Abstract
A fast procedure for generation of regular tetrahedral finite element mesh for objects with complex shape cavities is proposed. The procedure like LBIE-Mesher can generate tetrahedral meshes for the volume interior to a polygonal surface, or for an interval volume between two surfaces having a complex shape and defined in STL-format. This procedure consists of several stages: generation of a regular tetrahedral mesh that fills the volume of the required object; generation of clipping for the uniform grid parts by a boundary surface; shifting vertices of the boundary layer to align onto the surface.We present a sequential and parallel implementation of the algorithm and compare their performance with existing generators of tetrahedral grids such as TetGen, NETGEN, and CGAL. The current version of the algorithm using the mobile GPU is about 5 times faster than NETGEN. The source code of the developed software is available on GitHub.
References
[1] H. J. Arevalo, P. M. Boyle and N. A. Trayanova, Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Progress Biophys. Molecul. Biology 112 (2016), No. 2, 185-194.10.1016/j.pbiomolbio.2016.06.004Suche in Google Scholar
[2] O. V. Aslanidi, T. Nikolaidou, J. Zhao, B. H. Smaill, S. H. Gilbert, A. V. Holden, T. Lowe, P. J. Withers, R. S. Stephenson, J. C. Jarvis, J. C. Hancox, M. R. Boyett, and H. Zhang, Application of micro-computed tomography with iodine staining to cardiac imaging, segmentation, and computational model development. IEEE Trans. Medical Imaging 32 (2013), No. 1, 8-17.10.1109/TMI.2012.2209183Suche in Google Scholar
[3] R. Bordas, K. Gillow, Q. Lou, I. R. Efimov, D. Gavaghan, P. Kohl, V. Grau, and B. Rodriguez, Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Progress Biophys. Molecul. Biology 107 (2011), No. 1, 90-100.10.1016/j.pbiomolbio.2011.05.002Suche in Google Scholar
[4] D. Deng, P. Jiao, X. Ye, and L. Xia, An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comp. Math. Methods Medicine (2012). Article ID 891070, 16p.10.1155/2012/891070Suche in Google Scholar
[5] P. C. Franzone, L. Guerri, M. Pennacchio, and B. Taccardi, Spread of excitation in 3D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. Math. Biosciences 147 (1998), No. 2, 131-71.10.1016/S0025-5564(97)00093-XSuche in Google Scholar
[6] P. J. Frey and P.-L. George, Mesh Generation: Applications to Finite Elements. Hermes Science Publishing, Oxford-Paris, 2000.Suche in Google Scholar
[7] M. Kremer, D. Bommes, and L. Kobbelt, OpenVolumeMesh-a versatile index-based data structure for 3D polytopal complexes. Proc. 21st Int. Meshing Roundtable (2013), 531-548.10.1007/978-3-642-33573-0_31Suche in Google Scholar
[8] P. Lamata, M. Sinclair, E. Kerfoot, A. Lee, A. Crozier, B. Blazevic, S. Land, A. J. Lewandowski, D. Barber, S. Niederer, and N. Smith, An automatic service for the personalization of ventricular cardiac meshes. J. Royal Society Interface 91(2013), No. 11, 62-72.10.1098/rsif.2013.1023Suche in Google Scholar PubMed PubMed Central
[9] A. Lopez-Perez, R. Sebastian, and J. M. Ferrero, Three-dimensional cardiac computational modelling: methods, features and applications. Biomed. Engrg. Online 14 (2015), Art. 35.10.1186/s12938-015-0033-5Suche in Google Scholar PubMed PubMed Central
[10] M. Plotkowiak, B. Rodriguez, G. Plank, J. E. Schneider, D. Gavaghan, P. Kohl, and V. Grau, High performance computer simulations of cardiac electrical function based on high resolution MRI datasets. Computational Science – ICCS 2008. pp. 571-580.10.1007/978-3-540-69384-0_62Suche in Google Scholar
[11] J. Schöberl, NETGEN—an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visualiz. Science 1997, 41-52.10.1007/s007910050004Suche in Google Scholar
[12] M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, R. Cimrman, D. L. Hill, D. Chapelle, and R. Razavi, Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Medical Image Analysis 10 (2006), No. 4, 642-656.10.1016/j.media.2006.04.002Suche in Google Scholar PubMed
[13] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Software 41 (2015), No. 2, Article 11, 36 p.10.1145/2629697Suche in Google Scholar
[14] C. Simpson, C. D. Ernst, P. Knupp, P. P. Pe´bay, and D. C. Thompson, The Verdict Library Reference Manual. Sandia National Laboratories, April 2007.Suche in Google Scholar
[15] F. A. Syomin and A. K. Tsaturyan, Mechanical model of the left ventricle of the heart approximated by axisymmetric geometry. Russ. J. Numer. Anal. Math. Modelling 32 (2017), No. 5, 275-291.10.1515/rnam-2017-0031Suche in Google Scholar
[16] Yu. V. Vassilevski and K. N. Lipnikov, An adaptive algorithm for quasioptimal mesh generation. Comput. Math. Math. Phys. 39 (1999), No. 9, 1468-1486.Suche in Google Scholar
[17] P. S. Vassilevski, Sparse matrix element topology with application to AMG(e) and preconditioning. Numer. Linear Algebra Appl. (2002), No. 9, 429-444.10.1002/nla.300Suche in Google Scholar
[18] H. N. G. Wadley, Multifunctional periodic cellular metals. Phil. Trans. R. Soc. A 364 (2005), 31-68.10.1098/rsta.2005.1697Suche in Google Scholar PubMed
[19] Y. Zhang, Tetrahedral/hexahedral finite element meshing from volumetric imaging data: proposal for a dissertation. Inst. Comput. Engrg Sci. The Univ. Texas at Austin (USA), 2003. Suche in Google Scholar
[20] Y. Zhang and C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Computer Methods Appl. Mech. Engrg. (CMAME) 195 (2006), No. 9-12, 942-960.10.1016/j.cma.2005.02.016Suche in Google Scholar PubMed PubMed Central
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Mathematical modelling of platelet rich plasma clotting. Pointwise unified model
- Numerical simulation of aberrated medical ultrasound signals
- Stochastic modelling of age-structured population with time and size dependence of immigration rate
- The study of the influence of heart ventricular wall thickness on pseudo-ECG
- Fast tetrahedral mesh generation and segmentation of an atlas-based heart model using a periodic uniform grid
Artikel in diesem Heft
- Frontmatter
- Mathematical modelling of platelet rich plasma clotting. Pointwise unified model
- Numerical simulation of aberrated medical ultrasound signals
- Stochastic modelling of age-structured population with time and size dependence of immigration rate
- The study of the influence of heart ventricular wall thickness on pseudo-ECG
- Fast tetrahedral mesh generation and segmentation of an atlas-based heart model using a periodic uniform grid