Startseite Spatially averaged haemodynamic models for different parts of cardiovascular system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Spatially averaged haemodynamic models for different parts of cardiovascular system

  • Sergey S. Simakov EMAIL logo
Veröffentlicht/Copyright: 30. Oktober 2020

Abstract

This paper revisits the usage of spatially averaged haemodynamic models such as non-stationary 1D/0D in space and stationary 0D in space models. Conditions of equivalence between different 1D model formulations are considered. The impact of circular and elliptic shapes of the tube cross-section on the friction term and the tube law is analyzed. Finally, the relationship between 0D lumped and 1D models is revealed.

MSC 2010: 65D25; 37M05; 92B99

Funding statement: The research was supported by the Russian Foundation for Basic Research (grant Nos. 18-00-01524, 18-31-20048, 18-00-01661) and Moscow Center for Fundamental and Applied Mathematics (agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624).

References

[1] M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, Mathematical model of the hemodynamics of the cardio-vascular system, Diff. Equations33 (1997), No. 7, 895–901.Suche in Google Scholar

[2] D. Amadori, S. Ferrari, and L. Formaggia, Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks & Heterogeneous Media2 (2007), No. 1, 99–125.10.3934/nhm.2007.2.99Suche in Google Scholar

[3] R. T. Avery and G. A. Tidrick, Elliptical vacuum chamber stress and deflections. IEEE Trans. Nuclear Science16 (1969), No. 3, 952–953.10.1109/TNS.1969.4325411Suche in Google Scholar

[4] N. Bessonov, A. Sequeira, S. Simakov, Yu. Vassilevski, and V. Volpert, Methods of blood flow modelling. Math. Modelling Natur. Phenomena11 (2016), No. 1, 1–25.10.1051/mmnp/201611101Suche in Google Scholar

[5] E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. Müller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet, and J. Alastruey, A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Meth. Biomed. Engrg. 31 (2015), e02732.10.1002/cnm.2732Suche in Google Scholar PubMed

[6] A. G. Borzov, S. I. Mukhin, and N. V. Sosnin, Conservative schemes of matter transport in a system of vessels closed by the heart, Diff. Equations48 (2012), No. 7, 919–928.10.1134/S0012266112070038Suche in Google Scholar

[7] A. G. Borzov, S. I. Mukhin, and N. V. Sosnin, Conservative algorithm of substance transport over a closed graph of cardiovascular system. Russ. J. Numer. Anal. Math. Modelling27 (2013), No. 5, 413–429.10.1515/rnam-2012-0023Suche in Google Scholar

[8] A. Ya. Bunicheva, S. I. Mukhin, N. V. Sosnin, and A. B. Khrulenko, Mathematical modeling of quasionedimensional hemodynamics. Comput. Math. & Math. Phys. 55 (2015), No. 8, 1381–1392.10.1134/S0965542515080060Suche in Google Scholar

[9] S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math. Meth. Appl. Sci. 26 (2003), 1161–1186.10.1002/mma.407Suche in Google Scholar

[10] L. G. Fernandes, P. R. Trenhago, R. A. Feijóo, and P. J. Blanco, Integrated cardiorespiratory system model with short timescale control mechanisms, Int. J. Numer. Meth. Biomed. Engrg. (2019), e3332.10.1002/cnm.3332Suche in Google Scholar PubMed

[11] L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Vol. 1. Springer, Heidelberg, 2009.10.1007/978-88-470-1152-6Suche in Google Scholar

[12] T. Gamilov, Y. Ivanov, Ph. Kopylov, S. Simakov, and Y. Vassilevski, Patient specific haemodynamic modeling after occlusion treatment in leg. Math. Modeling Natur. Phenomena9 (2014), No. 6, 85–97.10.1051/mmnp/20149607Suche in Google Scholar

[13] T. Gamilov, Ph. Kopylov, M. Serova, R. Syunayaev, A. Pikunov, S. Belova, F. Liang, J. Alastruey, and S. Simakov, Computational analysis of coronary blood flow: the role of asynchronous pacing and arrhythmias. Mathematics8 (2020), No. 8, 1205.10.3390/math8081205Suche in Google Scholar

[14] N. O. Gorodnova, A. V. Kolobov, O. A. Mynbaev, S. S. Simakov, Mathematical modeling of blood flow alteration in microcirculatory network due to angiogenesis. Lobachevskii J. Math. 37 (2016), No. 5, 541–549.10.1134/S199508021605005XSuche in Google Scholar

[15] R. Juodagalvytė, G. Panasenko, and K. Pileckas, Time periodic Navier–Stokes equations in a thin tube structure. Boundary Value Problems (2020), No. 2020, 28.10.1186/s13661-020-01334-3Suche in Google Scholar

[16] A. S. Kholodov, Some dynamical models of multi-dimensional problems of respiratory and circulatory systems including their interaction and matter transport. In: Computer Models and Medicine Progress. Nauka, Moscow, 2001, 127–163 (in Russian).Suche in Google Scholar

[17] T. Korakianitis and Y. Shi, Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomechanics39 (2006), No. 11, 1964–1982.10.1016/j.jbiomech.2005.06.016Suche in Google Scholar PubMed

[18] V. A. Kozlov and S. A. Nazarov, Asymptotic models of the blood flow in arteries and veins. J. Math. Sci. 194 (2013), No. 1, 44–57.10.1007/s10958-013-1505-4Suche in Google Scholar

[19] V. A. Kozlov and S. A. Nazarov, One-dimensional model of viscoelastic blood flow through a thin elastic vessel. J. Math. Sci. 207 (2015), No. 2, 249–269.10.1007/s10958-015-2370-0Suche in Google Scholar

[20] V. A. Kozlov and S. A. Nazarov, A one-dimensional model of flow in a junction of thin channels, including arterial trees. Sbornik: Mathematics208 (2017), No. 8, 1138–1186.10.1070/SM8748Suche in Google Scholar

[21] P. Kozlovsky, U. Zaretsky, A. J. Jaffa, and D. Elad, General tube law for collapsible thin and thick-wall tubes, J. Biomechanics47 (2014), No. 10, 2378–2384.10.1016/j.jbiomech.2014.04.033Suche in Google Scholar PubMed

[22] M. B. Kuznetsov, N. O. Gorodnova, S. S. Simakov, and A. V. Kolobov, Multiscale modeling of angiogenic tumor growth, progression, and therapy, Biophysics61 (2016), No. 6, 1042-1051.10.1134/S0006350916050183Suche in Google Scholar

[23] F. Liang and H. Liu, A closed-loop lumped parameter computational model for human cardiovascular system. JSME Int. J., Series C: Mechanical Systems, Machine Elements and Manufacturing48 (2006), No. 4, 484–493.10.1299/jsmec.48.484Suche in Google Scholar

[24] F. Liang, S. Takagi, R. Himeno, and H. Liu, Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Medical & Biological Engrg. & Computing47 (2009), 743–755.10.1007/s11517-009-0449-9Suche in Google Scholar PubMed

[25] A. Lozovskiy, M. Olshanskii, and Y. Vassilevski, Analysis and assessment of a monolithic FSI finite element method. Computers & Fluids179 (2019), 277–288.10.1016/j.compfluid.2018.11.004Suche in Google Scholar

[26] V. Milisic and A. Quarteroni, Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM: Mathematical Modelling and Numerical Analysis38 (2004), No. 4, 613–632.10.1051/m2an:2004036Suche in Google Scholar

[27] A. S. Mozokhina and S. I. Muhin, Quasi-one-dimensional flow of a fluid with anisotropic viscosity in a pulsating vessel. Diff. Equations54 (2018), No. 7, 956-962.10.1134/S001226611807011XSuche in Google Scholar

[28] L. O. Müller and E. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Numer. Meth. Biomed. Engrg. 30 (2014), No. 7, 681–725.10.1002/cnm.2622Suche in Google Scholar PubMed

[29] A. S. Popel and P. C. Johnson, Microcirculation and hemorheology. Ann. Rev. Fluid Mechanics37 (2005), 43–69.10.1146/annurev.fluid.37.042604.133933Suche in Google Scholar PubMed PubMed Central

[30] I. Sazonov, S.-Y. Yeo, R. L. T. Bevan, P. Nithiarasu, R. van Loon, and X. Xie, A robust subject-specific modelling pipeline for arterial blood flow dynamics –- a review. Int. J. Numer. Meth. Biomed. Engrg. 27 (2011), No. 8, 1167–1184.10.1002/cnm.1446Suche in Google Scholar

[31] I. Sazonov and P. Nithiarasu, A novel, FFT-based one-dimensional blood flow solution method for arterial network. Biomechanics and Modelling in Mechanobilogy18 (2019), 1311–1334.10.1007/s10237-019-01146-0Suche in Google Scholar PubMed PubMed Central

[32] T. W. Secomb, Hemodynamics. Comprehensive Physiology6 (2016), No. 2, 975–1003.10.1002/cphy.c150038Suche in Google Scholar PubMed PubMed Central

[33] T. W. Secomb, Blood flow in the microcirculation. Ann. Rev. Fluid Mechanics49 (2017), 443–461.10.1146/annurev-fluid-010816-060302Suche in Google Scholar

[34] S. J. Sherwin, V. Franke, J. Peiró, and K. Parker, One-dimensional modelling of a vascular network in space-time variables. J. Engrg. Mathematics47 (2003), 217–250.10.1023/B:ENGI.0000007979.32871.e2Suche in Google Scholar

[35] S. J. Sherwin, L. Formaggia, J. Peiró, and V. Franke, Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Numer. Meth. Fluids43 (2003), 673–700.10.1002/fld.543Suche in Google Scholar

[36] Y. Shi, P. Lawford, and R. Hose, Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMedical Engineering OnLine10 (2011), No. 1, 33.10.1186/1475-925X-10-33Suche in Google Scholar PubMed PubMed Central

[37] S. G. Shroff, J. S. Janicki, and K. T. Weber, Evidence and quantitation of left ventricular systolic resistance. American J. Physiology-Heart and Circulatory Physiology249 (1985), No. 2, H358–H370.10.1152/ajpheart.1985.249.2.H358Suche in Google Scholar PubMed

[38] S. S. Simakov, Lumped parameter heart model with valve dynamics. Russ. J. Numer. Anal. Math. Modelling34 (2019), No. 5, 289–300.10.1515/rnam-2019-0025Suche in Google Scholar

[39] S. S. Simakov and A. S. Kholodov, Computational study of oxygen concentration in human blood under low frequency disturbances. Math. Models Computer Simulations1 (2009), No. 2, 283–295.10.1134/S2070048209020112Suche in Google Scholar

[40] S. S. Simakov, Modern methods of mathematical modeling of blood flow using reduced order methods. Computer Research and Modeling10 (2018), No. 5, 581–604 (in Russian).10.20537/2076-7633-2018-10-5-581-604Suche in Google Scholar

[41] S. K. Stamatelos, E. Kim, A. P. Pathak, and S. P. Aleksander, A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc. Research91 (2014), 8–21.10.1016/j.mvr.2013.12.003Suche in Google Scholar PubMed PubMed Central

[42] H. Suga, Cardiac energetics: from EMAX to pressure-volume area. Clinical and Experimental Pharmacology and Physiology30 (2003), No. 8, 580–585.10.1046/j.1440-1681.2003.03879.xSuche in Google Scholar PubMed

[43] Y. Sun, M. Beshara, R. J. Lucariello, and S. A. Chiaramida, A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. American J. Physiology272 (1997), H1499–H1515.10.1152/ajpheart.1997.272.3.H1499Suche in Google Scholar PubMed

[44] Yu. V. Vassilevski, V. Y. Salamatova, and S. S. Simakov, On the elasticity of blood vessels in one-dimensional problems of hemodynamics. Comput. Math. & Math. Phys. 55 (2015), No. 9, 1567–1578.10.1134/S0965542515090134Suche in Google Scholar

[45] Yu. Vassilevski, M. Olshanskii, S. Simakov, A. Kolobov, and A. Danilov, Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy. Academic Press, London–San Diego–Cambridge–Oxford, 2020.Suche in Google Scholar

[46] F. N. van de Vosse and N. Stergiopulos, Pulse wave propagation in the arterial tree. Annual Review of Fluid Mechanics43 (2011), 467–499.10.1146/annurev-fluid-122109-160730Suche in Google Scholar

[47] K. R. Walley, Left ventricular function: time-varying elastance and left ventricular aortic coupling. Critical Care20 (2016), No. 270, 1–11.10.1186/s13054-016-1439-6Suche in Google Scholar PubMed PubMed Central

Received: 2020-08-31
Accepted: 2020-09-22
Published Online: 2020-10-30
Published in Print: 2020-10-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2020-0024/html
Button zum nach oben scrollen