Startseite CarNum: parallel numerical framework for computational cardiac electromechanics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

CarNum: parallel numerical framework for computational cardiac electromechanics

  • Alexey A. Liogky EMAIL logo , Alexey Yu. Chernyshenko , Alexander A. Danilov und Fyodor A. Syomin
Veröffentlicht/Copyright: 15. Juni 2023

Abstract

A new parallel numerical framework CarNum is presented for efficient coupling of mathematical models in multiphysics problems such as computational cardiac electromechanics. This framework is based on open source projects, which provide the core functionality of the platform. Computational cardiac electromechanics requires a complex pipeline of solving different types of ordinary and partial differential equations. Our framework allows one to implement different numerical schemes and provides more control in multiphysics coupling. This paper outlines a concept of the new platform and details of numerical modelling of cardiac electromechanics. First experiments with well-known cardiac electromechanics benchmarks show good agreement with other groups and decent parallel scalability.

MSC 2010: 65-04; 65M60; 74S05
  1. Funding: The study was performed at the Institute of Mechanics, Lomonosov Moscow State University, and supported by the Russian Science Foundation, project 22-71-10007, supervised by Fyodor Syomin.

    The parallel numerical experiments were conducted on the high-performance computing system of the Sechenov University. Authors acknowledge colleagues from Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, and Sirius University of Science and Technology for valuable discussions on INMOST framework and numerical methods.

References

[1] D. Ambrosi and S. Pezzuto, Active stress vs. active strain in mechanobiology: constitutive issues. J. Elast. 107 (2012), 199–212.10.1007/s10659-011-9351-4Suche in Google Scholar

[2] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11 (2019), No. 1, 1–36.10.1007/s12532-018-0139-4Suche in Google Scholar

[3] H. Ashikaga, B. A. Coppola, K. G. Yamazaki, F. J. Villarreal, J. H. Omens, and J. W. Covell, Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. American Journal of Physiology-Heart and Circulatory Physiology 295 (2008), No. 2, H610–H618.10.1152/ajpheart.00107.2008Suche in Google Scholar PubMed PubMed Central

[4] N. A. Balakina-Vikulova, A. Panfilov, O. Solovyova, and L. B. Katsnelson, Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J. Physiol. Sci. 70 (2020), No. 1, 12.10.1186/s12576-020-00741-6Suche in Google Scholar PubMed PubMed Central

[5] D. M. Bers, Cardiac excitation–contraction coupling. Nature 415 (2002), 198–205.10.1038/415198aSuche in Google Scholar PubMed

[6] P. Cardiff and I. Demirdžić, Thirty years of the finite volume method for solid mechanics. Archives Comput. Meth. Engrg. 28 (2021), No. 5, 3721–3780.10.1007/s11831-020-09523-0Suche in Google Scholar

[7] R. Chabiniok, V. Y. Wang, M. Hadjicharalambous, L. Asner, J. Lee, M. Sermesant, E. Kuhl, A. A. Young, P. Moireau, M. P. Nash, et al., Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6 (2016), No. 2, 20150083.10.1098/rsfs.2015.0083Suche in Google Scholar PubMed PubMed Central

[8] A. Chernyshenko, A. Danilov, and V. Kramarenko, Coupling of PDE and ODE solvers in INMOST parallel platform: Application to electrophysiology. In: Communications in Computer and Information Science, Vol. 965. Springer International Publishing, 2019, 193–202.10.1007/978-3-030-36592-9_16Suche in Google Scholar

[9] A. Y. Chernyshenko, A. A. Danilov, and Y. V. Vassilevski, Numerical simulations for cardiac electrophysiology problems. In: Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics. Springer International Publishing, 2019, 321–329.10.1007/978-3-030-23433-1_21Suche in Google Scholar

[10] P. G. Ciarlet, S. Kesavan, A. Ranjan, and M. Vanninathan, Lectures on the Finite Element Method, Vol. 49. Tata Institute of Fundamental Research, Bombay, 1975.Suche in Google Scholar

[11] S. D. Cohen, A. C. Hindmarsh, and P. F. Dubois, CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10 (1996), No. 2, 138–143.10.1063/1.4822377Suche in Google Scholar

[12] K. D. Costa, J. W. Holmes, and A. D. McCulloch, Modelling cardiac mechanical properties in three dimensions. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359 (2001), No. 1783, 1233–1250.10.1098/rsta.2001.0828Suche in Google Scholar

[13] F. S. Costabal, F. A. Concha, D. E. Hurtado, and E. Kuhl, The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput. Methods Appl. Mech. Engrg. 320 (2017), 352–368.10.1016/j.cma.2017.03.015Suche in Google Scholar PubMed PubMed Central

[14] P. C. Franzone and L. Guerri, Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model. Math. Biosci. 113 (1993), 145–209.10.1016/0025-5564(93)90001-QSuche in Google Scholar

[15] Y.-C. B. Fung, Biorheology of soft tissues. Biorheology 10 (1973), No. 2, 139–155.10.3233/BIR-1973-10208Suche in Google Scholar

[16] D. J. Gardner, D. R. Reynolds, C. S. Woodward, and C. J. Balos, Enabling new flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS), 2022.10.1145/3539801Suche in Google Scholar

[17] A. M. Gordon, E. Homsher, and M. Regnier, Regulation of contraction in striated muscle. Physiol. Rev. 80 (2000), No. 2, 853–924.10.1152/physrev.2000.80.2.853Suche in Google Scholar PubMed

[18] S. Göktepe and E. Kuhl, Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput. Mech. 45 (2010), No. 2, 227–243.10.1007/s00466-009-0434-zSuche in Google Scholar

[19] E. Grandi, F. S. Pasqualini, and D. M. Bers, A novel computational model of the human ventricular action potential and Ca transient. J. Molec. Cell. Cardiol. 48 (2010), 112–121.10.1016/j.yjmcc.2009.09.019Suche in Google Scholar PubMed PubMed Central

[20] E. Grandi, S. V. Pandit, N. Voigt, A. J. Workman, D. Dobrev, J. Jalife, and D. M. Bers, Human atrial action potential and Ca2+ model. Circulation Research 109 (2011), 1055–1066.10.1161/CIRCRESAHA.111.253955Suche in Google Scholar PubMed PubMed Central

[21] J. M. Guccione, L. K. Waldman, and A. D. McCulloch, Mechanics of active contraction in cardiac muscle: Part II. Cylindrical models of the systolic left ventricle. J. Biomech. Engrg. 115 (1993), No. 2, 82–90.10.1115/1.2895474Suche in Google Scholar PubMed

[22] C. S. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Engrg. 21 (1993), No. 1, 1–77.Suche in Google Scholar

[23] C. S. Henriquez, A brief history of tissue models for cardiac electrophysiology. IEEE Trans. Biomed. Engrg. 61 (2014), 1457–1465.10.1109/TBME.2014.2310515Suche in Google Scholar PubMed

[24] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS) 31 (2005), No. 3, 363–396.10.1145/1089014.1089020Suche in Google Scholar

[25] A. C. Hindmarsh, R. Serban, C. J. Balos, D. J. Gardner, D. R. Reynolds, and C. S. Woodward, User documentation for kinsol v5.7.0 (sundials v5.7.0). Tech. Report, 2021.Suche in Google Scholar

[26] A. C. Hindmarsh, R. Serban, C. J. Balos, D. J. Gardner, D. R. Reynolds, and C. S. Woodward, User documentation for CVODE, v6.5.0. 2022.Suche in Google Scholar

[27] G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elastic. Phys. Sci. Solids 61 (2000), 1–48.10.1007/0-306-48389-0_1Suche in Google Scholar

[28] J. Humphrey and F. Yin, A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys. J. 52 (1987), No. 4, 563–570.10.1016/S0006-3495(87)83245-9Suche in Google Scholar PubMed PubMed Central

[29] J. D. Humphrey, Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459 (2003), No. 2029, 3–46.10.1098/rspa.2002.1060Suche in Google Scholar

[30] P. Hunter, A. McCulloch, and H. ter Keurs, Modelling the mechanical properties of cardiac muscle. Progress in Biophysics and Molecular Biology 69 (1998), No. 2, 289–331.10.1016/S0079-6107(98)00013-3Suche in Google Scholar PubMed

[31] A. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7 (1957), 255–318.10.1016/S0096-4174(18)30128-8Suche in Google Scholar

[32] A. F. Huxley and R. Simmons, Proposed mechanism of force generation in striated muscle. Nature 233 (1971), No. 2, 533–538.10.1038/233533a0Suche in Google Scholar PubMed

[33] B. I. Iaparov, I. Zahradnik, A. S. Moskvin, and A. Zahradníková, In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes. J. General Physiology 153 (2021), No. 4, e202012685.10.1085/jgp.202012685Suche in Google Scholar PubMed PubMed Central

[34] V. Jacquemet and C. S. Henriquez, Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes. IEEE Trans. Biomed. Engrg. 52 (2005), No. 8, 1490–1492.10.1109/TBME.2005.851459Suche in Google Scholar PubMed

[35] V. Jacquemet, An eikonal approach for the initiation of reentrant cardiac propagation in reaction–diffusion models. IEEE Trans. Biomed. Engrg. 57 (2010), 2090–2098.10.1109/TBME.2010.2051156Suche in Google Scholar PubMed

[36] K. A. Kalina, L. Linden, J. Brummund, P. Metsch, and M. Kästner, Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks. Comput. Mech. 69 (2021), 213–232.10.1007/s00466-021-02090-6Suche in Google Scholar

[37] E. Karabelas, M. A. Gsell, G. Haase, G. Plank, and C. M. Augustin, An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity. Comput. Meth. Appl. Mech. Engrg. 394 (2022), 114887.10.1016/j.cma.2022.114887Suche in Google Scholar PubMed PubMed Central

[38] S. Land, V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, C. Bradley, S. Castro, A. Crozier, M. Favino, et al., Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471 (2015), No. 2184, 20150641.10.1098/rspa.2015.0641Suche in Google Scholar PubMed PubMed Central

[39] K. Lipnikov, Y. Vassilevski, et al., Advanced numerical instruments 3D. https://sourceforge.net/projects/ani3d/, 2014.Suche in Google Scholar

[40] È. Lluch, M. De Craene, B. Bijnens, M. Sermesant, J. Noailly, O. Camara, and H. G. Morales, Breaking the state of the heart: meshless model for cardiac mechanics. Biomechanics and Modeling in Mechanobiology 18 (2019), 1549–1561.10.1007/s10237-019-01175-9Suche in Google Scholar PubMed

[41] M. M. Maleckar, J. L. Greenstein, N. A. Trayanova, and W. R. Giles, Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. Progress in Biophysics and Molecular Biology 98 (2008), 161–170.10.1016/j.pbiomolbio.2009.01.010Suche in Google Scholar PubMed PubMed Central

[42] K.-A. Mardal, O. Skavhaug, G. T. Lines, G. A. Staff, and A. Odegard, Using Python to solve partial differential equations. Comput. Sci. & Engrg. 9 (2007), No. 3, 48–51.10.1109/MCSE.2007.64Suche in Google Scholar

[43] M. P. Nash and A. V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Progress in Biophysics and Molecular Biology 85 (2004), No. 2, 501–522.10.1016/j.pbiomolbio.2004.01.016Suche in Google Scholar PubMed

[44] J. A. Negroni and E. C. Lascano, Simulation of steady state and transient cardiac muscle response experiments with a Huxley-based contraction model. J. Molec. Cell. Cardiol. 45 (2008), No. 2, 300–312.10.1016/j.yjmcc.2008.04.012Suche in Google Scholar PubMed

[45] A. Neic, F. O. Campos, A. J. Prassl, S. A. Niederer, M. J. Bishop, E. J. Vigmond, and G. Plank, Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model. J. Comput. Phys. 346 (2017), 191–211.10.1016/j.jcp.2017.06.020Suche in Google Scholar PubMed PubMed Central

[46] S. A. Niederer, P. J. Hunter, and N. P. Smith, A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. 90 (2006), No. 5, 1697–1722.10.1529/biophysj.105.069534Suche in Google Scholar PubMed PubMed Central

[47] S. A. Niederer, E. Kerfoot, A. P. Benson, M. O. Bernabeu, O. Bernus, C. Bradley, E. M. Cherry, R. Clayton, F. H. Fenton, A. Garny, E. Heidenreich, S. Land, M. Maleckar, P. Pathmanathan, G. Plank, J. F. Rodríguez, I. Roy, F. B. Sachse, G. Seemann, O. Skavhaug, and N. P. Smith, Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369 (2011), 4331–4351.10.1098/rsta.2011.0139Suche in Google Scholar PubMed PubMed Central

[48] T. O’Hara, L. Virág, A. Varró, and Y. Rudy, Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Computational Biology 7 (2011), e1002061.10.1371/journal.pcbi.1002061Suche in Google Scholar PubMed PubMed Central

[49] P. Pathmanathan and R. A. Gray, Verification of computational models of cardiac electro-physiology. Int. J. Numer. Meth. Biomed. Engrg. 30 (2013), 525–544.10.1002/cnm.2615Suche in Google Scholar PubMed

[50] A. V. Pikunov, R. A. Syunyaev, V. Steckmeister, I. Kutschka, N. Voigt, and I. R. Efimov, Personalization of mathematical models of human atrial action potential. In: Smart Modelling For Engineering Systems. Springer Singapore, 2021, pp. 223–236.10.1007/978-981-33-4709-0_19Suche in Google Scholar

[51] E. R. Pfeiffer, A. T. Wright, A. G. Edwards, J. C. Stowe, K. McNall, J. Tan, I. Niesman, H. H. Patel, D. M. Roth, J. H. Omens, and A. D. McCulloch, Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J. Mol. Cell. Cardiol. 76 (2014), 265–274.10.1016/j.yjmcc.2014.09.014Suche in Google Scholar PubMed PubMed Central

[52] M. Potse, B. Dube, J. Richer, A. Vinet, and R. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Engrg. 53 (2006), 2425–2435.10.1109/TBME.2006.880875Suche in Google Scholar PubMed

[53] T. A. Quinn and P. Kohl, Cardiac mechano-electric coupling: Acute effects of mechanical stimulation on heart rate and rhythm. Physiol. Rev., 101 (2021), No. 1, 37–92.10.1152/physrev.00036.2019Suche in Google Scholar PubMed

[54] M. V. Razumova, A. E. Bukatina, and K. B. Campbell, Stiffness-distortion sarcomere model for muscle simulation. J. Appl. Physiol. 87 (1999), No. 5, 1861–1876.10.1152/jappl.1999.87.5.1861Suche in Google Scholar PubMed

[55] J. J. Rice, F. Wang, D. M. Bers, and P. P. de Tombe, Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys. J. 95 (2008), No. 5, 2368–2390.10.1529/biophysj.107.119487Suche in Google Scholar PubMed PubMed Central

[56] S. Rossi, R. Ruiz-Baier, L. F. Pavarino, and A. Quarteroni, Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Meth. Biomed. Engrg. 28 (2012), No. 6-7, 761–788.10.1002/cnm.2473Suche in Google Scholar PubMed

[57] V. Salamatova, Data-driven constitutive modelling via conjugate pairs and response functions. Mathematics 10 (2022), No. 23, 4447.10.3390/math10234447Suche in Google Scholar

[58] D. Smirnov, A. Pikunov, R. Syunyaev, R. Deviatiiarov, O. Gusev, K. Aras, A. Gams, A. Koppel, and I. R. Efimov, Genetic algorithm-based personalized models of human cardiac action potential. PLoS One 15 (2020), e0231695.10.1371/journal.pone.0231695Suche in Google Scholar PubMed PubMed Central

[59] S. Stella, F. Regazzoni, C. Vergara, L. Dedé, and A. Quarteroni, A fast cardiac electromechanics model coupling the eikonal and the nonlinear mechanics equations. Math. Models Meth. Appl. Sci. 32 (2022), 1531–1556.10.1142/S021820252250035XSuche in Google Scholar

[60] J. G. Stinstra, B. Hopenfeld, and R. S. MacLeod, On the passive cardiac conductivity. Ann. Biomed. Engrg. 33 (2005), 1743–1751.10.1007/s10439-005-7257-7Suche in Google Scholar PubMed

[61] F. A. Syomin and A. K. Tsaturyan, A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation. J. Theor. Biol. 420 (2017), 105–116.10.1016/j.jtbi.2017.02.021Suche in Google Scholar PubMed

[62] F. Syomin, A. Osepyan, and A. Tsaturyan, Computationally efficient model of myocardial electromechanics for multiscale simulations. PLoS One 16 (2021), No. 7, e0255027.10.1371/journal.pone.0255027Suche in Google Scholar PubMed PubMed Central

[63] K. M. Terekhov, A. Danilov, I. Konshin, and Y. Vassilevski, INMOST – a toolkit for distributed mathematical modelling. https://www.inmost.org/Suche in Google Scholar

[64] V. Timmermann, L. A. Dejgaard, K. H. Haugaa, A. G. Edwards, J. Sundnes, A. D. McCulloch, and S. T. Wall, An integrative appraisal of mechano-electric feedback mechanisms in the heart. Prog. Biophys. Mol. Biol. 130 (2017), 404–417.10.1016/j.pbiomolbio.2017.08.008Suche in Google Scholar PubMed PubMed Central

[65] K. H. ten Tusscher and A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model. Amer. J. Physiol. Heart Circ. Physiol. 291 (2006), No. 3, H1088–H1100.10.1152/ajpheart.00109.2006Suche in Google Scholar PubMed

[66] A. Tsaturyan and V. Y. Izakov, Mathematical model of the coupling of excitation with contraction in the heart muscle. Biophysics 23 (1978), No. 5, 904–910.Suche in Google Scholar

[67] Y. Vassilevski, I. Konshin, G. Kopytov, and K. Terekhov, INMOST – a software platform and graphical environment for development of parallel numerical models on general meshes. Lomonosov Moscow State Univ. Publ., Moscow, 2013 (in Russian).Suche in Google Scholar

[68] Y. Vassilevski, A. Danilov, K. Lipnikov, and V. Chugunov Automated Technologies for Generation of Unstructured Computational Meshes, IV. Moscow, FizMatLit, 2016 (in Russian).Suche in Google Scholar

[69] Y. Vassilevski, K. Terekhov, K. Nikitin, and I. Kapyrin, Parallel Finite Volume Computation on General Meshes. Springer, Cham, 2020.10.1007/978-3-030-47232-0Suche in Google Scholar

[70] E. Vigmond, R. W. dos Santos, A. Prassl, M. Deo, and G. Plank, Solvers for the cardiac bidomain equations. Progress in Biophysics and Molecular Biology 96 (2008), 3–18.10.1016/j.pbiomolbio.2007.07.012Suche in Google Scholar PubMed PubMed Central

[71] K. C. Wong, L. Wang, H. Zhang, H. Liu, and P. Shi, Meshfree implementation of individualized active cardiac dynamics. Computerized Medical Imaging and Graphics 34 (2010), No. 1, 91–103.10.1016/j.compmedimag.2009.05.002Suche in Google Scholar PubMed

Received: 2023-04-21
Accepted: 2023-04-25
Published Online: 2023-06-15
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2023-0011/html
Button zum nach oben scrollen