Home Glacier parameterization in SLAV numerical weather prediction model
Article
Licensed
Unlicensed Requires Authentication

Glacier parameterization in SLAV numerical weather prediction model

  • Rostislav Yu. Fadeev EMAIL logo , Kseniya A. Alipova , Anna S. Koshkina , Timofey E. Lapin , Nadezhda A. Ozerova , Alina E. Pereladova , Andrey V. Sakhno and Mikhail A. Tolstykh
Published/Copyright: August 17, 2022

Abstract

In the present paper, we describe a one-dimensional glacier parameterization for use in the numerical weather prediction models. The proposed scheme is implemented into the global atmospheric model SLAV. To avoid inconsistency of surface temperature and turbulent heat fluxes in the lower troposphere, glacier parameterization has been iteratively coupled with both planetary boundary layer and land surface schemes. First results from numerical experiments with the SLAV model show that the introduction of a simplified description of the glacier heat capacity can significantly improve the 2-meter temperature long-range weather forecast skill.

MSC 2010: 86-08; 86A10

Funding statement: The study in Sections 1 and 2 was supported by the Moscow Center of Fundamental and Applied Mathematics at INM RAS (Agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2022-286). The works described in Sections 3 and 4 were carried out at the Hydrometcentre of Russia and were funded by the Russian Science Foundation (project No. 21-17-00254).

Acknowledgment

The authors are grateful to the Sirius University administration, to A. S. Nenashev (head of the Scientific Centre for Information Technologies and Artificial Intelligence), to E. E. Tyrtyshnikov (director of the INM RAS and head of the School of ‘Computational Technologies, Multidimensional Data Analysis and Modelling’ where development activities have been initiated) for the opportunities for discussion concerning this study. The authors are also grateful to Andrey Glazunov (INM RAS) for the comments on the paper draft.

References

[1] S. Boussetta, G. Balsamo, G. Arduini, E. Dutra, J. McNorton, M. Choulga, A. Agusti-Panareda, A. Beljaars, N. Wedi, J. Munoz-Sabater, P. de Rosnay, I. Sandu, I. Hadade, G. Carver, C. Mazzetti, C. Prudhomme, D. Yamazaki, and E. Zsoter, ECLand: The ECMWF Land Surface Modelling System. Atmosphere 12 (2021), 723.10.3390/atmos12060723Search in Google Scholar

[2] J. G. Charney, W. J. Quirk, S. H. Chow, and J. Kornfield, A comparative study of the effects of albedo change on drought in semiarid regions. J. Atmos. Sci. 34 (1977), 1366–1385.10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2Search in Google Scholar

[3] Y. Cheng, V. M. Canuto, and A. M. Howard, An improved model for the turbulent PBL. J. Atmos. Sci. 59 (2002), 1550–1565.10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2Search in Google Scholar

[4] M.-D. Chou and M. J. Suarez, A solar radiation parameterization (CLIRAD-SW) for atmospheric studies. NASA Tech. Memo. 10460 (1999), No. 15. https://ntrs.nasa.gov/api/citations/19990060930/downloads/19990060930.pdfSearch in Google Scholar

[5] A. Davison and D. Hinkley, Bootstrap Methods and their Application (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge, Cambridge University Press, 1997.10.1017/CBO9780511802843Search in Google Scholar

[6] E. J. Dudewicz, Y. Ma, E. S. Mai, and H. Su, Exact solutions to the Behrens–Fisher Problem: Asymptotically optimal and finite sample efficient choice among. J. Stat. Planning Infer. 137 (2007), No 5, 1584–1605.10.1016/j.jspi.2006.09.007Search in Google Scholar

[7] B. I. Duran, J.-F. Geleyn, and F. Vana, A compact model for the stability dependency of TKE production–destruction–conversion terms valid for the Whole range of Richardson numbers. J. Atmos. Sci. 71 (2014), 3004–3026.10.1175/JAS-D-13-0203.1Search in Google Scholar

[8] R. Yu. Fadeev, M. A. Tolstykh, and E. M. Volodin, Climate version of the global atmospheric model SL–AV: development and preliminary results. Russ. Meteor. Hydrol. 44 (2019), No. 1, 13–22.10.3103/S1068373919010023Search in Google Scholar

[9] R. A. Fisher and C. D. Koven, Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Mod. Earth Sys. 12 (2020), No. 4, e2018MS001453.10.1029/2018MS001453Search in Google Scholar

[10] J. Gabbi, M. Carenzo, F. Pellicciotti, A. Bauder, and M. Funk, A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. J. Glaciol. 60 (2014), No. 224, 1140–1154.10.3189/2014JoG14J011Search in Google Scholar

[11] J.-F. Geleyn, E. Bazile, P. Bougeault, M. Deque, V. Ivanovici, A. Joly, L. Labbe, J.-P. Piedelievre, J.-M. Piriou, and J.-F. Royer, Atmospheric parameterization schemes in Meteo-France’s ARPEGE N.W.P. model. Parameterization of subgrid-scale physical processes. ECMWF Seminar proc., Reading, UK (1994), 385–402.Search in Google Scholar

[12] L. Gerard, J.-M. Piriou, R. Brozkova, J.-F. Geleyn, and D. Banciu, Cloud and precipitation parameterization in a mesogamma-scale operational weather prediction model. Mon. Wea. Rev. 137 (2009), 3960–3977.10.1175/2009MWR2750.1Search in Google Scholar

[13] C. Girard and Y. Delage, Stable schemes for nonlinear vertical diffusion in atmospheric circulation models. Mon. Wea. Rev. 118 (1990), No. 3, 737–745.10.1175/1520-0493(1990)118<0737:SSFNVD>2.0.CO;2Search in Google Scholar

[14] W. Greuell and T. Konzelmann, Numerical modelling of the energy balance and the englacial temperature of the Greenland Ice Sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.) Global and Planetary Change 9 (1994), No. 1-2, 91–114.10.1016/0921-8181(94)90010-8Search in Google Scholar

[15] R. Hamdi, D. Degrauwe, A. Duerinckx, J. Cedilnik, V. Costa, T. Dalkilic, K. Essaouini, M. Jerczynki, F. Kocaman, L. Kullmann, J.-F. Mahfouf, F. Meier, M. Sassi, S. Schneider, F. Vana, and P. Termonia, Evaluating the performance of SURFEXv5 as a new land surface scheme for the ALADINcy36 and ALARO-0 models. Geosci. Model Dev. 7 (2014), 23–39.10.5194/gmd-7-23-2014Search in Google Scholar

[16] H. Hersbach, The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 146 (2020), No. 730, 1999–2049.10.1002/qj.3803Search in Google Scholar

[17] R. Hock and B. Holmgren, A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. J. Glaciol. 51 (2005), No. 172, 25–36.10.3189/172756505781829566Search in Google Scholar

[18] R. Hock, G. Rasul, C. Adler, B. Cceres, S. Gruber, Y. Hirabayashi, M. Jackson, A. Kab, S. Kang, S. Kutuzov, A. Milner, U. Molau, S. Morin, B. Orlove, and H. Steltzer, High mountain areas. Special report on the ocean and cryosphere in a changing climate: IPCC. (2019). https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/06_SROCC_Ch04_FINAL.pdfSearch in Google Scholar

[19] H. Huwald, L.-B. Tremblay, and H. Blatter, A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data. J. Geophys. Res. 110 (2005), C05010.10.1029/2004JC002328Search in Google Scholar

[20] C. M. Jarque and A. K. Bera, A test for normality of observations and regression residuals. Inter. Stat. Rev. 55 (1987), No. 2, 163–172.10.2307/1403192Search in Google Scholar

[21] E. Kalnay and M. Kanamitsu, Time schemes for strongly nonlinear damping equations. Mon. Wea. Rev. 116 (1988), No. 10, 1945–1958.10.1175/1520-0493(1988)116<1945:TSFSND>2.0.CO;2Search in Google Scholar

[22] H. W. Lilliefors, On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc. 62 (1967), 399–402.10.1080/01621459.1967.10482916Search in Google Scholar

[23] H. B. Mann and D. R. Whitney, On a test of whether one of two random variables is stochastically larger than the other. Annals Math. Stat. 18 (1947), 50–60.10.1214/aoms/1177730491Search in Google Scholar

[24] P. Marquet, Definition of a moist entropy potential temperature: Application to FIRE-I data flights. Quart. J. Roy. Meteor. Soc. 137 (2011), 768–791.10.1002/qj.787Search in Google Scholar

[25] B. Marzeion, R. Hock, B. Anderson, A. Bliss, N. Champollion, K. Fujita, M. Huss, W. W. Immerzeel, P. Kraaijenbrink, J.-H. Malles, F. Maussion, V. Radic, D. R. Rounce, A. Sakai, S. Shannon, R. van de Wal, and H. Zekollari, Partitioning the uncertainty of ensemble projections of global glacier mass change. Earth’s Future 8 (2020), e2019EF001470.10.1029/2019EF001470Search in Google Scholar

[26] D. G. Miralles, A. J. Teuling, C. C. van Heerwaarden, and J. V.-G. de Arellano, Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7 (2014), No. 5, 345–349.10.1038/ngeo2141Search in Google Scholar

[27] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res. 102 (1997), No. 16, 663–682.10.1029/97JD00237Search in Google Scholar

[28] J. Noilhan and S. Planton, A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev. 117 (1989), No. 3, 536–549.10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2Search in Google Scholar

[29] j. Noilhan and J.-F. Mahfouf, The ISBA land surface parameterization scheme. Global Planet. Change 13 (1996), 145–159.10.1016/0921-8181(95)00043-7Search in Google Scholar

[30] L. F. Richardson, Weather prediction by numerical process. Q. J. Roy. Meteor. Soc. 48 (1922), 282–284.10.1017/CBO9780511618291Search in Google Scholar

[31] P. J. Sellers, Y. Mintz, Y. C. Sud, and A. Dalcher, A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci. 43 (1986), No. 6, 505–531.10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2Search in Google Scholar

[32] V. M. Stepanenko, I. A. Repina, G. Ganbat, and G. Davaa, Numerical simulation of ice cover of saline lakes. Izv. Atmos. Ocean Phys. 55 (2019), No. 1, 405–416.10.1134/S0001433819010092Search in Google Scholar

[33] R. B. Stull, An Introduction to Boundary Layer Meteorology. Springer Science&Business Media, 1988.10.1007/978-94-009-3027-8Search in Google Scholar

[34] T. Tarasova and B. Fomin, The use of new parameterizations for gaseous absorption in the CLIRAD-SW solar radiation code for models. J. Atmos. Oceanic Tech. 24 (2007), No. 6, 1157–1162.10.1175/JTECH2023.1Search in Google Scholar

[35] M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, Development of the multiscale version of the SL-AV global atmosphere model. Russ. Meteor. Hydrol. 40 (2015), No. 6, 374–382.10.3103/S1068373915060035Search in Google Scholar

[36] M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, G. S. Goyman, R. B. Zaripov, D. B. Kiktev, S. V. Makhnorylova, V. G. Mizyak, and V. S. Rogutov, Multiscale global atmosphere model SL-AV: the results of medium-range weather forecasts. Russ. Meteor. Hydrol. 43 (2018), No. 11, 773–779.10.3103/S1068373918110080Search in Google Scholar

[37] S. V. Travova, V. M. Stepanenko, A. I.Medvedev, M. A. Tolstykh, and V. Yu. Bogomolov. Quality of soil simulation by the INM RAS–MSU soil scheme as a part of the SL-AV weather prediction model. Russ. Meteor. Hydrol. 47 (2022), No. 3, 159–173.10.3103/S1068373922030013Search in Google Scholar

[38] E. M. Volodin and V. N. Lykosov, Parameterization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izv. Atmos. Ocean Phys. 34 (1998), 405–416.Search in Google Scholar

Received: 2021-11-30
Accepted: 2022-02-11
Published Online: 2022-08-17
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rnam-2022-0016/html
Scroll to top button