Inflammation-related microRNA alterations in epilepsy: a systematic review of human and animal studies
-
Mohammad Javad Yousefi
, Aida Mehrani
Abstract
Epilepsy is a neurological condition that affects around 50 million people globally. While the underlying mechanism of epilepsy is not fully understood, emerging evidence demonstrates that inflammation is a key player in the pathogenesis of epilepsy. MicroRNAs are involved in the pathogenesis of epilepsy, particularly through regulating oxidative stress, apoptosis, and inflammation. In this systematic review, we analyzed and summarized data from the literature regarding the role of inflammatory miRNAs in the pathophysiology of epilepsy, through human and animal studies. Twenty one reports on humans and 44 reports on animals were included in the current analysis. Kainic acid (KA) and pilocarpine were broadly used approaches in inducing epilepsy in animal models. Among upregulated microRNAs, miR-146a, miR-155, and miR-132 were more emphasized for their inflammatory role involved in epilepsy. MiR-221, miR-222, and miR-29a were downregulated and were associated with anti-inflammatory effects. Notably, microRNAs demonstrated tissue-specific expression patterns in different samples, including brain cortex, hippocampus, and body fluids, which is considerable in further investigations in the pathophysiologic and diagnostic roles of inflammatory microRNAs in epilepsy. Furthermore, inflammatory miRNAs regulate critical signaling pathways like TLR4/NF-κB, PI3K/Akt, and IL-1β-mediated neuroinflammation. Conclusively, these findings highlight the possibility of using inflammatory miRNAs as diagnostic biomarkers and therapeutic targets of epilepsies.
Funding source: Tehran University of Medical Sciences and Health Services
Award Identifier / Grant number: 65282
Acknowledgments
We thank the research center for immunodeficiencies (RCID), Tehran University of Medical Sciences, Tehran, Iran. Illustrations created with BioRender.com.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: M.J.Y., A.R., K.S., Ai.M., E.B., M.R., A.M., and A. S.N. drafted the manuscript. K.S., N.R., A.S.N., and S.B. supervised the study and provided critical comments. Ai.M., A.R., and K.S., prepared the illustrations. All authors confirmed the final submitted version of the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: No large language model, AI tool, or machine learning facility was used in writing the manuscript.
-
Conflict of interest: The authors declare that they have no competing interests.
-
Research funding: This study was supported by the Immunodeficiency Research Center (RCID), Tehran University of Medical Sciences, Tehran, Iran; (Grant No. 65282).
-
Data availability: Data is available from corresponding author on reasonable request.
References
Abdel-Rasol, H.A., Abdel Ghaffar, H., Mohamed, M.S., Jad, R.W., Abdelaleem, O.O., and Abdelghaffar, N.K. (2023). A functional SNP in miR-146a and genetic susceptibility to drug-resistant epilepsy. Neurol. Res. 45: 765–772, https://doi.org/10.1080/01616412.2023.2203617.Suche in Google Scholar PubMed
Ademuwagun, I.A., Rotimi, S.O., Syrbe, S., Ajamma, Y.U., and Adebiyi, E. (2021). Voltage gated sodium channel genes in epilepsy: mutations, functional studies, and treatment dimensions. Front Neurol. 12: 600050, https://doi.org/10.3389/fneur.2021.600050.Suche in Google Scholar PubMed PubMed Central
Akyuz, E., Polat, A.K., Eroglu, E., Kullu, I., Angelopoulou, E., and Paudel, Y.N. (2021). Revisiting the role of neurotransmitters in epilepsy: an updated review. Life Sci. 265: 118826, https://doi.org/10.1016/j.lfs.2020.118826.Suche in Google Scholar PubMed
Almeida Silva, L.F., Reschke, C.R., Nguyen, N.T., Langa, E., Sanz-Rodriguez, A., Gerbatin, R.R., Temp, F.R., De Freitas, M.L., Conroy, R.M., Brennan, G.P., et al.. (2020). Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Mol. Brain 13: 1–15, https://doi.org/10.1186/s13041-020-00653-x.Suche in Google Scholar PubMed PubMed Central
Ambrogini, P., Albertini, M.C., Betti, M., Galati, C., Lattanzi, D., Savelli, D., Di Palma, M., Saccomanno, S., Bartolini, D., Torquato, P., et al.. (2018). Neurobiological correlates of alpha-tocopherol antiepileptogenic effects and microRNA expression modulation in a rat model of kainate-induced seizures. Mol. Neurobiol. 55: 7822–7838, https://doi.org/10.1007/s12035-018-0946-7.Suche in Google Scholar PubMed PubMed Central
Aram, C., Alijanizadeh, P., Saleki, K., and Karami, L. (2024). Development of an ancestral DC and TLR4-inducing multi-epitope peptide vaccine against the spike protein of SARS-CoV and SARS-CoV-2 using the advanced immunoinformatics approaches. Biochem. Biophys. Rep. 39: 101745, https://doi.org/10.1016/j.bbrep.2024.101745.Suche in Google Scholar PubMed PubMed Central
Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., Van Vliet, E., Baayen, J., and Gorter, J. (2010). Expression pattern of miR‐146a, an inflammation‐associated microRNA, in experimental and human temporal lobe epilepsy. Eur. J. Neurosci. 31: 1100–1107, https://doi.org/10.1111/j.1460-9568.2010.07122.x.Suche in Google Scholar PubMed
Ashhab, M.U., Omran, A., Kong, H., Gan, N., He, F., Peng, J., and Yin, F. (2013). Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J. Mol. Neurosci. 51: 950–958, https://doi.org/10.1007/s12031-013-0013-9.Suche in Google Scholar PubMed
Betjemann, J.P., Josephson, S.A., Lowenstein, D.H., and Burke, J.F. (2015). Trends in status epilepticus – Related hospitalizations and mortality: redefined in US practice over time. JAMA Neurol. 72: 650–655, https://doi.org/10.1001/jamaneurol.2015.0188.Suche in Google Scholar PubMed
Bie, B., Wang, Z., Chen, Y., Sheng, L., Li, H., You, H., Ye, J., Zhang, Q., and Li, J. (2021). Vagus nerve stimulation affects inflammatory response and anti-apoptosis reactions via regulating miR-210 in epilepsy rat model. Neuroreport 32: 783–791, https://doi.org/10.1097/wnr.0000000000001655.Suche in Google Scholar
Brás, J.P., Pinto, S., von Doellinger, O., Prata, J., Coelho, R., Barbosa, M.A., Almeida, M.I., and Santos, S.G. (2023). Combining inflammatory miRNA molecules as diagnostic biomarkers for depression: a clinical study. Front Psychiatr. 14: 1227618, https://doi.org/10.3389/fpsyt.2023.1227618.Suche in Google Scholar PubMed PubMed Central
Brennan, G.P., Dey, D., Chen, Y., Patterson, K.P., Magnetta, E.J., Hall, A.M., Dube, C.M., Mei, Y.T., and Baram, T.Z. (2016). Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep. 14: 2402–2412, https://doi.org/10.1016/j.celrep.2016.02.042.Suche in Google Scholar PubMed PubMed Central
Cai, X., Long, L., Zeng, C., Ni, G., Meng, Y., Guo, Q., Chen, Z., and Li, Z. (2020). LncRNA ILF3-AS1 mediated the occurrence of epilepsy through suppressing hippocampal miR-212 expression. Aging (Albany NY) 12: 8413, https://doi.org/10.18632/aging.103148.Suche in Google Scholar PubMed PubMed Central
Chak, K., Roy-Chaudhuri, B., Kim, H.K., Kemp, K.C., Porter, B.E., and Kay, M.A. (2016). Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation. Exp. Neurol. 286: 137–146, https://doi.org/10.1016/j.expneurol.2016.10.003.Suche in Google Scholar PubMed PubMed Central
Choi, J., Nordli, D.R., Alden, T.D., DiPatri, A., Laux, L., Kelley, K., Rosenow, J., Schuele, S.U., Rajaram, V., and Koh, S. (2009). Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J. Neuroinflammation 6: 1–14, https://doi.org/10.1186/1742-2094-6-38.Suche in Google Scholar PubMed PubMed Central
Costagliola, G., Depietri, G., Michev, A., Riva, A., Foiadelli, T., Savasta, S., Bonuccelli, A., Peroni, D., Consolini, R., Marseglia, G.L., et al.. (2022). Targeting inflammatory mediators in epilepsy: a systematic review of its molecular basis and clinical applications. Front Neurol. 13: 741244, https://doi.org/10.3389/fneur.2022.741244.Suche in Google Scholar PubMed PubMed Central
Cui, L., Tao, H., Wang, Y., Liu, Z., Xu, Z., Zhou, H., Cai, Y., Yao, L., Chen, B., Liang, W., et al.. (2015). A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure 27: 60–65, https://doi.org/10.1016/j.seizure.2015.02.032.Suche in Google Scholar PubMed
Curia, G., Longo, D., Biagini, G., Jones, R.S., and Avoli, M. (2008). The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods 172: 143–157, https://doi.org/10.1016/j.jneumeth.2008.04.019.Suche in Google Scholar PubMed PubMed Central
Deng, X., Shao, Y., Xie, Y., Feng, Y., Wu, M., Wang, M., and Chen, Y. (2019). MicroRNA-146a-5p downregulates the expression of P-glycoprotein in rats with lithium–pilocarpine-induced status epilepticus. Biol. Pharm. Bull. 42: 744–750, https://doi.org/10.1248/bpb.b18-00937.Suche in Google Scholar PubMed
Dhir, A. (2012). Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr. Protoc. Neurosci. 58: 37.31–39.37, 12, https://doi.org/10.1002/0471142301.ns0937s58.Suche in Google Scholar PubMed
Di-mi, Z., Lu, G., Lin, C., and Cheng-fang, Z. (2023). Effect of inhibiting the expression of miRNA-193a-5p on hippocampal neuron protection in epileptic model rats. CJCNN 23.Suche in Google Scholar
Du, Y., Chi, X., and An, W. (2019). Downregulation of microRNA-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating expression of RECK and inactivating the AKT signaling pathway. Chem. Biol. Interact. 307: 223–233, https://doi.org/10.1016/j.cbi.2019.04.027.Suche in Google Scholar PubMed
Duan, W., Chen, Y., and Wang, X.R. (2018). MicroRNA-155 contributes to the occurrence of epilepsy through the PI3K/Akt/mTOR signaling pathway. Int. J. Mol. Med. 42: 1577–1584, https://doi.org/10.3892/ijmm.2018.3711.Suche in Google Scholar PubMed
Ebadi, S.R., Saleki, K., Adl Parvar, T., Rahimi, N., Aghamollaii, V., Ranji, S., and Tafakhori, A. (2023). The effect of cannabidiol on seizure features and quality of life in drug-resistant frontal lobe epilepsy patients: a triple-blind controlled trial. Front Neurol. 14: 1143783, https://doi.org/10.3389/fneur.2023.1143783.Suche in Google Scholar PubMed PubMed Central
Engel, T., Brennan, G.P., Sanz-Rodriguez, A., Alves, M., Beamer, E., Watters, O., Henshall, D.C., and Jimenez-Mateos, E.M. (2017). A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. Biochim. Biophys. Acta Mol. Cell Res. 1864: 255–266, https://doi.org/10.1016/j.bbamcr.2016.11.007.Suche in Google Scholar PubMed
Fan, Y., Wang, W., Li, W., and Li, X. (2020). miR-15a inhibits cell apoptosis and inflammation in a temporal lobe epilepsy model by downregulating GFAP. Mol. Med. Rep. 22: 3504–3512, https://doi.org/10.3892/mmr.2020.11388.Suche in Google Scholar PubMed
Fang, Q., Cai, Y., Chi, J., Yang, Y., Chen, Q., Chen, L., Zhang, J., Ke, J., Wu, Y., and He, X. (2024). Silencing miR-155–5p alleviates hippocampal damage in kainic acid-induced epileptic rats via the Dusp14/MAPK pathway. Brain. Res. Bull. 217: 111057, https://doi.org/10.1016/j.brainresbull.2024.111057.Suche in Google Scholar PubMed
Feng, H., Gui, Q., Zhu, W., Wu, G., Dong, X., Shen, M., Luo, H., Xue, S., and Cheng, Q. (2020). Long-noncoding RNA Peg13 alleviates epilepsy progression in mice via the miR-490-3p/Psmd11 axis to inactivate the Wnt/β-catenin pathway. Am. J. Transl. Res. 12: 7968.Suche in Google Scholar
Fu, H., Cheng, Y., Luo, H., Rong, Z., Li, Y., Lu, P., Ye, X., Huang, W., Qi, Z., Li, X., et al.. (2019). Silencing microRNA-155 attenuates kainic acid-induced seizure by inhibiting microglia activation. Neuroimmunomodulation 26: 67–76, https://doi.org/10.1159/000496344.Suche in Google Scholar PubMed
Fu, M., Tao, J., Wang, D., Zhang, Z., Wang, X., Ji, Y., and Li, Z. (2020). Downregulation of MicroRNA-34c-5p facilitated neuroinflammation in drug-resistant epilepsy. Brain Res. 1749: 147130, https://doi.org/10.1016/j.brainres.2020.147130.Suche in Google Scholar PubMed
Ghasemi, A., Qaffaripour, Z., Tourani, M., Saleki, K., Rahmani-Kukia, N., Khatami, S.H., and Taheri-Anganeh, M. (2023). The relationship between long non-coding RNAs and Wnt/β-catenin signaling pathway in the pathogenesis of Alzheimer’s disease. Exp. Neurol. 366: 114434, https://doi.org/10.1016/j.expneurol.2023.114434.Suche in Google Scholar PubMed
Gong, L., Han, Y., Chen, R., Yang, P., and Zhang, C. (2022). LncRNA ZNF883-mediated NLRP3 inflammasome activation and epilepsy development involve USP47 upregulation. Mol. Neurobiol. 59: 5207–5221, https://doi.org/10.1007/s12035-022-02902-7.Suche in Google Scholar PubMed
Gong, L., Yang, P., Hu, L., and Zhang, C. (2020). MiR-181b suppresses the progression of epilepsy by regulation of lncRNA ZNF883. Am. J. Transl. Res. 12: 2769.Suche in Google Scholar
González, H.F.J., Yengo-Kahn, A., and Englot, D.J. (2019). Vagus nerve stimulation for the treatment of epilepsy. Neurosurg. Clin. N. Am. 30: 219–230, https://doi.org/10.1016/j.nec.2018.12.005.Suche in Google Scholar PubMed PubMed Central
Gorter, J.A., Iyer, A., White, I., Colzi, A., van Vliet, E.A., Sisodiya, S., and Aronica, E. (2014). Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol. Dis. 62: 508–520, https://doi.org/10.1016/j.nbd.2013.10.026.Suche in Google Scholar PubMed
Guerra Leal, B., Barros-Barbosa, A., Ferreirinha, F., Chaves, J., Rangel, R., Santos, A., Carvalho, C., Martins-Ferreira, R., Samões, R., Freitas, J., et al.. (2022). Mesial temporal lobe epilepsy (MTLE) drug-refractoriness is associated with P2X7 receptors overexpression in the human hippocampus and temporal neocortex and may be predicted by low circulating levels of miR-22. Front Cell Neurosci. 16: 910662, https://doi.org/10.3389/fncel.2022.910662.Suche in Google Scholar PubMed PubMed Central
Harrison, E.B., Emanuel, K., Lamberty, B.G., Morsey, B.M., Li, M., Kelso, M.L., Yelamanchili, S.V., and Fox, H.S. (2017). Induction of miR-155 after brain injury promotes type 1 interferon and has a neuroprotective effect. Front Mol. Neurosci. 10: 228, https://doi.org/10.3389/fnmol.2017.00228.Suche in Google Scholar PubMed PubMed Central
Haque, I., Thapa, P., Burns, D.M., Zhou, J., Sharma, M., Sharma, R., and Singh, V. (2024). NLRP3 inflammasome inhibitors for antiepileptogenic drug discovery and development. Int. J. Mol. Sci. 25: 6078, https://doi.org/10.3390/ijms25116078.Suche in Google Scholar PubMed PubMed Central
Hooijmans, C.R., Rovers, M.M., de Vries, R.B., Leenaars, M., Ritskes-Hoitinga, M., and Langendam, M.W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 14: 43, https://doi.org/10.1186/1471-2288-14-43.Suche in Google Scholar PubMed PubMed Central
Huang, H., Cui, G., Tang, H., Kong, L., Wang, X., Cui, C., Xiao, Q., and Ji, H. (2019). Silencing of microRNA-146a alleviates the neural damage in temporal lobe epilepsy by down-regulating Notch-1. Mol. Brain 12: 1–12, https://doi.org/10.1186/s13041-019-0523-7.Suche in Google Scholar PubMed PubMed Central
Huang, H., Cui, G., Tang, H., Kong, L., Wang, X., Cui, C., Xiao, Q., and Ji, H. (2022). Relationships between plasma expression levels of microRNA-146a and microRNA-132 in epileptic patients and their cognitive, mental and psychological disorders. Bioengineered 13: 941–949, https://doi.org/10.1080/21655979.2021.2015528.Suche in Google Scholar PubMed PubMed Central
Huang, Z., Huang, J., and Zhang, X. (2024). Clinical value of lncRNA MALAT1 and miR-154-5p in the severity and prognosis of convulsive status epilepticus. Neurochem. J. 18: 563–571, https://doi.org/10.1134/s1819712424700181.Suche in Google Scholar
Huang, W.S. and Zhu, L. (2018). MiR-134 expression and changes in inflammatory cytokines of rats with epileptic seizures. Eur. Rev. Med. Pharmacol. Sci. 22: 3479–3484, https://doi.org/10.26355/eurrev-201806-15174.Suche in Google Scholar
Huang, L.G., Zou, J., and Lu, Q.C. (2018). Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3. Brain. Res. 1689: 109–122, https://doi.org/10.1016/j.brainres.2017.11.019.Suche in Google Scholar PubMed
Iyer, A., Zurolo, E., Prabowo, A., Fluiter, K., Spliet, W.G., van Rijen, P.C., Gorter, J.A., and Aronica, E. (2012). MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7: e44789, https://doi.org/10.1371/journal.pone.0044789.Suche in Google Scholar PubMed PubMed Central
Jenrow, K. and Elisevich, K. (2019). Pathophysiology of epilepsy. In: Understanding epilepsy: a study guide for the boards, pp. 1–18.10.1017/9781108754200.002Suche in Google Scholar
Jimenez-Mateos, E.M., Arribas-Blazquez, M., Sanz-Rodriguez, A., Concannon, C., Olivos-Ore, L.A., Reschke, C.R., Mooney, C.M., Mooney, C., Lugara, E., Morgan, J., et al.. (2015). MicroRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci. Rep. 5: 17486, https://doi.org/10.1038/srep17486.Suche in Google Scholar PubMed PubMed Central
Jimenez-Mateos, E.M., Bray, I., Sanz-Rodriguez, A., Engel, T., McKiernan, R.C., Mouri, G., Tanaka, K., Sano, T., Saugstad, J.A., Simon, R.P., et al.. (2011). miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am. J. Pathol. 179: 2519–2532, https://doi.org/10.1016/j.ajpath.2011.07.036.Suche in Google Scholar PubMed PubMed Central
Kan, A.A., van Erp, S., Derijck, A.A., de Wit, M., Hessel, E.V., O’Duibhir, E., de Jager, W., Van Rijen, P.C., Gosselaar, P.H., de Graan, P.N., et al.. (2012). Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell. Mol. Life Sci. 69: 3127–3145, https://doi.org/10.1007/s00018-012-0992-7.Suche in Google Scholar PubMed PubMed Central
Kong, H., Wang, H., Zhuo, Z., Li, Z., Tian, P., Wu, J., Liu, J., Chen, Z., Zhang, J., and Luo, Q. (2020). Inhibition of miR-181a-5p reduces astrocyte and microglia activation and oxidative stress by activating SIRT1 in immature rats with epilepsy. Lab. Invest. 100: 1223–1237, https://doi.org/10.1038/s41374-020-0444-1.Suche in Google Scholar PubMed
Korotkov, A., Broekaart, D.W., Banchaewa, L., Pustjens, B., van Scheppingen, J., Anink, J.J., Baayen, J.C., Idema, S., Gorter, J.A., van Vliet, E.A., et al.. (2020). microRNA‐132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro‐epileptogenic factors in human cultured astrocytes. Glia 68: 60–75, https://doi.org/10.1002/glia.23700.Suche in Google Scholar PubMed PubMed Central
Krieger, D. and Litt, B. (2009). Seizure prediction: its evolution and therapeutic potential. In: Shorvon, Simon, and Pedley, Timothy A. (Eds.). Blue books of neurology. Butterworth-Heinemann, Saunders, Philadelphia, PA & London, UK, pp. 1–16.10.1016/B978-1-4160-6171-7.00001-7Suche in Google Scholar
Latifi, R., Azadmehr, A., Mosalla, S., Saleki, K., and Hajiaghaee, R. (2022). Scolicidal effects of the Nicotiana tabacum L. extract at various concentrations and exposure times. J. Med. Plants. 21: 111–118, https://doi.org/10.52547/jmp.21.82.111.Suche in Google Scholar
Lévesque, M. and Avoli, M. (2013). The kainic acid model of temporal lobe epilepsy. Neurosci. Biobehav. Rev. 37: 2887–2899, https://doi.org/10.1016/j.neubiorev.2013.10.011.Suche in Google Scholar PubMed PubMed Central
Li, T.R., Jia, Y.J., Wang, Q., Shao, X.Q., Zhang, P., and Lv, R.-J. (2018). Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy. Brain Res. 1700: 56–65, https://doi.org/10.1016/j.brainres.2018.07.013.Suche in Google Scholar PubMed
Li, C., Li, R., Bai, X., and Jiang, H. (2024). PVT1 regulates hippocampal neuron apoptosis and inflammation in epilepsy by miR-206-3p-dependent regulation of CAMK4. Gen. Physiol. Biophys. 43, https://doi.org/10.4149/gpb-2024022.Suche in Google Scholar
Li, X., Yang, C., Shi, Y., Guan, L., Li, H., Li, S., Li, Y., Zhang, Y., and Lin, J. (2021). Abnormal neuronal damage and inflammation in the hippocampus of kainic acid‐induced epilepsy mice. Cell Biochem. Funct. 39: 791–801, https://doi.org/10.1002/cbf.3651.Suche in Google Scholar PubMed
Liu, T., Liu, H., Xue, S., Xiao, L., Xu, J., Tong, S., and Wei, X.e. (2024). MiR129-5p-loaded exosomes suppress seizure-associated neurodegeneration in status epilepticus model mice by inhibiting HMGB1/TLR4-mediated neuroinflammation. Mol. Biol. Rep. 51: 292, https://doi.org/10.1007/s11033-024-09215-z.Suche in Google Scholar PubMed PubMed Central
Liu, Q., Wang, L., Yan, G., Zhang, W., Huan, Z., and Li, J. (2019). miR-125a-5p alleviates dysfunction and inflammation of pentylenetetrazol-induced epilepsy through targeting calmodulin-dependent protein kinase IV (CAMK4). Curr. Neurovasc. Res. 16: 365–372, https://doi.org/10.2174/1567202616666190906125444.Suche in Google Scholar PubMed
Liu, Y., Yu, G., Ding, Y.Y., and Zhang, Y.X. (2022). Expression of miR‐155 in serum exosomes in children with epilepsy and its diagnostic value. Dis. Markers 2022: 7979500, https://doi.org/10.1155/2022/7979500.Suche in Google Scholar PubMed PubMed Central
Lu, J., Zhou, N., Yang, P., Deng, L., and Liu, G. (2019). MicroRNA-27a-3p downregulation inhibits inflammatory response and hippocampal neuronal cell apoptosis by upregulating mitogen-activated protein kinase 4 (MAP2K4) expression in epilepsy: in vivo and in vitro studies. Med. Sci. Monit. 25: 8499, https://doi.org/10.12659/msm.916458.Suche in Google Scholar PubMed PubMed Central
Mao, S., Wu, J., Yan, J., Zhang, W., and Zhu, F. (2023a). Dysregulation of miR-146a: a causative factor in epilepsy pathogenesis, diagnosis, and prognosis. Front Neurol. 14: 1094709, https://doi.org/10.3389/fneur.2023.1094709.Suche in Google Scholar PubMed PubMed Central
Mahesh, G. and Biswas, R. (2019). MicroRNA-155: a master regulator of inflammation. J. Interferon Cytokine Res. 39: 321–330, https://doi.org/10.1089/jir.2018.0155.Suche in Google Scholar PubMed PubMed Central
Malekmohammad, K., Riva, A., and Rafieian-Kopaei, M. (2024). Recent advances in the treatment of epilepsy. Front. Pharmacol. 15: 1444138, https://doi.org/10.3389/fphar.2024.1444138.Suche in Google Scholar PubMed PubMed Central
Manole, A.M., Sirbu, C.A., Mititelu, M.R., Vasiliu, O., Lorusso, L., Sirbu, O.M., and Ionita Radu, F. (2023). State of the art and challenges in Epilepsy – A narrative review. Front Pharmacol. 13: 623, https://doi.org/10.3390/jpm13040623.Suche in Google Scholar PubMed PubMed Central
Mao, S., Wu, J., Yan, J., Zhang, W., and Zhu, F. (2023b). Dysregulation of miR-146a: a causative factor in epilepsy pathogenesis, diagnosis, and prognosis. Front Neurol 14: 1094709, https://doi.org/10.3389/fneur.2023.1094709.Suche in Google Scholar PubMed PubMed Central
Millett, C.E., Burdick, K.E., and Kubicki, M.R. (2022). The effects of peripheral inflammation on the brain – A neuroimaging perspective. Harv. Rev. Psychiatr. 30: 54–58, https://doi.org/10.1097/hrp.0000000000000323.Suche in Google Scholar PubMed PubMed Central
Mills, J.D., Iyer, A.M., Van Scheppingen, J., Bongaarts, A., Anink, J.J., Janssen, B., Zimmer, T.S., Spliet, W.G., Van Rijen, P.C., Jansen, F.E., et al.. (2017). Coding and small non-coding transcriptional landscape of Tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci. Rep. 7: 8089, https://doi.org/10.1038/s41598-017-06145-8.Suche in Google Scholar PubMed PubMed Central
Moustafa, M., Abokrysha, N.T., Eldesoukey, N.A., Amin, D.G., Mounir, N., and Labib, D.M. (2020). Role of circulating miR 194-5p, miR 106b, and miR 146a as potential biomarkers for epilepsy: a case-control study. Egypt J. Neurol. Psychiatr. Neurosurg. 56: 1–8, https://doi.org/10.1186/s41983-020-00214-y.Suche in Google Scholar
Nejad, C., Stunden, H.J., and Gantier, M.P. (2018). A guide to miRNAs in inflammation and innate immune responses. FEBS J. 285: 3695–3716, https://doi.org/10.1111/febs.14482.Suche in Google Scholar PubMed
Nomair, A.M., Mekky, J.F., El-Hamshary, S.A., and Nomeir, H.M. (2023a). Circulating miR-146a-5p and miR-132-3p as potential diagnostic biomarkers in epilepsy. Epilepsy Res. 191: 107089, https://doi.org/10.1016/j.eplepsyres.2023.107089.Suche in Google Scholar PubMed
Nomair, A.M., Mekky, J.F., El-Hamshary, S.A., and Nomeir, H.M. (2023b). Circulating miR-146a–5p and miR-132–3p as potential diagnostic biomarkers in epilepsy. Epilepsy Res. 191: 107089, https://doi.org/10.1016/j.eplepsyres.2023.107089.Suche in Google Scholar
Omran, A., Peng, J., Zhang, C., Xiang, Q.L., Xue, J., Gan, N., Kong, H., and Yin, F. (2012). Interleukin‐1β and microRNA‐146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53: 1215–1224, https://doi.org/10.1111/j.1528-1167.2012.03540.x.Suche in Google Scholar PubMed
Ou, S., Liu, X., Xu, T., Yu, X., Wang, T., Chen, Y., and Luo, H. (2022). miRNA-let-7i modulates status epilepticus via the TLR4 pathway. Acta Epileptol. 4: 20, https://doi.org/10.1186/s42494-022-00085-1.Suche in Google Scholar
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., et al.. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, https://doi.org/10.1136/bmj.n71.Suche in Google Scholar PubMed PubMed Central
Pan, W., Song, X., Hu, Q., and Zhang, Y. (2021). miR-485 inhibits histone deacetylase HDAC5, HIF1α and PFKFB3 expression to alleviate epilepsy in cellular and rodent models. Aging (Albany NY) 13: 14416, https://doi.org/10.18632/aging.203058.Suche in Google Scholar PubMed PubMed Central
Peng, J., Omran, A., Ashhab, M.U., Kong, H., Gan, N., He, F., and Yin, F. (2013). Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J. Mol. Neurosci. 50: 291–297, https://doi.org/10.1007/s12031-013-9953-3.Suche in Google Scholar PubMed
Postolache, T.T., Wadhawan, A., Can, A., Lowry, C.A., Woodbury, M., Makkar, H., Hoisington, A.J., Scott, A.J., Potocki, E., Benros, M.E., et al.. (2020). Inflammation in traumatic brain injury. J. Alzheimers Dis. 74: 1–28, https://doi.org/10.3233/jad-191150.Suche in Google Scholar PubMed PubMed Central
Prabowo, A., van Scheppingen, J., Iyer, A., Anink, J., Spliet, W., van Rijen, P., Meeteren, A.S.-v., and Aronica, E. (2015). Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas. J. Neuroinflammation 12: 1–14, https://doi.org/10.1186/s12974-015-0315-7.Suche in Google Scholar PubMed PubMed Central
Raouf, H.A., Kholoussi, N.M., Eissa, E., El Nady, H.G., Fayed, D.B., and Abdelkawy, R.F.M. (2020). MicroRNAs as immune regulators of inflammation in children with epilepsy. Int. J. Mol. Cell Med. 9: 188–197.Suche in Google Scholar
Roncon, P., Soukupovà, M., Binaschi, A., Falcicchia, C., Zucchini, S., Ferracin, M., Langley, S.R., Petretto, E., Johnson, M.R., Marucci, G., et al.. (2015). MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy–comparison with human epileptic samples. Sci. Rep. 5: 14143, https://doi.org/10.1038/srep14143.Suche in Google Scholar PubMed PubMed Central
Saleki, K., Alijanizadeh, P., and Azadmehr, A. (2023a). Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomed. Pharmacother. 167: 115558, https://doi.org/10.1016/j.biopha.2023.115558.Suche in Google Scholar PubMed
Saleki, K., Alijanizadeh, P., Javanmehr, N., and Rezaei, N. (2024a). The role of toll‐like receptors in neuropsychiatric disorders: immunopathology, treatment, and management. Med. Res. Rev. 44: 1267–1325, https://doi.org/10.1002/med.22012.Suche in Google Scholar PubMed
Saleki, K., Aram, C., Alijanizadeh, P., Khanmirzaei, M.H., Vaziri, Z., Ramzankhah, M., and Azadmehr, A. (2024b). Matrix metalloproteinase/fas ligand (MMP/FasL) interaction dynamics in COVID-19: an in silico study and neuroimmune perspective. Heliyon 10: e30898, https://doi.org/10.1016/j.heliyon.2024.e30898.Suche in Google Scholar PubMed PubMed Central
Saleki, K., Banazadeh, M., Saghazadeh, A., and Rezaei, N. (2023b). Aging, testosterone, and neuroplasticity: friend or foe? Rev. Neurosci. 34: 247–273, https://doi.org/10.1515/revneuro-2022-0033.Suche in Google Scholar PubMed
Saleki, K., Mohamadi, M., Alijanizadeh, P., and Rezaei, N. (2023c). Inflammasome elements in epilepsy and seizures. Transl. Neuroimmunol. 7: 449–474, https://doi.org/10.1016/b978-0-323-85841-0.00005-5.Suche in Google Scholar
Saleki, K., Mohamadi, M.H., Alijanizadeh, P., and Rezaei, N. (2023d). Neurological adverse effects of chimeric antigen receptor T-cell therapy. Expert Rev. Clin. Immunol. 19: 1361–1383, https://doi.org/10.1080/1744666x.2023.2248390.Suche in Google Scholar
Saleki, K., Mohamadi, M.H., Banazadeh, M., Alijanizadeh, P., Javanmehr, N., Pourahmad, R., and Nouri, H.R. (2022a). In silico design of a TLR4-mediating multiepitope chimeric vaccine against amyotrophic lateral sclerosis via advanced immunoinformatics. J. Leukoc. Biol. 112: 1191–1207, https://doi.org/10.1002/jlb.6ma0721-376rr.Suche in Google Scholar
Saleki, K., Payandeh, P., Shakeri, M., Pourahmad, R., Banazadeh, M., Alijanizadeh, P., Mohamadi, M.H., and Akhlaghdoust, M. (2022b). Utilizing immunoinformatics to target brain tumors; an aid to current neurosurgical practice. Interv. Pain Med. Neuromod. 2: e131144, https://doi.org/10.5812/ipmn-131144.Suche in Google Scholar
Saniya, K., Patil, B., Chavan, M.D., Prakash, K., Sailesh, K.S., Archana, R., and Johny, M. (2017). Neuroanatomical changes in brain structures related to cognition in epilepsy: an update. J. Nat. Sci. Biol. Med. 8: 139–143, https://doi.org/10.4103/0976-9668.210016.Suche in Google Scholar PubMed PubMed Central
Shaimardanova, A.A., Chulpanova, D.S., Mullagulova, A.I., Afawi, Z., Gamirova, R.G., Solovyeva, V.V., and Rizvanov, A.A. (2022). Gene and cell therapy for epilepsy: a mini review. Front Mol. Neurosci. 15: 868531, https://doi.org/10.3389/fnmol.2022.868531.Suche in Google Scholar PubMed PubMed Central
Shan, T., Zhu, Y., Fan, H., Liu, Z., Xie, J., Li, M., and Jing, S. (2024). Global, regional, and national time trends in the burden of epilepsy, 1990–2019: an age-period-cohort analysis for the global burden of disease 2019 study. Front Neurol. 15: 1418926, https://doi.org/10.3389/fneur.2024.1418926.Suche in Google Scholar PubMed PubMed Central
Stoll, G. and Bendszus, M. (2010). New approaches to neuroimaging of central nervous system inflammation. Curr. Opin. Neurol. 23: 282–286, https://doi.org/10.1097/wco.0b013e328337f4b5.Suche in Google Scholar PubMed
Szydłowska, K., Chrościcki, P., Olszewski, M., Nizińska, K., Piwocka, K., and Łukasiuk, K. (2024). miR-155-5p/miR-674-3p presence in peripheral blood leukocytes and relative proportion of white blood cell types as biomarkers of asymptomatic and symptomatic phases of temporal lobe epilepsy. BioRxiv 2024: 2029.582734, https://www.biorxiv.org/content/10.1101/2024.02.29.582734v1.10.1101/2024.02.29.582734Suche in Google Scholar
Tao, H., Zhao, J., Liu, T., Cai, Y., Zhou, X., Xing, H., Wang, Y., Yin, M., Zhong, W., Liu, Z., et al.. (2017). Intranasal delivery of miR‐146a mimics delayed seizure onset in the lithium‐pilocarpine mouse model. Mediat. Inflamm. 2017: 6512620, https://doi.org/10.1155/2017/6512620.Suche in Google Scholar PubMed PubMed Central
Tili, E., Michaille, J.-J., Cimino, A., Costinean, S., Dumitru, C.D., Adair, B., Fabbri, M., Alder, H., Liu, C.G., Calin, G.A., et al.. (2007). Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179: 5082–5089, https://doi.org/10.4049/jimmunol.179.8.5082.Suche in Google Scholar PubMed
Tiwari, D., Peariso, K., and Gross, C. (2018). MicroRNA‐induced silencing in epilepsy: opportunities and challenges for clinical application. Dev. Dyn. 247: 94–110, https://doi.org/10.1002/dvdy.24582.Suche in Google Scholar PubMed PubMed Central
Vaziri, Z., Saleki, K., Aram, C., Alijanizadeh, P., Pourahmad, R., Azadmehr, A., and Ziaei, N. (2023). Empagliflozin treatment of cardiotoxicity: a comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed. Pharmacother. 168: 115686, https://doi.org/10.1016/j.biopha.2023.115686.Suche in Google Scholar PubMed
Vezzani, A. (2009). Pilocarpine-induced seizures revisited: what does the model mimic? Epilepsy Curr. 9: 146–148, https://doi.org/10.1111/j.1535-7511.2009.01323.x.Suche in Google Scholar PubMed PubMed Central
Wang, Z., Na, Z., Cui, Y., Wei, C., and Wang, S. (2022). LncRNA ZFAS1 regulates the hippocampal neurons injury in epilepsy through the miR-15a-5p/OXSR1/NF-κB pathway. Metab. Brain. Dis. 37: 2277–2290, https://doi.org/10.1007/s11011-022-01013-5.Suche in Google Scholar PubMed
Wang, C., Sun, J., and Liu, J. (2024). Clinical effect of external ventricular drainage under intracranial pressure monitoring in the treatment of aneurysmal subarachnoid hemorrhage patients and investigation of the mechanism of miR-146a-5p/STC1 axis in inhibiting early brain injury in aneurys. Cell. Mol. Biol. 70: 295–302, https://doi.org/10.14715/cmb/2024.70.5.44.Suche in Google Scholar PubMed
Wen, F., Tan, Z., Huang, D., Jiang, Y., and Xiang, J. (2023). LncRNA PVT1 promotes neuronal cell apoptosis and neuroinflammation by regulating miR-488-3p/FOXD3/SCN2A axis in epilepsy. Neurochem. Res. 48: 895–908, https://doi.org/10.1007/s11064-022-03801-y.Suche in Google Scholar PubMed
Woodbury, M.E., Freilich, R.W., Cheng, C.J., Asai, H., Ikezu, S., Boucher, J.D., Slack, F., and Ikezu, T. (2015). miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. J. Neurosci. 35: 9764–9781, https://doi.org/10.1523/jneurosci.4790-14.2015.Suche in Google Scholar PubMed PubMed Central
Wu, Z., Liu, Y., Huang, J., Huang, Y., and Fan, L. (2019). MiR-206 inhibits epilepsy and seizure-induced brain injury by targeting CCL2. Cytotechnology 71: 809–818, https://doi.org/10.1007/s10616-019-00324-3.Suche in Google Scholar PubMed PubMed Central
Wu, Y., Zhang, Y., Zhu, S., Tian, C., and Zhang, Y. (2021). MiRNA-29a serves as a promising diagnostic biomarker in children with temporal lobe epilepsy and regulates seizure-induced cell death and inflammation in hippocampal neurons. Epileptic. Disord. 823-832, https://doi.org/10.1684/epd.2021.1331.Suche in Google Scholar PubMed
Xia, L., Li, D., Lin, C., Ou, S., Li, X., and Pan, S. (2017). Comparative study of joint bioinformatics analysis of underlying potential of ‘neurimmiR’, miR-212-3P/miR-132-3P, being involved in epilepsy and its emerging role in human cancer. Oncotarget 8: 40668–40682, https://doi.org/10.18632/oncotarget.16541.Suche in Google Scholar PubMed PubMed Central
Xiaoying, G., Guo, M., Jie, L., Yanmei, Z., Ying, C., Shengjie, S., Haiyan, G., Feixiang, S., Sihua, Q., and Jiahang, S. (2020). CircHivep2 contributes to microglia activation and inflammation via miR‐181a‐5p/SOCS2 signalling in mice with kainic acid‐induced epileptic seizures. J. Cell. Mol. Med. 24: 12980–12993, https://doi.org/10.1111/jcmm.15894.Suche in Google Scholar PubMed PubMed Central
Yan, Z., Che, S., Wang, J., Jiao, Y., Wang, C., and Meng, Q. (2015). miR-155 contributes to the progression of glioma by enhancing Wnt/β-catenin pathway. Tumour Biol 36: 5323–5331, https://doi.org/10.1007/s13277-015-3193-9.Suche in Google Scholar PubMed
Yan, Y., Xia, H., Hu, J., and Zhang, B. (2019). MicroRNA-542-3p regulates P-glycoprotein expression in rat epilepsy via the toll-like receptor 4/nuclear factor-kappaB signaling pathway. Curr. Neurovasc. Res. 16: 433–440, https://doi.org/10.2174/1567202616666191023160201.Suche in Google Scholar PubMed
Yang, X., Yang, X., Sun, A., Chen, S., Wang, X., and Zhao, X. (2024). The miR-23b-3p from adipose-derived stem cell exosomes alleviate inflammation in mice experiencing kainic acid-induced epileptic seizures. Neuroreport 35: 612–620, https://doi.org/10.1097/wnr.0000000000002044.Suche in Google Scholar PubMed
Yizhi, M., Liang, L., Zhihong, L., Yahui, H., Huaying, W., Ping, Y., and Qinghua, P. (2022). Chaihu Longgu Muli Decoction relieving temporal lobe epilepsy in rats by inhibiting TLR4 signaling pathway through miR-146a-3p and miR-146a-5p. Digital Chinese Med. 5: 317–325, https://doi.org/10.1016/j.dcmed.2022.10.008.Suche in Google Scholar
Yu, T., Fu, H., Sun, J.-J., Ding, D.-R., and Wang, H. (2021). miR-106b-5p upregulation is associated with microglial activation and inflammation in the mouse hippocampus following status epilepticus. Exp. Brain Res. 239: 3315–3325, https://doi.org/10.1007/s00221-021-06208-3.Suche in Google Scholar PubMed
Yuan, J., Huang, H., Zhou, X., Liu, X., Ou, S., Xu, T., Li, R., Ma, L., and Chen, Y. (2016). MicroRNA‐132 interact with p250GAP/Cdc42 pathway in the hippocampal neuronal culture model of acquired epilepsy and associated with epileptogenesis process. Neural. Plast. 2016: 5108489, https://doi.org/10.1155/2016/5108489.Suche in Google Scholar PubMed PubMed Central
Zhang, X., Li, X., Li, B., Sun, C., and Zhang, P. (2020). miR-21-5p protects hippocampal neurons of epileptic rats via inhibiting STAT3 expression. Adv. Clin. Exp. Med. 29: 793–801, https://doi.org/10.17219/acem/121929.Suche in Google Scholar PubMed
Zhang, H.L., Lin, Y.H., Qu, Y., and Chen, Q. (2018b). The effect of miR-146a gene silencing on drug-resistance and expression of protein of P-gp and MRP1 in epilepsy. Eur. Rev. Med. Pharmacol. Sci. 22: 2372–2379, https://doi.org/10.26355/eurrev-201804-14829.Suche in Google Scholar
Zhang, H., Qu, Y., and Wang, A. (2018a). Antagonist targeting microRNA-146a protects against lithium-pilocarpine-induced status epilepticus in rats by nuclear factor-κB pathway. Mol. Med. Rep. 17: 5356–5361, https://doi.org/10.3892/mmr.2018.8465.Suche in Google Scholar PubMed
Zhang, W., Ye, F., Xiong, J., He, F., Yang, L., Yin, F., Peng, J., and Wang, X. (2022). Silencing of miR‐132‐3p protects against neuronal injury following status epilepticus by inhibiting IL‐1β‐induced reactive astrocyte (A1) polarization. FASEB J. 36: e22554, https://doi.org/10.1096/fj.202200110rr.Suche in Google Scholar
Zheng, P., Bin, H., and Chen, W. (2019). Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer Cell Int. 19: 1–14, https://doi.org/10.1186/s12935-019-0821-2.Suche in Google Scholar PubMed PubMed Central
Zhou, X., Chen, J., Tao, H., Cai, Y., Huang, L., Zhou, H., Chen, Y., Cui, L., Zhong, W., and Li, K. (2020). Intranasal delivery of miR-155-5p antagomir alleviates acute seizures likely by inhibiting hippocampal inflammation. Neuropsychiatr. Dis. Treat.: 1295–1307, https://doi.org/10.2147/ndt.s247677.Suche in Google Scholar
Zhou, Q., Wang, Q., He, B., Kong, H., Luo, H., Wang, X., and Wang, W. (2022). MicroRNA 322-5p reduced neuronal inflammation via the TLR4/TRAF6/NF-κB axis in a rat epilepsy model. Open Med. 17: 907–914, https://doi.org/10.1515/med-2022-0485.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/revneuro-2025-0041).
© 2025 Walter de Gruyter GmbH, Berlin/Boston