Startseite Linear regularized finite difference scheme for the quasilinear subdiffusion equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Linear regularized finite difference scheme for the quasilinear subdiffusion equation

  • Alexander Lapin EMAIL logo und Erkki Laitinen
Veröffentlicht/Copyright: 17. August 2022

Abstract

A homogeneous Dirichlet initial-boundary value problem for a quasilinear parabolic equation with a time-fractional derivative and coefficients at the elliptic part that depend on the gradient of the solution is considered. Conditions on the coefficients ensure the monotonicity and Lipschitz property of the elliptic operator on the set of functions whose gradients in space variables are uniformly bounded. For this problem, a linear regularized mesh scheme is constructed and investigated. A sufficient condition is derived for the regularization parameter that ensures the so-called local correctness of the mesh scheme. On the basis of correctness and approximation estimates for model problems with time-fractional Caputo or Caputo–Fabrizio derivatives, accuracy estimates are given in terms of mesh and regularization parameters under the assumption of the existence of a smooth solution to the differential problem. The presented results of the numerical experiments confirm the obtained asymptotic accuracy estimates.

MSC 2010: 65M06; 65M12; 65M22

Funding statement: This research was supported by Academy of Finland, grant No. 333448 (Alexander Lapin) and grant No. 333551 (Erkki Laitinen).

References

[1] M. Caputo, Linear models of dissipation whose Q is almost frequency independent–II. Geophys. J. Astronom. Soc. 13 (1967), 529–539.10.1111/j.1365-246X.1967.tb02303.xSuche in Google Scholar

[2] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1 (2015), 73–85.Suche in Google Scholar

[3] D. N. Gerasimov, V. A. Kondratieva, and O. A. Sinkevich, An anomalous non-self-similar infiltration and fractional diffusion equation. Phys. D. 239 (2010), No. 16, 1593–1597.10.1016/j.physd.2010.04.005Suche in Google Scholar

[4] H. Jiang, D. Xu, W. Qiu, and J. Zhou, An ADI compact difference scheme for the two-dimensional semilinear time-fractional mobile–immobile equation. Comp. Appl. Math. 39 (2020), No. 287, 1–17.10.1007/s40314-020-01345-xSuche in Google Scholar

[5] B. Jin, B. Li, and Z. Zhou, Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56 (2018), No. 1, 1–23.10.1137/16M1089320Suche in Google Scholar

[6] T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205 (2005), No. 2, 719–736.10.1016/j.jcp.2004.11.025Suche in Google Scholar

[7] A. Lapin and K. Levinskaya, Numerical solution of a quasilinear parabolic equation with a fractional time derivative. Lobachevskii J. Math. 41 (2020), No. 12, 2673–2686.10.1134/S1995080220120215Suche in Google Scholar

[8] A. Lapin, and E. Laitinen, The regularized mesh scheme to solve quasilinear parabolic equation with time-fractional derivative. Lobachevskii J. Math. 42 (2021), No. 7, 1706–1714.10.1134/S1995080221070155Suche in Google Scholar

[9] A. V. Lapin, Local correctness of a class of nonlinear operator-difference schemes. Issled. Prikl. Mat., 6, Kazan University, Kazan, 1979, 32—45; J. Soviet Math. 43 (1988), No. 1, 2199–2209.10.1007/BF01095924Suche in Google Scholar

[10] D. Li, H.-L. Liao, W. Sun, J. Wang, and J. Zhang, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24 (2018), No. 1, 86–103.10.4208/cicp.OA-2017-0080Suche in Google Scholar

[11] D. Li, J. Zhang, and Z. Zhang, Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76 (2018), 848–866.10.1007/s10915-018-0642-9Suche in Google Scholar

[12] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007), No. 2, 1552–1553.10.1016/j.jcp.2007.02.001Suche in Google Scholar

[13] S. Tatar, R. Tnaztepe, and M. Zeki, Numerical solutions of direct and inverse problems for a time fractional viscoelastoplastic equation. J. Engrg. Mech. 143 (2017), No. 7, 04017035.10.1061/(ASCE)EM.1943-7889.0001239Suche in Google Scholar

[14] S. Tatar and S. Ulusoy, Analysis of direct and inverse problems for a fractional elastoplasticity model. Filomat 31 (2017), No. 3, 699–708.10.2298/FIL1703699TSuche in Google Scholar

[15] P. Zhu, and S. L. Xie, ADI finite element method for 2D nonlinear time fractional reaction–subdiffusion equation. Amer. J. Comput. Math. 6 (2016), 336–356.10.4236/ajcm.2016.64034Suche in Google Scholar

Received: 2022-03-13
Accepted: 2022-03-23
Published Online: 2022-08-17
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2022-0019/html
Button zum nach oben scrollen