodal force assembling for A-grid. Part 1
| Force[NumberOfNotBndNodes][2] = 0 | ▹ prepare force array |
| procedure AssembleForceVector() | |
| for triangle Ti in Triangles do | ▹ iterate over triangles |
| AdjNodes = Ti → GetNodes() | ▹ get the adjacent nodes for triangle |
| TrianGradientInNodeBasis[3][2] | ▹ prepare the 2D array for basis function gradients |
| TrianSigmaInNodeBasis[3][2][2] | ▹ prepare the 2D array for stress tensor components |
| for node Nj in AdjNodes do | ▹ iterate over trian nodes |
| TrianGradientInNodeBasis[j] = | ▹ move gradient of basis function to node basis |
| TransferVectorToTriangleBasis(Ti → GetTrianGradientInTrianBasis()[j]) | |
| TrianSigmaInNodeBasis[j] = | ▹ move stress tensor to node basis |
| TransferTensorToTriangleBasis(Ti → GetTrianSigmaInTrianBasis()) | |
| if (Nj is not BndNode) then | |
| Force[GlobalIndexOfLocalNode(Nj)] += | ▹ Here * stands for scalar product |
| TrianSigmaInNodeBasis[j]*TrianGradientInNodeBasis[j] | |
| end if | |
| end for | |
| end for | |
| end procedure | |
Algorithm 3
Pseudocode for assembling the stabilization term on CD-grid
| Stabilization[NumberOfEdges][2] = 0 | ▹ prepare stabilization array |
| StabilizationSum[NumberOfEdges][2] = 0 | ▹ prepare stabilization sum array |
| procedure AssembleStabilization() | |
| for triangle Ti in Triangles do | ▹ iterate over triangles |
| AdjEdges = Ti → GetEdges() | ▹ get the adjacent edges for triangle |
| EdgeVelocities[3][2] | ▹ prepare the 2D array for edge velocities in trian basis |
| for edge Ej in AdjEdges do | ▹ iterate over trian edges |
| EdgeVelocities[j] = | ▹ move velocity to trian basis |
| TransferVectorToTriangleBasis(Ej → GetVelocity()) | |
| end for | |
| for edge Ej in AdjEdges do | ▹ iterate over trian edges |
| StabilizationSum[GlobalIndexOfLocalEdge(Ej)] += | ▹ compute stab sum |
| #x2003; TransferVectorToEdgeBasis(EdgeVelocities[(j + 1) mod 3]), (j + 1) mod 3) - | |
| TransferVectorToEdgeBasis(EdgeVelocities[(j + 2) mod 3]), (j + 2) mod 3) | |
| end for | |
| SatbSumTrian[3][2] | ▹ prepare the 2D array for stab sum in trian basis |
| for edge Ej in AdjEdges do | ▹ iterate over trian edges |
| SatbSumTrian[j] = | ▹ move stabilization sum to trian basis |
| TransferVectorToTrianBasis(StabilizationSum[j]) | |
| end for | |
| for edge Ej in AdjEdges do | ▹ iterate over trian edges |
| Stabilization[GlobalIndexOfLocalEdge(Ej)] += | ▹ compute stabilization in edge basis |
| -TransferVectorToEdgeBasis(StabSumTrian[(j+1) mod 3], (j + 1) mod 3))* | |
| EtaEdge[(j+1) mod 3] | |
| +TransferVectorToEdgeBasis(StabSumTrian[(j+2) mod 3], (j + 2) mod 3))* | |
| EtaEdge[(j+2) mod 3] | |
| end for | |
| end for | |
| end procedure | |
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Particle tracking for face-based flux data on general polyhedral grids with applications to groundwater flow modelling
- CarNum: parallel numerical framework for computational cardiac electromechanics
- SIMUG – finite element model of sea ice dynamics on triangular grid in local Cartesian basis
- Validation of boundary conditions for coronary circulation model based on a lumped parameter approach
- Ensemble-based statistical verification of INM RAS Earth system model
- Neural networks singular evolutive interpolated Kalman filter and its application to data assimilation for 2D water pollution model
Artikel in diesem Heft
- Frontmatter
- Particle tracking for face-based flux data on general polyhedral grids with applications to groundwater flow modelling
- CarNum: parallel numerical framework for computational cardiac electromechanics
- SIMUG – finite element model of sea ice dynamics on triangular grid in local Cartesian basis
- Validation of boundary conditions for coronary circulation model based on a lumped parameter approach
- Ensemble-based statistical verification of INM RAS Earth system model
- Neural networks singular evolutive interpolated Kalman filter and its application to data assimilation for 2D water pollution model