Startseite Analysis of the impact of left ventricular assist devices on the systemic circulation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of the impact of left ventricular assist devices on the systemic circulation

  • Sergey S. Simakov , Alexander E. Timofeev EMAIL logo , Timur M. Gamilov , Philipp Yu. Kopylov , Dmitry V. Telyshev und Yuri V. Vassilevski
Veröffentlicht/Copyright: 30. Oktober 2020

Abstract

In this work we analyze the impact of left ventricular assist devices on the systemic circulation in subjects with heart failure associated with left ventricular dilated cardiomyopathy. We use an integrated model of the left heart and blood flow in the systemic arteries with a left ventricular assist device. We study the impact of the rotation speed of the pump on haemodynamic characteristics of distal arteries. We identify the rotation speed for simultaneous recovery of the healthy average values in all systemic arteries, the heart and the aorta. Our numerical experiments show that blood distribution over the graph of systemic vessels does not depend on flow regimes in ascending aorta. We also observe that the optimal pump rotation speed changes in the atherosclerotic vascular network and depends on stenoses localization.

MSC 2010: 65D25; 37M05; 92B99

Funding statement: The research was supported by the Russian Foundation for Basic Research (grant Nos. 18-00-01661, 18-00-01524, 18-00-01659, 18-31-20048, 19-51-45001) and the world-class research center ‘Moscow Center for Fundamental and Applied Mathematics' (agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624).

References

[1] J. Aguado-Sierra, K. H. Parker, J. E. Davies, D. Francis, A. D. Hughes, and J. Mayet, Arterial pulse wave velocity in coronary arteries. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. (2006), 867–870.10.1109/IEMBS.2006.259375Suche in Google Scholar PubMed

[2] J. Alastruey, K. H. Parker, J. Peiró, S. M. Byrd, and S. J. Sherwin, Modeling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40 (2007), No. 8, 1794–1805.10.1016/j.jbiomech.2006.07.008Suche in Google Scholar PubMed

[3] I. R. Argueta-Morales, R. Tran, A. Ceballos, W. Clark, E. Divo, A. J. Kassab, and W. M. DeCampli, Mathematical modeling of patient-specific ventricular assist device implantation to reduce particulate embolisation rate to cerebral vessels. J. Biomech. Engrg. 136 (2014), No. 7, 071008.10.1115/1.4026498Suche in Google Scholar PubMed

[4] K. Barret, H. Brooks, S. Boitano, and S. Barman, Ganong’s Review of Medical Physiology, 23-rd edition. The McGraw-Hill, 2010.Suche in Google Scholar

[5] N. Bessonov, A. Sequeira, S. Simakov, Yu. Vassilevski, and V. Volpert, Methods of blood flow modelling. Math. Modelling Natural Phenomena11 (2016), No. 1, 1–25.10.1051/mmnp/201611101Suche in Google Scholar

[6] S. Boës, B. Thamsen, M. Haas, M. S. Daners, M. Meboldt, and M. Granegger, Hydraulic characterisation of implantable rotary blood pumps. IEEE Trans. Biomed. Engrg. 66 (2018), No. 6, 1618–1627.10.1109/TBME.2018.2876840Suche in Google Scholar PubMed

[7] E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. Müller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet, and J. Alastruey, A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Meth. Biomed. Engrg. 31 (2015), No. 10, e02732.10.1002/cnm.2732Suche in Google Scholar PubMed

[8] D. V. Burenchev, F. Y. Kopylov, A. A. Bykova, T. M. Gamilov, D. G. Gognieva, S. S. Simakov, and Yu. V. Vasilevsky, Mathematical modelling of circulation in extracranial brachocephalic arteries at pre-operation stage in carotid endarterectomy. Russ. J. Cardiology144 (2017), No. 4, 88–92.10.15829/1560-4071-2017-4-88-92Suche in Google Scholar

[9] L. G. E. Cox, S. Loerakker, M. C. M. Rutten, B. A. J. M. de Mol, and F. N. van de Vosse, A mathematical model to evaluate control strategies for mechanical circulatory support. Artificial Organs33 (2009), No. 8, 593–603.10.1111/j.1525-1594.2009.00755.xSuche in Google Scholar PubMed

[10] A. Danilov, Yu. Ivanov, R. Pryamonosov, and Yu. Vassilevski, Methods of graph network reconstruction in personalised medicine. Int. J. Numer. Meth. Biomed. Engrg. 32 (2016), No. 8, e02754.10.1002/cnm.2754Suche in Google Scholar PubMed

[11] N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, and V. Volpert, Mathematical modelling of atherosclerosis. Math. Modelling Natur. Phenomena14 (2019), No. 6, 2019050.10.1051/mmnp/2019050Suche in Google Scholar

[12] T. Gamilov, Ph. Kopylov, and S. Simakov, Computational simulations of fractional flow reserve variability. Lecture Notes in Comput. Sci. Engrg. 112 (2016), 499–507.10.1007/978-3-319-39929-4_48Suche in Google Scholar

[13] T. Gamilov, S. Simakov, and Ph. Kopylov, Computational modeling of multiple stenoses in carotid and vertebral arteries. In: Trends in Biomathematics: Modeling, Optimisation and Computational Problems (Ed. R. Mondaini). Springer, Cham, 2018.10.1007/978-3-319-91092-5_20Suche in Google Scholar

[14] T. Gamilov, Ph. Kopylov, M. Serova, R. Syunayaev, A. Pikunov, S. Belova, F. Liang, J. Alastruey, and S. Simakov, Computational analysis of coronary blood flow: the role of asynchronous pacing and arrhythmias. Mathematics8 (2020), No. 8, 1205.10.3390/math8081205Suche in Google Scholar

[15] T. Gamilov, J. Alastruey, and S. Simakov, Linear optimisation algorithm for 1D haemodynamics parameter estimation. In: Proc. of the 6th Europ. Conf. on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018 (Eds. R. Owen, R. de Borst, J. Reese, and C. Pearce). CIMNE, 2020, pp. 1845–1850.Suche in Google Scholar

[16] T. Gamilov and S. Simakov, Blood flow under mechanical stimulations. Advances in Intelligent Systems and Computing1028 (2020), No. AISC, 143–150.10.1007/978-3-030-35048-2_17Suche in Google Scholar

[17] G. A. Giridharan, T. J. Lee, M. Ising, et al, Miniaturization of mechanical circulatory support systems. Artificial Organs, 36 (2012), No. 8, 731–739.10.1111/j.1525-1594.2012.01523.xSuche in Google Scholar PubMed PubMed Central

[18] T. Korakianitis and Y. Shi, Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomechanics39 (2006), No. 11, 1964–1982.10.1016/j.jbiomech.2005.06.016Suche in Google Scholar PubMed

[19] T. Korakianitis and Y. Shi, A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Medical Engrg. & Physics28 (2006), 631–628.10.1016/j.medengphy.2005.10.004Suche in Google Scholar PubMed

[20] K. Levenberg, A method for the solution of certain nonlinear problems in least squares. Quarterly of Applied Mathematics2 (1944), No. 2, 164–168.10.1090/qam/10666Suche in Google Scholar

[21] F. Liang, S. Takagi, R. Himeno, and H. Liu, Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Medical & Biological Engrg. & Computing47 (2009), 743–755.10.1007/s11517-009-0449-9Suche in Google Scholar PubMed

[22] K. M. Lim, I. S. Kim, S. W. Choi, B. G. Min, Y. S. Won, H. Y. Kim, and E. B. Shim, Computational analysis of the effect of the type of LVAD flow on coronary perfusion and ventricular afterload. J. Physiol. Sci. 59 (2009), 307–316.10.1007/s12576-009-0037-7Suche in Google Scholar PubMed

[23] K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods. Urite, Moscow, 2018.Suche in Google Scholar

[24] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11 (1963), No. 2, 431–441.10.1137/0111030Suche in Google Scholar

[25] J. R. Martina, P. H. M. Bovendeerd, N. de Jonge, B. A. J. M. de Mol, J. R. Lahpor, and M. C. M. Rutten, Simulation of changes in myocardial tissue properties during left ventricular assistance with a rotary blood pump. Artificial Organs37 (2013), No. 6, 531–540.10.1111/j.1525-1594.2012.01548.xSuche in Google Scholar PubMed

[26] B. J. E. Misgeld, D. Rüschen, S. Schwandtner, S. Heinke, M. Walter, and S. Leonhardt, Robust decentralised control of a hydrodynamic human circulatory system simulator. Biomedical Signal Processing and Control20 (2015), 35–44.10.1016/j.bspc.2015.04.004Suche in Google Scholar

[27] J. P. Mynard, M. R. Davidson, D. J. Penny, and J. J. Smolich, A simple, versatile valve model for use in lumped parameter and one-Dimensional cardiovascular models. Int. J. Numer. Meth. Biomed. Engrg. 28 (2012), No. 6-7, 626–641.10.1002/cnm.1466Suche in Google Scholar PubMed

[28] D. S. Petukhov and D. V. Telyshev, Control algorithms for rotary blood pumps used in assisted circulation. Biomed. Engrg. 50 (2016), No. 3, 157–160.10.1007/s10527-016-9609-zSuche in Google Scholar

[29] A. A. Pugovkin, A. Markov, S. V. Selishchev, L. Korn, M. Walter, SS. Leonhardt, L. A. Bockeria, O. L. Bockeria, and D. V. Telyshev, Advances in haemodynamic analysis in cardiovascular diseases investigation of energetic characteristics of adult and pediatric Sputnik left ventricular assist devices during mock circulation support. Cardiology Research and Practice2019, 4593174.10.1155/2019/4593174Suche in Google Scholar PubMed PubMed Central

[30] A. Quaini, S. Čanić, and D. Paniagua, Numerical charcterisation of haemodynamics conditions near aortic valve after implantation of left ventricular assist device. Math. Biosci. Engrg. 8 (2011), No. 3, 785–806.10.3934/mbe.2011.8.785Suche in Google Scholar PubMed

[31] P. Santagata, F. Rigo, S. Gherardi, L. Pratali, J. Drozdz, A. Varga, and E. Picano, Clinical and functional determinants of coronary flow reserve in non-ischemic dilated cardiomyopathy. Int. J. Cardiology105 (2005), No. 1, 46–52.10.1016/j.ijcard.2004.11.013Suche in Google Scholar PubMed

[32] A. Savitzky and M. J. E. Golay, Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry36 (2016), No. 8, 1627–1639.10.1021/ac60214a047Suche in Google Scholar

[33] R. F. Schmidt and G. Thews, Human Physiology, Vol. 2, 2nd ed. Springer-Verlag, Berlin–Heidelberg, Germany, 1989.10.1007/978-3-642-73831-9Suche in Google Scholar

[34] B. D. Seeley and D. F. Young, Effect of geometry on pressure losses across models of arterial stenoses. J. Biomech. (1976), No. 9, 439–448.10.1016/0021-9290(76)90086-5Suche in Google Scholar

[35] S. V. Selishchev and D. V. Telyshev, Optimisation of the Sputnik VAD design. Int. J. Artificial Organs39 (2016), No. 8, 407.10.5301/ijao.5000518Suche in Google Scholar PubMed

[36] Y. Shi, P. Lawford, and R. Hose, Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Engrg. OnLine10 (2011), 33.–414.10.1186/1475-925X-10-33Suche in Google Scholar PubMed PubMed Central

[37] Y. Shi and T. Korakianitis, Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps. Computers in Biology and Medicine93 (2018), 127–138.10.1016/j.compbiomed.2017.12.012Suche in Google Scholar PubMed

[38] S. G. Shroff, J. S. Janicki, and K. T. Weber, Evidence and quantitation of left ventricular systolic resistance. American J. of Physiology-Heart and Circulatory Physiology249 (1985), No. 2, H358–H370.10.1152/ajpheart.1985.249.2.H358Suche in Google Scholar PubMed

[39] S. S. Simakov, Modern methods of mathematical modeling of blood flow using reduced order methods. Computer Research and Modeling10 (2018), No. 5, 581–604.10.20537/2076-7633-2018-10-5-581-604Suche in Google Scholar

[40] S. Simakov and T. Gamilov, Computational study of the cerebral circulation accounting for the patient-specific anatomical features. Smart Innovation, Systems and Technologies133 (2019), 309–330.10.1007/978-3-030-06228-6_25Suche in Google Scholar

[41] S. S. Simakov, Lumped parameter heart model with valve dynamics. Russ. J. Numer. Anal. Math. Modeling34 (2019), No. 5, 289–300.10.1515/rnam-2019-0025Suche in Google Scholar

[42] S. Simakov, A. Timofeev, T. Gamilov, Ph. Kopylov, D. Telishev, and Yu. Vassilevski, Analysis of operating modes for left ventricle assist devices via integrated models of blood circulation. Mathematics8 (2020), No. 8, 1331.10.3390/math8081331Suche in Google Scholar

[43] H. Suga, Cardiac energetics: from EMAX to pressure-volume area. Clinical and Experimental Pharmacology and Physiology30 (2003), 580–585.10.1046/j.1440-1681.2003.03879.xSuche in Google Scholar PubMed

[44] Y. Sun, B. J. Sjöberg, P. Ask, D. Loyd, and B. Wranne, Mathematical model that characterizes transmitral and pulmonary venous flow velocity patterns. American J. of Physiology268 (1995), No. 1, H476–H489.10.1152/ajpheart.1995.268.1.H476Suche in Google Scholar PubMed

[45] Y. Sun, M. Beshara, R. J. Lucariello, and S. A. Chiaramida, A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. American J. Physiology272 (1997), H1499–H1515.10.1152/ajpheart.1997.272.3.H1499Suche in Google Scholar PubMed

[46] D. Telyshev, M. Denisov, A. Pugovkin, S. Selishchev, and I. Nesterenko, The progress in the novel pediatric rotary blood pump sputnik development. Artificial Organs42 (2018), No. 4, 432–443.10.1111/aor.13109Suche in Google Scholar PubMed

[47] D. V. Telyshev, A. A. Pugovkin, and S. V. Selishchev, A mock circulatory system for testing pediatric rotary blood pumps. Biomed. Engrg. 51 (2017), No. 2, 83–87.10.1007/s10527-017-9689-4Suche in Google Scholar

[48] J. J. Teuteberg, J. C. Clevelend Jr, J. Cowge, et.al., The society of thoracic surgeons intermacs 2019 annual report: the changing landscape of devices and indications. The Annals of Thoracic Surgery109 (2020), No. 3, 649-660.10.1016/j.athoracsur.2019.12.005Suche in Google Scholar PubMed

[49] D. Telyshev, D. Petukhov, and S. Selishchev, Numerical modeling of continuous-flow left ventricular assist device performance. Int. J. of Artificial Organs42 (2019), No. 11, 611–620.10.1177/0391398819852365Suche in Google Scholar PubMed

[50] F. N. Van de Vosse and N. Stergiopulos, Pulse wave propagation in the arterial tree. Annual Rev. Fluid Mechanics43 (2011), 467–499.10.1146/annurev-fluid-122109-160730Suche in Google Scholar

[51] Yu. Vassilevski, M. Olshanskii, S. Simakov, A. Kolobov, and A. Danilov, Personalised Computational Haemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy. Academic Press, 2020.Suche in Google Scholar

[52] Yu. V. Vassilevski, V. Yu. Salamatova, and S. S. Simakov, On the elasticity of blood vessels in one-dimensional problems of haemodynamics. Comput. Math. Math. Phys. 55 (2015), No. 9, 1567–1578.10.1134/S0965542515090134Suche in Google Scholar

[53] Yu. V. Vassilevski, A. A. Danilov, S. S. Simakov, T. M. Gamilov, Yu. A. Ivanov, and R. A. Pryamonosov, Patient-specific anatomical models in human physiology. Russ. J. Numer. Anal. Math. Modelling30 (2015), No. 3, 185–201.10.1515/rnam-2015-0017Suche in Google Scholar

[54] K. R. Walley, Left ventricular function: time-varying elastance and left ventricular aortic coupling. Critical Care20 (2016), No. 270, 1–11.10.1186/s13054-016-1439-6Suche in Google Scholar PubMed PubMed Central

[55] D. F. Young and F. Y. Tsai, Flow characteristics in models of arterial stenoses, I. Steady flow. J. Biomechanics (1973), No. 6, 395–410.10.1016/0021-9290(73)90099-7Suche in Google Scholar

[56] D. F. Young and F. Y. Tsai, Flow characteristics in models of arterial stenoses, II. Unsteady flow. J. Biomechanics (1973, No. 6, 547–559.10.1016/0021-9290(73)90012-2Suche in Google Scholar

AA

Aortic arch

AV

Aortic valve

DCM

Dilated cardiomyopathy

HF

Heart failure

LA

Left atrium

LV

Left ventricle

LVAD

Left ventricular assist device

MV

Mitral valve

PV

Pulmonary veins

CA

Coronary artery

RAF

Relative average flow

Appendix A

Tables A.1 and A.2 present the parameters of the systemic and coronary arteries, while Table A.3 contains the parameters of the Windkessel compartments.

Tab. A1

Parameters of the systemic arteries (see Fig. 2 for the vessels numbering).

No.Artery titleLength (cm)Radius (mm)c0 (cm/s)mean RAF(%)
1aAortic arch Ip01.515.0640042.85
1bAortic arch Ip12.9415.0640043.32
1cAortic arch Ip23.013.5640094.94
2Brachiocephalic Trunk4.746.4444013.96
3Aortic arch II0.9612.7641080.98
4Subclavian Right I1.574.544704.65
5Common carotid right8.123.95009.31
6Vertebral right20.451.346300.88
7aSubclavian right II4.113.245203.76
7bAxillary right12.02.195703.76
7cBrachial right22.311.955803.76
8Radial right30.091.386251.71
9Ulnar right I2.981.416202.05
10aCommon interosseous right1.630.966600.36
10bPosterior interosseous right23.060.686900.36
11Ulnar right II23.931.416201.70
12External carotid right6.092.275602.29
13Internal carotid right13.212.775307.02
14Common carotid left12.133.94909.21
15Aortic arch III0.712.4241071.77
16External carotid left6.092.275602.28
17Internal carotid left13.212.775306.93
18Subclavian left I4.944.194804.64
19aAortic arch IV4.3111.4241067.13
19bThoracic aorta I0.9910.4641567.12
20Vertebral left20.421.346300.88
21aSubclavian left II4.112.895303.76
21bAxillary left12.02.195703.76
21cBrachial left22.311.955803.76
22Radial left31.091.386251.73
23Ulnar left I2.981.416202.02
24aCommon interosseous left1.630.966600.36
24bPosterior interosseous left23.060.686900.36
25Ulnar left II23.931.416201.67
26Posterior intercostal T6 R19.691.46200.09
27Thoracic aorta II0.7910.2941567.04
28Posterior intercostal T6 left17.81.46220.08
29Thoracic aorta III1.5610.0741566.95
30Posterior intercostal T7 R20.161.556100.09
31Thoracic aorta IV0.539.8741566.86
32Posterior intercostal T7 left18.521.556100.09
33aThoracic aorta V12.168.6842066.76
33bThoracic aorta VI0.327.5243066.76
34Celiac trunk1.683.2851010.99
35Abdominal aorta I1.47.4143055.77
36Common hepatic6.662.695406.41
37Splenic I0.392.175704.58
38Left gastric9.291.516100.06
39Splenic II6.442.175704.52
40Superior mesenteric21.643.934909.85
41Abdominal aorta II0.437.2943045.92
42Renal left2.182.715409.49
43Abdominal aorta III1.27.1943036.43
44Renal right3.773.15209.47
45Abdominal aorta IV5.416.7744026.96
46Inferior mesenteric9.022.085700.90
47Abdominal aorta V4.226.1744026.06
48Common iliac right7.644.2948013.04
49Common iliac left7.44.2948013.02
50aExternal iliac right10.223.285107.86
50bFemoral right I3.163.175157.86
51Internal iliac right7.252.825305.18
52Profunda femoris right23.842.145706.09
53aFemoral right II31.932.915301.77
53bPopliteal right I13.22.535501.76
54Anterior tibial right38.621.176400.81
55aPopliteal right II0.882.365550.95
55bTibiofibular trunk right3.622.355550.95
55cPosterior tibial right38.291.236400.95
56aExternal iliac left10.223.285107.85
56bFemoral left I3.163.175157.85
57Internal iliac left7.252.825305.16
58Profunda femoris left23.842.145706.09
59aFemoral left II31.932.915301.76
59bPopliteal left I13.22.535501.76
60Anterior tibial left38.621.176400.81
61aPopliteal left II0.882.365550.95
61bTibiofibular trunk left3.622.355550.95
61cPosterior tibial left38.291.236400.95
62Basilar2.61.757001.76
63Posterior cerebral right I1.01.07000.88
64Posterior cerebral left I1.01.07000.88
65Posterior cerebral right II3.01.07001.43
66Posterior cerebral left II3.01.07001.42
67Posterior communicating right3.00.757000.54
68Posterior communicating left3.00.757000.54
69Anterior cerebral left I1.21.27001.82
70Anterior cerebral right I1.21.27001.89
71Middle cerebral left5.21.37004.57
72Middle cerebral right4.31.257004.58
73Anterior cerebral right II10.31.27001.86
74Anterior cerebral left II10.31.27001.86
75Anterior communicating0.30.757000.03

Tab. A2

Parameters of the coronary arteries (see Fig. 3 for the vessels numbering).

No.Artery titleLength (cm)Radius (mm)c0 (cm/s)R (kBa⋅s/ml)mean RAF (%)
3Left coronary artery root2.612.4812003.71
4Left anterior descending I1.832.0712001.92
52.450.8912000.39
60.650.451200643.370.20
71.580.451200643.370.19
8Left anterior descending II2.041.5212001.53
9Diagonal branch2.760.9812000.50
103.30.441200505.080.22
111.980.481200425.320.28
12Left anterior descending III1.321.1612001.03
132.660.561200305.910.39
14Left anterior descending IV3.670.8912000.64
152.260.491200405.880.29
161.940.5312000.35
170.970.451200643.370.18
181.840.451200643.370.17
19Left cirmcuflex I3.131.9612001.79
20Left cirmcuflex II4.971.4512000.46
212.160.651200449.280.28
224.050.9212000.18
232.490.4512001.35⋅1030.09
241.970.4412001.35⋅1030.09
25Left marginal branch2.471.5112001.32
262.450.8912000.34
271.50.531200714.040.18
281.110.521200762.120.17
292.581.1912000.98
301.340.541200698.980.18
310.710.9412000.80
322.10.511200779.190.16
332.220.7212000.64
341.230.4512005.84⋅1030.02
350.710.941200196.830.62
36Right coronary artery root1.741.7313001.35
372.350.9213000.12
380.380.4513002.20⋅1030.06
390.270.4413002.20⋅1030.06
402.050.981300290.670.44
41Right coronary I2.421.6313000.79
420.811.2713000.25
431.860.7813000.12
440.750.4513002.20⋅1030.06
450.620.4413002.20⋅1030.06
462.950.813000.13
470.470.4613001.68⋅1030.08
480.760.4613002.20⋅1030.06
49Right coronary II4.531.2913000.54
50Right marginal branch1.840.9913000.22
511.340.5413001.14⋅1030.11
522.340.7613000.11
533.170.3613002.20⋅1030.05
541.050.2713002.20⋅1030.05
55Right coronary III4.60.9313000.32
56Posterior descending3.370.713000.11
572.340.313002.20⋅1030.05
581.880.3413002.20⋅1030.05
592.420.7513000.21
603.140.4413002.20⋅1030.06
610.660.6713000.15
621.470.4513002.20⋅1030.06
630.870.5813000.10
642.750.313002.20⋅1030.05
651.230.2113002.20⋅1030.05

Tab A3

Parameters of the Windkessel compartments (compartments numbering coincides with the terminal arteries numbering in Fig. 2).

No.Artery titleR1 (kBa⋅s/ml)R2 (kBa⋅s/ml)C (ml/kBa)
8Radial right16.9667.854.91⋅10−3
10bPosterior interosseous right70.28281.141.18⋅10−3
11Ulnar right II17.2769.084.82⋅10−3
12External carotid right13.855.226.03⋅10−3
16External carotid left13.8555.416.01⋅10−3
22Radial left16.6666.635.00⋅10−3
24bPosterior interosseous left70.54282.161.18⋅10−3
25Ulnar left II17.670.424.73⋅10−3
26Posterior intercostal T6 right366.221.46⋅1032.27⋅10−4
28Posterior intercostal T6 left375.711.50⋅1032.22⋅10−4
30Posterior intercostal T7 right341.681.37⋅1032.44⋅10−4
32Posterior intercostal T7 left344.611.38⋅1032.42⋅10−4
36Common hepatic4.9219.691.69⋅10−2
38Left gastric504.792.02⋅1031.65⋅10−4
39Splenic II6.9627.831.20⋅10−2
40Superior mesenteric3.2112.832.60⋅10−2
42Renal left3.3313.32.50⋅10−2
44Renal right3.3413.352.49⋅10−2
46Inferior mesenteric35.15140.612.37⋅10−3
51Internal iliac right6.0924.381.37⋅10−2
52Profunda femoris right5.0420.151.65⋅10−2
54Anterior tibial right36.05144.212.31⋅10−3
55cPosterior tibial right31.1124.42.68⋅10−3
57Internal iliac left6.1124.451.36⋅10−2
58Profunda femoris left5.0420.161.65⋅10−2
60Anterior tibial left36.06144.252.31⋅10−3
61cPosterior tibial left31.11124.452.68⋅10−3
65Posterior cerebral right II21.1184.443.13⋅10−3
66Posterior cerebral left II21.2685.022.94⋅10−3
71Middle cerebral left6.3826.379.80⋅10−3
72Middle cerebral right6.3626.299.83⋅10−3
73Anterior cerebral right II16.1664.624.13⋅10−3
74Anterior cerebral left II16.1664.624.13⋅10−3

Received: 2020-07-30
Accepted: 2020-09-30
Published Online: 2020-10-30
Published in Print: 2020-10-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2020-0025/pdf
Button zum nach oben scrollen