Startseite Numerical simulation of aberrated medical ultrasound signals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical simulation of aberrated medical ultrasound signals

  • Katerina A. Beklemysheva , Georgiy K. Grigoriev , Nikolay S. Kulberg , Igor B. Petrov , Aleksey V. Vasyukov und Yuri V. Vassilevski EMAIL logo
Veröffentlicht/Copyright: 31. Oktober 2018

Abstract

Transcranial ultrasound examination is hampered by the skull which acts as an irregular aberrator of the ultrasound signal. Numerical recovery of the ultrasound field can help in elimination of aberrations induced by the skull. In this paper, we address the simulation of medical phantom scanning through silicon aberrators with wave notching. The numerical model is based on the 2D acoustic equations which are solved by the wavefront construction raytracing method. Numerical B-scan images are compared with experimental B-scan images.

MSC 2010: 65M25; 74J20
  1. Funding:The research was supported by Russian Science Foundation grant 14-31-00024.

References

[1] K. Aki and P. Richards, Quantitative Seismology. Theory and Methods. W. H. Freeman and Company, San Francisco, 1980.Suche in Google Scholar

[2] ATL Labs, Model 539 Multipurpose Phantom, http://www.atslaboratories-phantoms.com/resources/2012-539.pdfSuche in Google Scholar

[3] S. I. Baskakov, Radio Engineering Circuits and Signals: Textbook for High Schools. Vysshaya Shkola, Moscow, 1988 (in Russian).Suche in Google Scholar

[4] K. Beklemysheva, A. Danilov, G. Grigoriev, A. Kazakov, N. Kulberg, I. Petrov, V. Salamatova, A. Vasyukov, and Yu.Vassilevski, Transcranial ultrasound of cerebral vessels in silico: proof of concept. Russ. J. Numer. Anal. Math. Modelling 31(2016), No. 5, 317-328.10.1515/rnam-2016-0030Suche in Google Scholar

[5] K. Beklemysheva, A. Danilov, I. Petrov, V. Salamatova, Yu. Vassilevski, and A. Vasyukov, Virtual blunt injury of human thorax: age-dependent response of vascular system. Russ. J. Numer. Anal. Math. Modelling 30 (2015), No. 5, 259-268.10.1515/rnam-2015-0023Suche in Google Scholar

[6] K. A. Beklemysheva, A. S. Ermakov, I. B. Petrov, and A. V. Vasyukov, Numerical simulation of the failure of composite materials by using the grid-characteristic method. Math. Models Comput. Simul. 5 (2016), No. 8, 557-567.10.1134/S2070048216050033Suche in Google Scholar

[7] S. Buske and U. Kastner, Efficient and accurate computation of seismic traveltimes and amplitudes. Geophys. Prosp. 52 (2004), 313-322.10.1111/j.1365-2478.2004.00417.xSuche in Google Scholar

[8] V. Červený, Seismic Ray Theory. Cambridge University Press, New York, 2001.10.1017/CBO9780511529399Suche in Google Scholar

[9] V. Červený, Seismic rays and ray intensities in inhomogeneous anisotropic media. Geophys. J. R. Astr. Soc. 29 (1972), 1-13.10.1111/j.1365-246X.1972.tb06147.xSuche in Google Scholar

[10] R. Coman and D. Gajewski, Ray tracing by wavefront construction in 3-D, anisotropic media. 71st Internat. Meeting Abstract, Soc. Expl. Geophys. (2001) 1265-1268.Suche in Google Scholar

[11] S. Crampin, The dispersion of surface waves in multilayered anisotropic media. Geophys. J. R. Astr. Soc. 21 (1970), 387-402.10.1111/j.1365-246X.1970.tb01799.xSuche in Google Scholar

[12] S. Kim and R. Cook, 3-d traveltime computation using second-order ENO scheme. Geophysics 64 (1999), 1867-1876.10.1190/1.1444693Suche in Google Scholar

[13] H.-L. Lai, R. L. Gibson Jr., and K.-J. Lee, Quasi-shear wave raytracing by wavefront construction in 3-D anisotropic media. J. Appl. Geophys. 69(2009), 82-95.10.1016/j.jappgeo.2009.06.002Suche in Google Scholar

[14] G. Lambare, P. S. Lucio, and A. Hanyga, Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field. Geophys. J. Int. 125 (1996), 584-598.10.1111/j.1365-246X.1996.tb00021.xSuche in Google Scholar

[15] K. J. Lee, Efficient ray tracing algorithms based on wavefront construction and model based interpolation method. Doctoral Dissertation. M. S., Texas A&M University, (2005).Suche in Google Scholar

[16] A. Leidenfrost, N. Ettrich, D. Gajewski, and D. Kosloff, Comparison of six different methods for calculating traveltimes. Geophys. Prosp. 47(1999), 269-297.10.1046/j.1365-2478.1999.00124.xSuche in Google Scholar

[17] Lord Rayleigh, On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc. 1 (1885), 4-11.Suche in Google Scholar

[18] P. S. Lucio, G. Lambare, and A. Hanyga, 3D multidimensional travel time and amplitude maps. Pure Appl. Geophys. 148 (1996), 449-479.10.1007/BF00874575Suche in Google Scholar

[19] E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, Ultrasonic shear wave properties of soft tissues and tissue-like materials. J. Acoust. Soc. Am. 74 (1983), No. 5, 1346-1355.10.1121/1.390158Suche in Google Scholar

[20] K. M. Magomedov and A. S. Kholodov, The construction of difference schemes for hyperbolic equations based on characteristic relations. USSR Comput. Math. Math. Physics 2 (1969), No. 9, 158-176.10.1016/0041-5553(69)90099-8Suche in Google Scholar

[21] T. D. Mast, L. M. Hinkelman, L. A. Metlay, M. J. Orr, and R. C. Waag, Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall. J. Acoust. Soc. Amer. 6 (1999), 3665-3677.10.1121/1.428209Suche in Google Scholar PubMed

[22] T. J. Moser, Shortest path calculation of seismic rays. Geophysics 56 (1991), 59-67.10.1190/1.1442958Suche in Google Scholar

[23] J. Qian and W. Symes, An adaptive finite-difference method for traveltimes and amplitudes. Geophysics 67 (2002), 167-176.10.1190/1.1451472Suche in Google Scholar

[24] A. B. Sergienko, Digital Signal Processing. St. Petersburg, 2006 (in Russian).Suche in Google Scholar

[25] G. H. Spencer and M. V. R. K. Murty, General ray tracing procedure. J. Opt. Soc. Amer. 52 (1962), No. 6, 672-678.10.1364/JOSA.52.000672Suche in Google Scholar

[26] N. M. Tole and H. Ostensen, Basic Physics of Ultrasonographic Imaging. World Health Organization, 2005.Suche in Google Scholar

[27] H. J. A. van Avendonk, A. J. Harding, J. A. Orcutt, and W. S. Holbrook, Hybrid shortest path and ray bending method for traveltime and raypath calculation. Geophysics 66 (2001), 648-653.10.1190/1.1444955Suche in Google Scholar

[28] Yu. Vassilevski, K. Beklemysheva, G. Grigoriev, N. Kulberg, I. Petrov, and A. Vasyukov, Numerical modelling of medical ultrasound: phantom-based verification. Russ. J. Numer. Anal. Math. Modelling 32 (2017), No. 5, 339-346.10.1515/rnam-2017-0032Suche in Google Scholar

[29] V. Vinje, E. Iversen, and H. Gjøystdal, Traveltime and amplitude estimation using wavefront construction. Geophysics 58 (1993), 1157-1166.10.1190/1.1443499Suche in Google Scholar

[30] I. Wald, W. R. Mark, J. Gunther, S. Boulos, T. Ize, W. Hunt, S.G. Parker, and P. Shirley, State of the art in ray tracing animated scenes. In: Eurographics 2007 State of the Art Reports, 2007, 89-116.10.1111/j.1467-8659.2008.01313.xSuche in Google Scholar

Received: 2018-07-02
Accepted: 2018-08-21
Published Online: 2018-10-31
Published in Print: 2018-11-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2018-0023/html
Button zum nach oben scrollen