Home A review of the application of exercise intervention on improving cognition in patients with Alzheimer’s disease: mechanisms and clinical studies
Article
Licensed
Unlicensed Requires Authentication

A review of the application of exercise intervention on improving cognition in patients with Alzheimer’s disease: mechanisms and clinical studies

  • Man Wang , Yan Hua EMAIL logo and Yulong Bai EMAIL logo
Published/Copyright: July 22, 2024
Become an author with De Gruyter Brill

Abstract

Alzheimer’s disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.


Corresponding authors: Yan Hua and Yulong Bai, Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing’an District, Shanghai 200040, China, E-mail: (Y. Hua), (Y. Bai)

Funding source: Young Talent Project of Shanghai Municipal Health Commission

Award Identifier / Grant number: 2022YQ055

Award Identifier / Grant number: 2022YFC3601204

Acknowledgments

This work was done with financial support from National Key Research and Development Program of China and Young Talent Project of Shanghai Municipal Health Commission.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: National Key Research and Development Program of China (No.2022YFC3601204); Young Talent Project of Shanghai Municipal Health Commission (No.2022YQ055).

  5. Data availability: Not applicable.

References

Abd El-Kader, S.M. and Al-Jiffri, O.H. (2016). Aerobic exercise improves quality of life, psychological well-being and systemic inflammation in subjects with Alzheimer’s disease. Afr. Health Sci. 16: 1045–1055, https://doi.org/10.4314/ahs.v16i4.22.Search in Google Scholar PubMed PubMed Central

Aberg, M.A., Aberg, N.D., Hedbäcker, H., Oscarsson, J., and Eriksson, P.S. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20: 2896–2903, https://doi.org/10.1523/jneurosci.20-08-02896.2000.Search in Google Scholar PubMed PubMed Central

Alvarez, A., Cacabelos, R., Sanpedro, C., García-Fantini, M., and Aleixandre, M. (2007). Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol. Aging 28: 533–536, https://doi.org/10.1016/j.neurobiolaging.2006.02.012.Search in Google Scholar PubMed

An, Y., Varma, V.R., Varma, S., Casanova, R., Dammer, E., Pletnikova, O., Chia, C.W., Egan, J.M., Ferrucci, L., Troncoso, J., et al.. (2018). Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 14: 318–329, https://doi.org/10.1016/j.jalz.2017.09.011.Search in Google Scholar PubMed PubMed Central

Aritake-Okada, S., Tanabe, K., Mochizuki, Y., Ochiai, R., Hibi, M., Kozuma, K., Katsuragi, Y., Ganeko, M., Takeda, N., and Uchida, S. (2019). Diurnal repeated exercise promotes slow-wave activity and fast-sigma power during sleep with increase in body temperature: a human crossover trial. J. Appl. Physiol. (1985) 127: 168–177, https://doi.org/10.1152/japplphysiol.00765.2018.Search in Google Scholar PubMed

Azevedo, C.V., Hashiguchi, D., Campos, H.C., Figueiredo, E.V., Otaviano, S., Penitente, A.R., Arida, R.M., and Longo, B.M. (2023). The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer’s disease. Front Neurosci. 17: 1131214, https://doi.org/10.3389/fnins.2023.1131214.Search in Google Scholar PubMed PubMed Central

Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., and Bellec, P. (2017). Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement (Amst) 8: 73–85, https://doi.org/10.1016/j.dadm.2017.03.007.Search in Google Scholar PubMed PubMed Central

Baker, L.D., Frank, L.L., Foster-Schubert, K., Green, P.S., Wilkinson, C.W., McTiernan, A., Plymate, S.R., Fishel, M.A., Watson, G.S., Cholerton, B.A., et al.. (2010). Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch. Neurol. 67: 71–79, https://doi.org/10.1001/archneurol.2009.307.Search in Google Scholar PubMed PubMed Central

Baker, M.K., Atlantis, E., and Fiatarone Singh, M.A. (2007). Multi-modal exercise programs for older adults. Age Ageing 36: 375–381, https://doi.org/10.1093/ageing/afm054.Search in Google Scholar PubMed

Barnes, D.E., Yaffe, K., Satariano, W.A., and Tager, I.B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 51: 459–465, https://doi.org/10.1046/j.1532-5415.2003.51153.x.Search in Google Scholar PubMed

Beeri, M.S., Leugrans, S.E., Delbono, O., Bennett, D.A., and Buchman, A.S. (2021). Sarcopenia is associated with incident Alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J. Am. Geriatr. Soc. 69: 1826–1835, https://doi.org/10.1111/jgs.17206.Search in Google Scholar PubMed PubMed Central

Belviranli, H.G.M. and Gökbel, H. (2006). Acute exercise induced oxidative stress and antioxidant changes. Eur. J. Gen. Med. 3: 126–131, https://doi.org/10.29333/ejgm/82392.Search in Google Scholar

Benedictus, M.R., Leeuwis, A.E., Binnewijzend, M.A., Kuijer, J.P., Scheltens, P., Barkhof, F., van der Flier, W.M., and Prins, N.D. (2017). Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur. Radiol. 27: 1169–1175, https://doi.org/10.1007/s00330-016-4450-z.Search in Google Scholar PubMed PubMed Central

Binnewijzend, M.A., Kuijer, J.P., Benedictus, M.R., van der Flier, W.M., Wink, A.M., Wattjes, M.P., van Berckel, B.N., Scheltens, P., and Barkhof, F. (2013). Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267: 221–230, https://doi.org/10.1148/radiol.12120928.Search in Google Scholar PubMed

Blennow, K., Hampel, H., Weiner, M., and Zetterberg, H. (2010). Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6: 131–144, https://doi.org/10.1038/nrneurol.2010.4.Search in Google Scholar PubMed

Bokde, A.L., Ewers, M., and Hampel, H. (2009). Assessing neuronal networks: understanding Alzheimer’s disease. Prog. Neurobiol. 89: 125–133, https://doi.org/10.1016/j.pneurobio.2009.06.004.Search in Google Scholar PubMed

Boots, E.A., Schultz, S.A., Oh, J.M., Larson, J., Edwards, D., Cook, D., Koscik, R.L., Dowling, M.N., Gallagher, C.L., Carlsson, C.M., et al.. (2015). Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease. Brain Imag. Behav. 9: 639–649, https://doi.org/10.1007/s11682-014-9325-9.Search in Google Scholar PubMed PubMed Central

Borges-Machado, F., Ribeiro, Ó., Sampaio, A., Marques-Aleixo, I., Meireles, J., and Carvalho, J. (2019). Feasibility and impact of a multicomponent exercise intervention in patients with Alzheimer’s disease: a pilot study. Am. J. Alzheim. Dis. Other Demen. 34: 95–103, https://doi.org/10.1177/1533317518813555.Search in Google Scholar PubMed PubMed Central

Brenowitz, W.D., Hubbard, R.A., Keene, C.D., Hawes, S.E., Longstreth, W.T.Jr., Woltjer, R.L., and Kukull, W.A. (2017). Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheim. Dement 13: 654–662, https://doi.org/10.1016/j.jalz.2016.09.015.Search in Google Scholar PubMed PubMed Central

Bruno, M.A., Leon, W.C., Fragoso, G., Mushynski, W.E., Almazan, G., and Cuello, A.C. (2009). Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. J. Neuropathol. Exp. Neurol. 68: 857–869, https://doi.org/10.1097/nen.0b013e3181aed9e6.Search in Google Scholar

Buckner, R.L., Andrews-Hanna, J.R., and Schacter, D.L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124: 1–38, https://doi.org/10.1196/annals.1440.011.Search in Google Scholar PubMed

Bull, F.C., Al-Ansari, S.S., Biddle, S., Borodulin, K., Buman, M.P., Cardon, G., Carty, C., Chaput, J.P., Chastin, S., Chou, R., et al.. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54: 1451–1462, https://doi.org/10.1136/bjsports-2020-102955.Search in Google Scholar PubMed PubMed Central

Butterfield, D.A. and Halliwell, B. (2019). Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20: 148–160, https://doi.org/10.1038/s41583-019-0132-6.Search in Google Scholar PubMed PubMed Central

Camila, V.D.L.T., Ribeiro Rezende, T.J., Magalhães, T.N., Weiler, M., Ana, F.M.C., Debora, Q.D.A., Thiago, Q.A.S., Giroud Joaquim, H.P., Talib, L.L., and Forlenza, O.V. (2017). Effects of aerobic exercise on progression of Hippocampal volume and cognition in amnestic mild cognitive impairment due to AD. Alzheim. Dementia. 13: P389.10.1016/j.jalz.2017.06.362Search in Google Scholar

Carro, E., Trejo, J.L., Gomez-Isla, T., LeRoith, D., and Torres-Aleman, I. (2002). Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat. Med. 8: 1390–1397, https://doi.org/10.1038/nm1202-793.Search in Google Scholar PubMed

Carvalho, M.J., Marques, E., and Mota, J. (2009). Training and detraining effects on functional fitness after a multicomponent training in older women. Gerontology 55: 41–48, https://doi.org/10.1159/000140681.Search in Google Scholar PubMed

Cassilhas, R.C., Lee, K.S., Fernandes, J., Oliveira, M.G., Tufik, S., Meeusen, R., and de Mello, M.T. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202: 309–317, https://doi.org/10.1016/j.neuroscience.2011.11.029.Search in Google Scholar PubMed

Chakravorty, A., Jetto, C.T., and Manjithaya, R. (2019). Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Front Aging Neurosci 11: 311, https://doi.org/10.3389/fnagi.2019.00311.Search in Google Scholar PubMed PubMed Central

Chao, L.L., Buckley, S.T., Kornak, J., Schuff, N., Madison, C., Yaffe, K., Miller, B.L., Kramer, J.H., and Weiner, M.W. (2010). ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheim. Dis. Assoc. Disord. 24: 19–27, https://doi.org/10.1097/wad.0b013e3181b4f736.Search in Google Scholar

Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., and Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14: 450–464, https://doi.org/10.1016/j.redox.2017.10.014.Search in Google Scholar PubMed PubMed Central

Chen, W.W., Zhang, X., and Huang, W.J. (2016). Role of physical exercise in Alzheimer’s disease. Biomed. Rep. 4: 403–407, https://doi.org/10.3892/br.2016.607.Search in Google Scholar PubMed PubMed Central

Chirles, T.J., Reiter, K., Weiss, L.R., Alfini, A.J., Nielson, K.A., and Smith, J.C. (2017). Exercise training and functional connectivity changes in mild cognitive impairment and healthy elders. J. Alzheim. Dis. 57: 845–856, https://doi.org/10.3233/jad-161151.Search in Google Scholar PubMed PubMed Central

Choi, S.H., Bylykbashi, E., Chatila, Z.K., Lee, S.W., Pulli, B., Clemenson, G.D., Kim, E., Rompala, A., Oram, M.K., Asselin, C., et al.. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361: eaan8821, https://doi.org/10.1126/science.aan8821.Search in Google Scholar PubMed PubMed Central

Coelho, F.G., Vital, T.M., Stein, A.M., Arantes, F.J., Rueda, A.V., Camarini, R., Teodorov, E., and Santos-Galduróz, R.F. (2014). Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheim. Dis. 39: 401–408, https://doi.org/10.3233/jad-131073.Search in Google Scholar

Cooper, J.H., Collins, B.E., Adams, D.R., Robergs, R.A., and Donges, C.E. (2016). Limited effects of endurance or interval training on visceral adipose tissue and systemic inflammation in sedentary middle-aged men. J. Obes 2016: 2479597, https://doi.org/10.1155/2016/2479597.Search in Google Scholar PubMed PubMed Central

Cotman, C.W. and Berchtold, N.C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25: 295–301, https://doi.org/10.1016/s0166-2236(02)02143-4.Search in Google Scholar PubMed

Cress, M.E., Buchner, D.M., Prohaska, T., Rimmer, J., Brown, M., Macera, C., Dipietro, L., and Chodzko-Zajko, W. (2005). Best practices for physical activity programs and behavior counseling in older adult populations. J. Aging Phys. Act. 13: 61–74, https://doi.org/10.1123/japa.13.1.61.Search in Google Scholar PubMed

Croteau, E., Castellano, C.A., Fortier, M., Bocti, C., Fulop, T., Paquet, N., and Cunnane, S.C. (2018). A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp. Gerontol. 107: 18–26, https://doi.org/10.1016/j.exger.2017.07.004.Search in Google Scholar PubMed

Cruz Hernández, J.C., Bracko, O., Kersbergen, C.J., Muse, V., Haft-Javaherian, M., Berg, M., Park, L., Vinarcsik, L.K., Ivasyk, I., Rivera, D.A., et al.. (2019). Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat. Neurosci. 22: 413–420, https://doi.org/10.1038/s41593-018-0329-4.Search in Google Scholar PubMed PubMed Central

Cui, Y., Tang, T.Y., Lu, C.Q., and Ju, S. (2022). Insulin resistance and cognitive impairment: evidence from neuroimaging. J. Magn. Reson. Imaging 56: 1621–1649, https://doi.org/10.1002/jmri.28358.Search in Google Scholar PubMed

Daulatzai, M.A. (2017). Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J. Neurosci. Res. 95: 943–972, https://doi.org/10.1002/jnr.23777.Search in Google Scholar PubMed

de Almeida, E.J.R., Ibrahim, H.J., Chitolina Schetinger, M.R., de Andrade, C.M., and Cardoso, A.M. (2022). Modulation of inflammatory mediators and microglial activation through physical exercise in Alzheimer’s and Parkinson’s diseases. Neurochem. Res. 47: 3221–3240, https://doi.org/10.1007/s11064-022-03713-x.Search in Google Scholar PubMed

de Carvalho Souza Vieira, M., Boing, L., Leitão, A.E., Vieira, G., and Coutinho de Azevedo Guimarães, A. (2018). Effect of physical exercise on the cardiorespiratory fitness of men-A systematic review and meta-analysis. Maturitas 115: 23–30, https://doi.org/10.1016/j.maturitas.2018.06.006.Search in Google Scholar PubMed

de Farias, J.M., Dos Santos Tramontin, N., Pereira, E.V., de Moraes, G.L., Furtado, B.G., Tietbohl, L.T.W., Da Costa Pereira, B., Simon, K.U., and Muller, A.P. (2021). Physical exercise training improves judgment and problem-solving and modulates serum biomarkers in patients with Alzheimer’s disease. Mol. Neurobiol. 58: 4217–4225, https://doi.org/10.1007/s12035-021-02411-z.Search in Google Scholar PubMed

De la Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A., García-Lucerga, C., Blasco-Lafarga, C., Garcia-Dominguez, E., Carretero, A., Correas, A.G., et al.. (2020). Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport Health Sci. 9: 394–404, https://doi.org/10.1016/j.jshs.2020.01.004.Search in Google Scholar PubMed PubMed Central

de Oliveira Silva, F., Ferreira, J.V., Plácido, J., Sant’Anna, P., Araújo, J., Marinho, V., Laks, J., and Camaz Deslandes, A. (2019). Three months of multimodal training contributes to mobility and executive function in elderly individuals with mild cognitive impairment, but not in those with Alzheimer’s disease: a randomized controlled trial. Maturitas 126: 28–33, https://doi.org/10.1016/j.maturitas.2019.04.217.Search in Google Scholar PubMed

de Sousa, C.V., Sales, M.M., Rosa, T.S., Lewis, J.E., de Andrade, R.V., and Simões, H.G. (2017). The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Med. 47: 277–293, https://doi.org/10.1007/s40279-016-0566-1.Search in Google Scholar PubMed

De Sousa, R.A.L., Rodrigues, C.M., Mendes, B.F., Improta-Caria, A.C., Peixoto, M.F.D., and Cassilhas, R.C. (2021). Physical exercise protocols in animal models of Alzheimer’s disease: a systematic review. Metab. Brain Dis. 36: 85–95, https://doi.org/10.1007/s11011-020-00633-z.Search in Google Scholar PubMed

Diekelmann, S. and Born, J. (2010). The memory function of sleep. Nat. Rev. Neurosci. 11: 114–126, https://doi.org/10.1038/nrn2762.Search in Google Scholar PubMed

Dougherty, R.J., Boots, E.A., Rowley, H.A., Hermann, B.P., Sager, M.A., Johnson, S.C., Edwards, D.F., Cook, D.B., and Okonkwo, O.C. (2017a). Exercise training and cerebral blood flow in preclinical Alzheimers’s disease: results from the aerobic exercise and cognitive health(reach) study. Alzheim. Dementia. 13: P865, https://doi.org/10.1016/j.jalz.2017.06.1230.Search in Google Scholar

Dougherty, R.J., Schultz, S.A., Boots, E.A., Ellingson, L.D., Meyer, J.D., Van Riper, S., Stegner, A.J., Edwards, D.F., Oh, J.M., Einerson, J., et al.. (2017b). Relationships between cardiorespiratory fitness, hippocampal volume, and episodic memory in a population at risk for Alzheimer’s disease. Brain Behav. 7: e00625, https://doi.org/10.1002/brb3.625.Search in Google Scholar PubMed PubMed Central

Du, Z., Li, Y., Li, J., Zhou, C., Li, F., and Yang, X. (2018). Physical activity can improve cognition in patients with Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Clin. Interv. Aging 13: 1593–1603, https://doi.org/10.2147/cia.s169565.Search in Google Scholar PubMed PubMed Central

Edinger, J.D., Glenn, D.M., Bastian, L.A., and Marsh, G.R. (2000). Slow-wave sleep and waking cognitive performance II: findings among middle-aged adults with and without insomnia complaints. Physiol. Behav. 70: 0–134, https://doi.org/10.1016/s0031-9384(00)00238-9.Search in Google Scholar PubMed

Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Hu, L., Morris, K.S., White, S.M., Wójcicki, T.R., McAuley, E., and Kramer, A.F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19: 1030–1039, https://doi.org/10.1002/hipo.20547.Search in Google Scholar PubMed PubMed Central

Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., Kim, J.S., Heo, S., Alves, H., White, S.M., et al.. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U. S. A. 108: 3017–3022, https://doi.org/10.1073/pnas.1015950108.Search in Google Scholar PubMed PubMed Central

Erickson, K.I., Weinstein, A.M., Sutton, B.P., Prakash, R.S., Voss, M.W., Chaddock, L., Szabo, A.N., Mailey, E.L., White, S.M., Wojcicki, T.R., et al.. (2012). Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain Behav. 2: 32–41, https://doi.org/10.1002/brb3.30.Search in Google Scholar PubMed PubMed Central

Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B., Lautrup, S., Hasan-Olive, M.M., Caponio, D., Dan, X., et al.. (2019). Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 22: 401–412, https://doi.org/10.1038/s41593-018-0332-9.Search in Google Scholar PubMed PubMed Central

Fang, Y. (2011). Guiding research and practice: a conceptual model for aerobic exercise training in Alzheimer’s disease. Am. J. Alzheim. Dis. Other Demen. 26: 184–194, https://doi.org/10.1177/1533317511402317.Search in Google Scholar PubMed PubMed Central

Fank, F., Pereira, F.D.S., Dos Santos, L., de Mello, M.T., and Mazo, G.Z. (2022). Effects of exercise on sleep in older adults: an overview of systematic reviews and meta-analyses. J. Aging Phys. Act. 30: 1101–1117, https://doi.org/10.1123/japa.2021-0444.Search in Google Scholar PubMed

Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., and Ward, P.B. (2018). Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166: 230–238, https://doi.org/10.1016/j.neuroimage.2017.11.007.Search in Google Scholar PubMed

Fiuza-Luces, C., Santos-Lozano, A., Joyner, M., Carrera-Bastos, P., Picazo, O., Zugaza, J.L., Izquierdo, M., Ruilope, L.M., and Lucia, A. (2018). Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15: 731–743, https://doi.org/10.1038/s41569-018-0065-1.Search in Google Scholar PubMed

Fogel, S.M. and Smith, C.T. (2011). The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci. Biobehav. Rev. 35: 1154–1165, https://doi.org/10.1016/j.neubiorev.2010.12.003.Search in Google Scholar PubMed

Frederiksen, K.S., Madsen, K., Andersen, B.B., Beyer, N., Garde, E., Hgh, P., Waldemar, G., Hasselbalch, S.G., and Law, I. (2019b). Moderate- to high-intensity exercise does not modify cortical β-amyloid in Alzheimer’s disease. Alzheim. Dementia. 5: 208–215, https://doi.org/10.1016/j.trci.2019.04.006.Search in Google Scholar PubMed PubMed Central

Frederiksen, K.S., Madsen, K., Andersen, B.B., Beyer, N., Garde, E., Høgh, P., Waldemar, G., Hasselbalch, S.G., and Law, I. (2019a). Moderate- to high-intensity exercise does not modify cortical β-amyloid in Alzheimer’s disease. Alzheim. Dement 5: 208–215, https://doi.org/10.1016/j.trci.2019.04.006.Search in Google Scholar

Gaitán, J.M., Boots, E.A., Dougherty, R.J., Oh, J.M., Ma, Y., Edwards, D.F., Christian, B.T., Cook, D.B., and Okonkwo, O.C. (2019). Brain glucose metabolism, cognition, and cardiorespiratory fitness following exercise training in adults at risk for Alzheimer’s disease. Brain Plast. 5: 83–95, https://doi.org/10.3233/bpl-190093.Search in Google Scholar PubMed PubMed Central

Gao, L., Zhang, Y., Sterling, K., and Song, W. (2022). Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 11: 4, https://doi.org/10.1186/s40035-022-00279-0.Search in Google Scholar PubMed PubMed Central

González, H.M., Tarraf, W., Harrison, K., Windham, B.G., Tingle, J., Alonso, A., Griswold, M., Heiss, G., Knopman, D., and Mosley, T.H. (2018). Midlife cardiovascular health and 20-year cognitive decline: atherosclerosis Risk in Communities Study results. Alzheim. Dement 14: 579–589, https://doi.org/10.1016/j.jalz.2017.11.002.Search in Google Scholar PubMed PubMed Central

Greicius, M.D., Srivastava, G., Reiss, A.L., and Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U. S. A. 101: 4637–4642, https://doi.org/10.1073/pnas.0308627101.Search in Google Scholar PubMed PubMed Central

Guadagni, V., Drogos, L.L., Tyndall, A.V., Davenport, M.H., Anderson, T.J., Eskes, G.A., Longman, R.S., Hill, M.D., Hogan, D.B., and Poulin, M.J. (2020). Aerobic exercise improves cognition and cerebrovascular regulation in older adults. Neurology 94: e2245–e2257, https://doi.org/10.1212/wnl.0000000000009478.Search in Google Scholar PubMed PubMed Central

Guitar, N.A., Connelly, D.M., Nagamatsu, L.S., Orange, J.B., and Muir-Hunter, S.W. (2018). The effects of physical exercise on executive function in community-dwelling older adults living with Alzheimer’s-type dementia: a systematic review. Ageing Res. Rev. 47: 159–167, https://doi.org/10.1016/j.arr.2018.07.009.Search in Google Scholar PubMed

Haeger, A., Costa, A.S., Schulz, J.B., and Reetz, K. (2019). Cerebral changes improved by physical activity during cognitive decline: a systematic review on MRI studies. Neuroimage Clin. 23: 101933, https://doi.org/10.1016/j.nicl.2019.101933.Search in Google Scholar PubMed PubMed Central

Hanseeuw, B.J., Betensky, R.A., Jacobs, H.I.L., Schultz, A.P., Sepulcre, J., Becker, J.A., Cosio, D.M.O., Farrell, M., Quiroz, Y.T., Mormino, E.C., et al.. (2019). Association of amyloid and tau with cognition in preclinical alzheimer disease: a longitudinal study. JAMA Neurol. 76: 915–924, https://doi.org/10.1001/jamaneurol.2019.1424.Search in Google Scholar PubMed PubMed Central

Hashiguchi, D., Campos, H.C., Wuo-Silva, R., Faber, J., Gomes da Silva, S., Coppi, A.A., Arida, R.M., and Longo, B.M. (2020). Resistance exercise decreases amyloid load and modulates inflammatory responses in the APP/PS1 mouse model for Alzheimer’s disease. J. Alzheim. Dis. 73: 1525–1539, https://doi.org/10.3233/jad-190729.Search in Google Scholar PubMed

Henstridge, C.M., Hyman, B.T., and Spires-Jones, T.L. (2019). Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat. Rev. Neurosci. 20: 94–108, https://doi.org/10.1038/s41583-018-0113-1.Search in Google Scholar PubMed PubMed Central

Heo, S., Prakash, R.S., Voss, M.W., Erickson, K.I., Ouyang, C., Sutton, B.P., and Kramer, A.F. (2010). Resting hippocampal blood flow, spatial memory and aging. Brain Res. 1315: 119–127, https://doi.org/10.1016/j.brainres.2009.12.020.Search in Google Scholar PubMed PubMed Central

Hirshkowitz, M. (2004). Normal human sleep: an overview. Med. Clin. North Am. 88: 551–565, https://doi.org/10.1016/j.mcna.2004.01.001.Search in Google Scholar PubMed

Holthoff, V.A., Marschner, K., Scharf, M., Steding, J., Meyer, S., Koch, R., and Donix, M. (2015). Effects of physical activity training in patients with Alzheimer’s dementia: results of a pilot RCT study. PLoS One 10: e0121478, https://doi.org/10.1371/journal.pone.0121478.Search in Google Scholar PubMed PubMed Central

Huang, X., Zhao, X., Cai, Y., and Wan, Q. (2022a). The cerebral changes induced by exercise interventions in people with mild cognitive impairment and Alzheimer’s disease: a systematic review. Arch. Gerontol. Geriatr. 98: 104547, https://doi.org/10.1016/j.archger.2021.104547.Search in Google Scholar PubMed

Huang, X., Zhao, X., Li, B., Cai, Y., Zhang, S., Wan, Q., and Yu, F. (2022b). Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: a systematic review and network meta-analysis. J. Sport Health Sci. 11: 212–223, https://doi.org/10.1016/j.jshs.2021.05.003.Search in Google Scholar PubMed PubMed Central

Intlekofer, K.A. and Cotman, C.W. (2013). Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis. 57: 47–55, https://doi.org/10.1016/j.nbd.2012.06.011.Search in Google Scholar PubMed

Ionescu-Tucker, A. and Cotman, C.W. (2021). Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 107: 86–95, https://doi.org/10.1016/j.neurobiolaging.2021.07.014.Search in Google Scholar PubMed

Irwin, M.R. and Vitiello, M.V. (2019). Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 18: 296–306, https://doi.org/10.1016/s1474-4422(18)30450-2.Search in Google Scholar PubMed

Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., Mateos-Pérez, J.M., Evans, A.C., Weiner, M.W., Aisen, P., Petersen, R., Jack, C.R., Jagust, W., et al.. (2016). Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7: 11934, https://doi.org/10.1038/ncomms11934.Search in Google Scholar PubMed PubMed Central

Jack, C.R.Jr. (2011). Alliance for aging research AD biomarkers work group: structural MRI. Neurobiol. Aging 32: S48–S57, https://doi.org/10.1016/j.neurobiolaging.2011.09.011.Search in Google Scholar PubMed PubMed Central

Jafarzadeh, G. and Shakerian, S. (2021). Effects of eight weeks of resistance exercises on neurotrophins and trk receptors in Alzheimer model Male wistar rats. Basic Clin. Neurosci. 12: 349–359, https://doi.org/10.5812/jjcmb.117211.Search in Google Scholar

Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., and Moustafa, A.A. (2017). Factors underlying cognitive decline in old age and Alzheimer’s disease: the role of the hippocampus. Rev. Neurosci. 28: 705–714, https://doi.org/10.1515/revneuro-2016-0086.Search in Google Scholar PubMed

Jefferson, A.L., Hohman, T.J., Liu, D., Haj-Hassan, S., Gifford, K.A., Benson, E.M., Skinner, J.S., Lu, Z., Sparling, J., Sumner, E.C., et al.. (2015). Adverse vascular risk is related to cognitive decline in older adults. J. Alzheim. Dis. 44: 1361–1373, https://doi.org/10.3233/jad-141812.Search in Google Scholar

Jensen, C.S., Bahl, J.M., Østergaard, L.B., Høgh, P., Wermuth, L., Heslegrave, A., Zetterberg, H., Heegaard, N.H.H., Hasselbalch, S.G., and Simonsen, A.H. (2019). Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp. Gerontol. 121: 91–98, https://doi.org/10.1016/j.exger.2019.04.003.Search in Google Scholar PubMed

Jia, R.X., Liang, J.H., Xu, Y., and Wang, Y.Q. (2019). Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis. BMC Geriatr. 19: 181, https://doi.org/10.1186/s12877-019-1175-2.Search in Google Scholar PubMed PubMed Central

Jonasson, L.S., Nyberg, L., Kramer, A.F., Lundquist, A., Riklund, K., and Boraxbekk, C.J. (2016). Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front. Aging Neurosci. 8: 336, https://doi.org/10.3389/fnagi.2016.00336.Search in Google Scholar PubMed PubMed Central

Jovicich, J., Minati, L., Marizzoni, M., Marchitelli, R., Sala-Llonch, R., Bartrés-Faz, D., Arnold, J., Benninghoff, J., Fiedler, U., Roccatagliata, L., et al.. (2016). Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study. Neuroimage 124: 442–454, https://doi.org/10.1016/j.neuroimage.2015.07.010.Search in Google Scholar PubMed

Kamat, P.K., Kalani, A., Rai, S., Swarnkar, S., Tota, S., Nath, C., and Tyagi, N. (2016). Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol. Neurobiol. 53: 648–661, https://doi.org/10.1007/s12035-014-9053-6.Search in Google Scholar PubMed PubMed Central

Kang, D.W., Lee, C.U., and Lim, H.K. (2017). Role of sleep disturbance in the trajectory of Alzheimer’s disease. Clin. Psychopharmacol. Neurosci. 15: 89–99, https://doi.org/10.9758/cpn.2017.15.2.89.Search in Google Scholar PubMed PubMed Central

Kellar, D. and Craft, S. (2020). Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19: 758–766, https://doi.org/10.1016/s1474-4422(20)30231-3.Search in Google Scholar PubMed PubMed Central

Kim, O.Y. and Song, J. (2018). The role of irisin in Alzheimer’s disease. J. Clin. Med. 7: 407, https://doi.org/10.3390/jcm7110407.Search in Google Scholar PubMed PubMed Central

Kim, T.S., Pae, C.U., Yoon, S.J., Jang, W.Y., Lee, N.J., Kim, J.J., Lee, S.J., Lee, C., Paik, I.H., and Lee, C.U. (2006). Decreased plasma antioxidants in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatr. 21: 344–348, https://doi.org/10.1002/gps.1469.Search in Google Scholar PubMed

Kisler, K., Nelson, A.R., Montagne, A., and Zlokovic, B.V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18: 419–434, https://doi.org/10.1038/nrn.2017.48.Search in Google Scholar PubMed PubMed Central

Kivipelto, M., Helkala, E.L., Laakso, M.P., Hänninen, T., Hallikainen, M., Alhainen, K., Iivonen, S., Mannermaa, A., Tuomilehto, J., Nissinen, A., et al.. (2002). Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann. Intern. Med. 137: 149–155, https://doi.org/10.7326/0003-4819-137-3-200208060-00006.Search in Google Scholar PubMed

Kovacevic, A., Mavros, Y., Heisz, J.J., and Fiatarone Singh, M.A. (2018). The effect of resistance exercise on sleep: a systematic review of randomized controlled trials. Sleep Med. Rev. 39: 52–68, https://doi.org/10.1016/j.smrv.2017.07.002.Search in Google Scholar PubMed

Kredlow, M.A., Capozzoli, M.C., Hearon, B.A., Calkins, A.W., and Otto, M.W. (2015). The effects of physical activity on sleep: a meta-analytic review. J. Behav. Med. 38: 427–449, https://doi.org/10.1007/s10865-015-9617-6.Search in Google Scholar PubMed

Laker, R.C., Drake, J.C., Wilson, R.J., Lira, V.A., Lewellen, B.M., Ryall, K.A., Fisher, C.C., Zhang, M., Saucerman, J.J., Goodyear, L.J., et al.. (2017). Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. J. Obes 8: 548, https://doi.org/10.1038/s41467-017-00520-9.Search in Google Scholar PubMed PubMed Central

Landau, S.M., Harvey, D., Madison, C.M., Reiman, E.M., Foster, N.L., Aisen, P.S., Petersen, R.C., Shaw, L.M., Trojanowski, J.Q., Jack, C.R.Jr., et al.. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75: 230–238, https://doi.org/10.1212/wnl.0b013e3181e8e8b8.Search in Google Scholar

Laske, C., Stransky, E., Leyhe, T., Eschweiler, G.W., Maetzler, W., Wittorf, A., Soekadar, S., Richartz, E., Koehler, N., Bartels, M., et al.. (2007). BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J. Psychiatr. Res. 41: 387–394, https://doi.org/10.1016/j.jpsychires.2006.01.014.Search in Google Scholar PubMed

Laventure, S., Fogel, S., Lungu, O., Albouy, G., Sévigny-Dupont, P., Vien, C., Sayour, C., Carrier, J., Benali, H., and Doyon, J. (2016). NREM2 and sleep spindles are instrumental to the consolidation of motor sequence memories. PLoS Biol. 14: e1002429, https://doi.org/10.1371/journal.pbio.1002429.Search in Google Scholar PubMed PubMed Central

Law, L.L., Rol, R.N., Schultz, S.A., Dougherty, R.J., Edwards, D.F., Koscik, R.L., Gallagher, C.L., Carlsson, C.M., Bendlin, B.B., Zetterberg, H., et al.. (2018). Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer’s disease. Alzheim. Dement (Amst) 10: 188–195, https://doi.org/10.1016/j.dadm.2018.01.001.Search in Google Scholar PubMed PubMed Central

Lazarević-Pašti, Т. (2023). Side effects of Alzheimer’s disease treatment. Curr. Med. Chem. 30: 2705–2709, https://doi.org/10.2174/0929867330666230112160522.Search in Google Scholar PubMed

Lee, Y.F., Gerashchenko, D., Timofeev, I., Bacskai, B.J., and Kastanenka, K.V. (2020). Slow wave sleep is a promising intervention target for Alzheimer’s disease. Front. Neurosci. 14: 705, https://doi.org/10.3389/fnins.2020.00705.Search in Google Scholar PubMed PubMed Central

Leeuwis, A.E., Benedictus, M.R., Kuijer, J.P.A., Binnewijzend, M.A.A., Hooghiemstra, A.M., Verfaillie, S.C.J., Koene, T., Scheltens, P., Barkhof, F., Prins, N.D., et al.. (2017). Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer’s disease. Alzheim. Dement 13: 531–540, https://doi.org/10.1016/j.jalz.2016.08.013.Search in Google Scholar PubMed

Li, Z., Chen, Q., Liu, J., and Du, Y. (2020). Physical exercise ameliorates the cognitive function and attenuates the neuroinflammation of Alzheimer’s disease via miR-129-5p. Dement Geriatr. Cogn. Disord. 49: 163–169, https://doi.org/10.1159/000507285.Search in Google Scholar PubMed

Liu, S., Pan, J., Tang, K., Lei, Q., He, L., Meng, Y., Cai, X., and Li, Z. (2020a). Sleep spindles, K-complexes, limb movements and sleep stage proportions may be biomarkers for amnestic mild cognitive impairment and Alzheimer’s disease. Sleep Breath 24: 637–651, https://doi.org/10.1007/s11325-019-01970-9.Search in Google Scholar PubMed

Liu, W., Zhuo, P., Li, L., Jin, H., Lin, B., Zhang, Y., Liang, S., Wu, J., Huang, J., Wang, Z., et al.. (2017). Activation of brain glucose metabolism ameliorating cognitive impairment in APP/PS1 transgenic mice by electroacupuncture. Free Radic. Biol. Med. 112: 174–190, https://doi.org/10.1016/j.freeradbiomed.2017.07.024.Search in Google Scholar PubMed

Liu, Y., Chu, J.M.T., Yan, T., Zhang, Y., Chen, Y., Chang, R.C.C., and Wong, G.T.C. (2020b). Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer’s disease mice. J. Neuroinflammation 17: 4, https://doi.org/10.1186/s12974-019-1653-7.Search in Google Scholar PubMed PubMed Central

Liu, Y.S., Wang, Y.M., and Zha, D.J. (2021). Brain functional and structural changes in Alzheimer’s disease with sleep disorders: a systematic review. Front Psychiatr. 12: 772068, https://doi.org/10.3389/fpsyt.2021.772068.Search in Google Scholar PubMed PubMed Central

Long, J.M. and Holtzman, D.M. (2019). Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179: 312–339, https://doi.org/10.1016/j.cell.2019.09.001.Search in Google Scholar PubMed PubMed Central

López-Ortiz, S., Valenzuela, P.L., Seisdedos, M.M., Morales, J.S., Vega, T., Castillo-García, A., Nisticò, R., Mercuri, N.B., Lista, S., Lucia, A., et al.. (2021). Exercise interventions in Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Ageing Res. Rev. 72: 101479, https://doi.org/10.1016/j.arr.2021.101479.Search in Google Scholar PubMed

Loprinzi, P.D. and Frith, E. (2019). A brief primer on the mediational role of BDNF in the exercise-memory link. Clin. Physiol. Funct. Imaging 39: 9–14, https://doi.org/10.1111/cpf.12522.Search in Google Scholar PubMed

Loprinzi, P.D., Herod, S.M., Cardinal, B.J., and Noakes, T.D. (2013). Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Res. 1539: 95–104, https://doi.org/10.1016/j.brainres.2013.10.004.Search in Google Scholar PubMed

Lourenco, M.V., Ribeiro, F.C., Sudo, F.K., Drummond, C., Assunção, N., Vanderborght, B., Tovar-Moll, F., Mattos, P., De Felice, F.G., and Ferreira, S.T. (2020). Cerebrospinal fluid irisin correlates with amyloid-β, BDNF, and cognition in Alzheimer’s disease. Alzheim. Dement (Amst) 12: e12034, https://doi.org/10.1002/dad2.12034.Search in Google Scholar PubMed PubMed Central

Lu, X., Moeini, M., Li, B., de Montgolfier, O., Lu, Y., Bélanger, S., Thorin, É., and Lesage, F. (2020). Voluntary exercise increases brain tissue oxygenation and spatially homogenizes oxygen delivery in a mouse model of Alzheimer’s disease. Neurobiol. Aging 88: 11–23, https://doi.org/10.1016/j.neurobiolaging.2019.11.015.Search in Google Scholar PubMed

Lu, Y., Dong, Y., Tucker, D., Wang, R., Ahmed, M.E., Brann, D., and Zhang, Q. (2017). Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. J. Alzheim. Dis. 56: 1469–1484, https://doi.org/10.3233/jad-160869.Search in Google Scholar PubMed PubMed Central

Lucey, B.P., McCullough, A., Landsness, E.C., Toedebusch, C.D., McLeland, J.S., Zaza, A.M., Fagan, A.M., McCue, L., Xiong, C., Morris, J.C., et al.. (2019). Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci. Transl. Med. 11: eaau6550, https://doi.org/10.1126/scitranslmed.aau6550.Search in Google Scholar PubMed PubMed Central

Lv, S., Wang, Q., Liu, W., Zhang, X., Cui, M., Li, X., and Xu, Y. (2023). Comparison of various exercise interventions on cognitive function in Alzheimer’s patients: a network meta-analysis. Arch. Gerontol. Geriatr. 115: 105113, https://doi.org/10.1016/j.archger.2023.105113.Search in Google Scholar PubMed

Maass, A., Düzel, S., Brigadski, T., Goerke, M., Becke, A., Sobieray, U., Neumann, K., Lövdén, M., Lindenberger, U., Bäckman, L., et al.. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage 131: 142–154, https://doi.org/10.1016/j.neuroimage.2015.10.084.Search in Google Scholar PubMed

Mak, L.E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S.H., and Milev, R. (2017). The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Conn. 7: 25–33, https://doi.org/10.1089/brain.2016.0438.Search in Google Scholar PubMed

Mander, B.A., Marks, S.M., Vogel, J.W., Rao, V., Lu, B., Saletin, J.M., Ancoli-Israel, S., Jagust, W.J., and Walker, M.P. (2015). β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 18: 1051–1057, https://doi.org/10.1038/nn.4035.Search in Google Scholar PubMed PubMed Central

Mander, B.A., Winer, J.R., Jagust, W.J., and Walker, M.P. (2016). Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci. 39: 552–566, https://doi.org/10.1016/j.tins.2016.05.002.Search in Google Scholar PubMed PubMed Central

Mander, B.A., Winer, J.R., and Walker, M.P. (2017). Sleep and human aging. Neuron 94: 19–36, https://doi.org/10.1016/j.neuron.2017.02.004.Search in Google Scholar PubMed PubMed Central

Marshall, L., Helgadóttir, H., Mölle, M., and Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444: 610–613, https://doi.org/10.1038/nature05278.Search in Google Scholar PubMed

Mattsson, N., Tosun, D., Insel, P.S., Simonson, A., Jack, C.R.Jr., Beckett, L.A., Donohue, M., Jagust, W., Schuff, N., and Weiner, M.W. (2014). Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain 137: 1550–1561, https://doi.org/10.1093/brain/awu043.Search in Google Scholar PubMed PubMed Central

Mavros, Y., Gates, N., Wilson, G.C., Jain, N., Meiklejohn, J., Brodaty, H., Wen, W., Singh, N., Baune, B.T., Suo, C., et al.. (2017). Mediation of cognitive function improvements by strength gains after resistance training in older adults with mild cognitive impairment: outcomes of the study of mental and resistance training. J. Am. Geriatr. Soc. 65: 550–559, https://doi.org/10.1111/jgs.14542.Search in Google Scholar PubMed

Mazza, M., Marano, G., Traversi, G., Bria, P., and Mazza, S. (2011). Primary cerebral blood flow deficiency and Alzheimer’s disease: shadows and lights. J. Alzheim. Dis. 23: 375–389, https://doi.org/10.3233/jad-2010-090700.Search in Google Scholar

McDonald, C.R., Gharapetian, L., McEvoy, L.K., Fennema-Notestine, C., Hagler, D.J.Jr., Holland, D., and Dale, A.M. (2012). Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. Neurobiol. Aging 33: 242–253, https://doi.org/10.1016/j.neurobiolaging.2010.03.015.Search in Google Scholar PubMed PubMed Central

Meng, Q., Lin, M.S., and Tzeng, I.S. (2020). Relationship between exercise and Alzheimer’s disease: a narrative literature review. Front. Neurosci. 14: 131, https://doi.org/10.3389/fnins.2020.00131.Search in Google Scholar PubMed PubMed Central

Mocanu, M.M., Nissen, A., Eckermann, K., Khlistunova, I., Biernat, J., Drexler, D., Petrova, O., Schönig, K., Bujard, H., Mandelkow, E., et al.. (2008). The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J. Neurosci. 28: 737–748, https://doi.org/10.1523/jneurosci.2824-07.2008.Search in Google Scholar

Morris, J.K., Vidoni, E.D., Johnson, D.K., Van Sciver, A., Mahnken, J.D., Honea, R.A., Wilkins, H.M., Brooks, W.M., Billinger, S.A., Swerdlow, R.H., et al.. (2017). Aerobic exercise for Alzheimer’s disease: a randomized controlled pilot trial. PLoS One 12: e0170547, https://doi.org/10.1371/journal.pone.0170547.Search in Google Scholar PubMed PubMed Central

Mosconi, L., De Santi, S., Li, J., Tsui, W.H., Li, Y., Boppana, M., Laska, E., Rusinek, H., and de Leon, M.J. (2008). Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol. Aging 29: 676–692, https://doi.org/10.1016/j.neurobiolaging.2006.12.008.Search in Google Scholar PubMed PubMed Central

Müller, J., Chan, K., and Myers, J.N. (2017). Association between exercise capacity and late onset of dementia, Alzheimer disease, and cognitive impairment. Mayo Clin. Proc. 92: 211–217, https://doi.org/10.1016/j.mayocp.2016.10.020.Search in Google Scholar PubMed

Nagase, T. and Tohda, C. (2021). Skeletal muscle atrophy-induced hemopexin accelerates onset of cognitive impairment in Alzheimer’s disease. J. Cachexia Sarcopenia Muscle 12: 2199–2210, https://doi.org/10.1002/jcsm.12830.Search in Google Scholar PubMed PubMed Central

Näslund, J., Haroutunian, V., Mohs, R., Davis, K.L., Davies, P., Greengard, P., and Buxbaum, J.D. (2000). Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. Jama 283: 1571–1577, https://doi.org/10.1001/jama.283.12.1571.Search in Google Scholar PubMed

Navarro, V., Sanchez-Mejias, E., Jimenez, S., Muñoz-Castro, C., Sanchez-Varo, R., Davila, J.C., Vizuete, M., Gutierrez, A., and Vitorica, J. (2018). Microglia in Alzheimer’s disease: activated, dysfunctional or degenerative. Front. Aging Neurosci. 10: 140, https://doi.org/10.3389/fnagi.2018.00140.Search in Google Scholar PubMed PubMed Central

Nedergaard, M. and Goldman, S.A. (2020). Glymphatic failure as a final common pathway to dementia. Science 370: 50–56, https://doi.org/10.1126/science.abb8739.Search in Google Scholar PubMed PubMed Central

Nelson, P.T., Alafuzoff, I., Bigio, E.H., Bouras, C., Braak, H., Cairns, N.J., Castellani, R.J., Crain, B.J., Davies, P., Del Tredici, K., et al.. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71: 362–381, https://doi.org/10.1097/nen.0b013e31825018f7.Search in Google Scholar

Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., Bäckman, L., Hänninen, T., Jula, A., Laatikainen, T., et al.. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385: 2255–2263, https://doi.org/10.1016/s0140-6736(15)60461-5.Search in Google Scholar PubMed

Öhman, H., Savikko, N., Strandberg, T.E., Kautiainen, H., Raivio, M.M., Laakkonen, M.L., Tilvis, R., and Pitkälä, K.H. (2016). Effects of exercise on cognition: the Finnish Alzheimer disease exercise trial: a randomized, controlled trial. J. Am. Geriatr. Soc. 64: 731–738, https://doi.org/10.1111/jgs.14059.Search in Google Scholar PubMed

Olaya, B., Moneta, M.V., Bobak, M., Haro, J.M., and Demakakos, P. (2019). Cardiovascular risk factors and memory decline in middle-aged and older adults: the English Longitudinal Study of Ageing. BMC Geriatr. 19: 337, https://doi.org/10.1186/s12877-019-1350-5.Search in Google Scholar PubMed PubMed Central

Padurariu, M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W., and Stefanescu, C. (2010). Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 469: 6–10, https://doi.org/10.1016/j.neulet.2009.11.033.Search in Google Scholar PubMed

Páez, A., Frimpong, E., Mograss, M., and Dang-Vu, T.T. (2024). The effectiveness of exercise interventions targeting sleep in older adults with cognitive impairment or Alzheimer’s disease and related dementias (AD/ADRD): a systematic review and meta-analysis. J. Sleep Res.: e14189, https://doi.org/10.1111/jsr.14189.Search in Google Scholar PubMed PubMed Central

Pahlavani, H.A. (2023). Exercise therapy to prevent and treat Alzheimer’s disease. Front. Aging Neurosci. 15: 1243869, https://doi.org/10.3389/fnagi.2023.1243869.Search in Google Scholar PubMed PubMed Central

Pang, R., Wang, X., Pei, F., Zhang, W., Shen, J., Gao, X., and Chang, C. (2019). Regular exercise enhances cognitive function and intracephalic GLUT expression in Alzheimer’s disease model mice. J. Alzheim. Dis. 72: 83–96, https://doi.org/10.3233/jad-190328.Search in Google Scholar

Park, H.S., Park, S.S., Kim, C.J., Shin, M.S., and Kim, T.W. (2019). Exercise alleviates cognitive functions by enhancing hippocampal insulin signaling and neuroplasticity in high-fat diet-induced obesity. Nutrients 11: 1603, https://doi.org/10.3390/nu11071603.Search in Google Scholar PubMed PubMed Central

Park, I., Díaz, J., Matsumoto, S., Iwayama, K., Nabekura, Y., Ogata, H., Kayaba, M., Aoyagi, A., Yajima, K., Satoh, M., et al.. (2021). Exercise improves the quality of slow-wave sleep by increasing slow-wave stability. Sci. Rep. 11: 4410, https://doi.org/10.1038/s41598-021-83817-6.Search in Google Scholar PubMed PubMed Central

Pase, M.P., Beiser, A., Enserro, D., Xanthakis, V., Aparicio, H., Satizabal, C.L., Himali, J.J., Kase, C.S., Vasan, R.S., DeCarli, C., et al.. (2016). Association of ideal cardiovascular health with vascular brain injury and incident dementia. Stroke 47: 1201–1206, https://doi.org/10.1161/strokeaha.115.012608.Search in Google Scholar PubMed PubMed Central

Pentikäinen, H., Savonen, K., Ngandu, T., Solomon, A., Komulainen, P., Paajanen, T., Antikainen, R., Kivipelto, M., Soininen, H., and Rauramaa, R. (2019). Cardiorespiratory fitness and cognition: longitudinal associations in the FINGER study. J. Alzheim. Dis. 68: 961–968, https://doi.org/10.3233/jad-180897.Search in Google Scholar

Peter-Derex, L., Yammine, P., Bastuji, H., and Croisile, B. (2015). Sleep and Alzheimer’s disease. Sleep Med. Rev. 19: 29–38, https://doi.org/10.1016/j.smrv.2014.03.007.Search in Google Scholar PubMed

Petersen, S.R., Haennel, R.G., Kappagoda, C.T., Belcastro, A.N., Reid, D.C., Wenger, H.A., and Quinney, H.A. (1989). The influence of high-velocity circuit resistance training on VO2max and cardiac output. Can. J. Sport Sci. 14: 158–163.Search in Google Scholar

Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., Galluzzi, S., Marizzoni, M., and Frisoni, G.B. (2016). Brain atrophy in Alzheimer’s Disease and aging. Ageing Res. Rev. 30: 25–48, https://doi.org/10.1016/j.arr.2016.01.002.Search in Google Scholar PubMed

Porter, C., Reidy, P.T., Bhattarai, N., Sidossis, L.S., and Rasmussen, B.B. (2015). Resistance exercise training alters mitochondrial function in human skeletal muscle. Med. Sci. Sports Exerc. 47: 1922–1931, https://doi.org/10.1249/mss.0000000000000605.Search in Google Scholar

Prehn, K., Lesemann, A., Krey, G., Witte, A.V., Köbe, T., Grittner, U., and Flöel, A. (2019). Using resting-state fMRI to assess the effect of aerobic exercise on functional connectivity of the DLPFC in older overweight adults. Brain Cogn. 131: 34–44, https://doi.org/10.1016/j.bandc.2017.08.006.Search in Google Scholar PubMed

Pucci, I.M., Aguiar, A.F., Pucci, R.M., Casonatto, J., and Borghi, S.M. (2024). Systematic review and meta-analysis of randomized controlled trials on the effects of exercise interventions on amyloid beta levels in humans. Exp. Brain Res. 242: 1011–1024, https://doi.org/10.1007/s00221-024-06821-y.Search in Google Scholar PubMed

Qin, X.Y., Cao, C., Cawley, N.X., Liu, T.T., Yuan, J., Loh, Y.P., and Cheng, Y. (2017). Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol. Psychiatr. 22: 312–320, https://doi.org/10.1038/mp.2016.62.Search in Google Scholar PubMed

Rahmati, M., Keshvari, M., Xie, W., Yang, G., Jin, H., Li, H., Chehelcheraghi, F., and Li, Y. (2022). Resistance training and Urtica dioica increase neurotrophin levels and improve cognitive function by increasing age in the hippocampus of rats. Biomed. Pharmacother. 153: 113306, https://doi.org/10.1016/j.biopha.2022.113306.Search in Google Scholar PubMed

Ren, J. and Xiao, H. (2023). Exercise intervention for Alzheimer’s disease: unraveling neurobiological mechanisms and assessing effects. Life 13: 2285, https://doi.org/10.3390/life13122285.Search in Google Scholar PubMed PubMed Central

Ribarič, S. (2022). Physical exercise, a potential non-pharmacological intervention for attenuating neuroinflammation and cognitive decline in Alzheimer’s disease patients. Int. J. Mol. Sci. 23: 3245, https://doi.org/10.3390/ijms23063245.Search in Google Scholar PubMed PubMed Central

Rodriguez-Ayllon, M., Solis-Urra, P., Arroyo-Ávila, C., Álvarez-Ortega, M., Molina-García, P., Molina-Hidalgo, C., Gómez-Río, M., Brown, B., Erickson, K.I., and Esteban-Cornejo, I. (2024). Physical activity and amyloid beta in middle-aged and older adults: a systematic review and meta-analysis. J. Sport Health Sci. 13: 133–144, https://doi.org/10.1016/j.jshs.2023.08.001.Search in Google Scholar PubMed PubMed Central

Roig, M., Cristini, J., Parwanta, Z., Ayotte, B., Rodrigues, L., de Las Heras, B., Nepveu, J.F., Huber, R., Carrier, J., Steib, S., et al.. (2022). Exercising the sleepy-ing brain: exercise, sleep, and sleep loss on memory. Exerc. Sport Sci. Rev. 50: 38–48, https://doi.org/10.1249/jes.0000000000000273.Search in Google Scholar PubMed

Rui, Y., Tiwari, P., Xie, Z., and Zheng, J.Q. (2006). Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J. Neurosci. 26: 10480–10487, https://doi.org/10.1523/jneurosci.3231-06.2006.Search in Google Scholar

Ruiz-González, D., Hernández-Martínez, A., Valenzuela, P.L., Morales, J.S., and Soriano-Maldonado, A. (2021). Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: a systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 128: 394–405, https://doi.org/10.1016/j.neubiorev.2021.05.025.Search in Google Scholar PubMed

Rytz, C.L., Pialoux, V., Mura, M., Martin, A., Hogan, D.B., Hill, M.D., and Poulin, M.J. (2020). Impact of aerobic exercise, sex, and metabolic syndrome on markers of oxidative stress: results from the brain in motion study. J. Appl. Physiol. (1985) 128: 748–756, https://doi.org/10.1152/japplphysiol.00667.2019.Search in Google Scholar PubMed

Samieri, C., Perier, M.C., Gaye, B., Proust-Lima, C., Helmer, C., Dartigues, J.F., Berr, C., Tzourio, C., and Empana, J.P. (2018). Association of cardiovascular health level in older age with cognitive decline and incident dementia. Jama 320: 657–664, https://doi.org/10.1001/jama.2018.11499.Search in Google Scholar PubMed PubMed Central

Sampaio, A., Marques, E.A., Mota, J., and Carvalho, J. (2019). Effects of a multicomponent exercise program in institutionalized elders with Alzheimer’s disease. Dementia 18: 417–431, https://doi.org/10.1177/1471301216674558.Search in Google Scholar PubMed

Sara, S.J. (2017). Sleep to remember. J. Neurosci. 37: 457–463, https://doi.org/10.1523/jneurosci.0297-16.2017.Search in Google Scholar PubMed PubMed Central

Sarazin, M., Chauviré, V., Gerardin, E., Colliot, O., Kinkingnéhun, S., de Souza, L.C., Hugonot-Diener, L., Garnero, L., Lehéricy, S., Chupin, M., et al.. (2010). The amnestic syndrome of hippocampal type in Alzheimer’s disease: an MRI study. J. Alzheim. Dis. 22: 285–294, https://doi.org/10.3233/jad-2010-091150.Search in Google Scholar PubMed

Saucedo Marquez, C.M., Vanaudenaerde, B., Troosters, T., and Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. (1985) 119: 1363–1373, https://doi.org/10.1152/japplphysiol.00126.2015.Search in Google Scholar PubMed

Schmolesky, M.T., Webb, D.L., and Hansen, R.A. (2013). The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J. Sports Sci. Med. 12: 502–511.Search in Google Scholar

Schrag, M., Mueller, C., Zabel, M., Crofton, A., Kirsch, W.M., Ghribi, O., Squitti, R., and Perry, G. (2013). Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol. Dis. 59: 100–110, https://doi.org/10.1016/j.nbd.2013.07.005.Search in Google Scholar PubMed

Schultz, S.A., Boots, E.A., Almeida, R.P., Oh, J.M., Einerson, J., Korcarz, C.E., Edwards, D.F., Koscik, R.L., Dowling, M.N., Gallagher, C.L., et al.. (2015). Cardiorespiratory fitness attenuates the influence of amyloid on cognition. J. Int. Neuropsychol. Soc. 21: 841–850, https://doi.org/10.1017/s1355617715000843.Search in Google Scholar PubMed PubMed Central

Sewell, K.R., Erickson, K.I., Rainey-Smith, S.R., Peiffer, J.J., Sohrabi, H.R., and Brown, B.M. (2021). Relationships between physical activity, sleep and cognitive function: a narrative review. Neurosci. Biobehav. Rev. 130: 369–378, https://doi.org/10.1016/j.neubiorev.2021.09.003.Search in Google Scholar PubMed

Shah, K., Desilva, S., and Abbruscato, T. (2012). The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. Int. J. Mol. Sci. 13: 12629–12655, https://doi.org/10.3390/ijms131012629.Search in Google Scholar PubMed PubMed Central

Sheline, Y.I., Raichle, M.E., Snyder, A.Z., Morris, J.C., Head, D., Wang, S., and Mintun, M.A. (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatr. 67: 584–587, https://doi.org/10.1016/j.biopsych.2009.08.024.Search in Google Scholar PubMed PubMed Central

Shi, L., Chen, S.J., Ma, M.Y., Bao, Y.P., Han, Y., Wang, Y.M., Shi, J., Vitiello, M.V., and Lu, L. (2018). Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med. Rev. 40: 4–16, https://doi.org/10.1016/j.smrv.2017.06.010.Search in Google Scholar PubMed

Simioni, C., Zauli, G., Martelli, A.M., Vitale, M., Sacchetti, G., Gonelli, A., and Neri, L.M. (2018). Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9: 17181–17198, https://doi.org/10.18632/oncotarget.24729.Search in Google Scholar PubMed PubMed Central

Solerte, S.B., Cerutti, N., Mirani, M., Ceresini, G., Giusti, A., Ferrari, E., and Fioravanti, M. (2002). Impairment of secretory pattern of IGF-I from lymphomononuclear cells in aging and dementia of the Alzheimer’s and vascular type. J. Endocrinol. Invest. 25: 47–50.Search in Google Scholar

Steen Jensen, C., Portelius, E., Siersma, V., Høgh, P., Wermuth, L., Blennow, K., Zetterberg, H., Waldemar, G., Gregers Hasselbalch, S., and Hviid Simonsen, A. (2016). Cerebrospinal fluid amyloid beta and tau concentrations are not modulated by 16 Weeks of moderate- to high-intensity physical exercise in patients with Alzheimer disease. Dement. Geriatr. Cogn. Disord. 42: 146–158, https://doi.org/10.1159/000449408.Search in Google Scholar PubMed

Stigger, F.S., Zago Marcolino, M.A., Portela, K.M., and Plentz, R.D.M. (2019). Effects of exercise on inflammatory, oxidative, and neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 74: 616–624, https://doi.org/10.1093/gerona/gly173.Search in Google Scholar PubMed

Suri, S., Topiwala, A., Chappell, M.A., Okell, T.W., Zsoldos, E., Singh-Manoux, A., Kivimäki, M., Mackay, C.E., and Ebmeier, K.P. (2019). Association of midlife cardiovascular risk profiles with cerebral perfusion at older ages. JAMA Netw. Open 2: e195776, https://doi.org/10.1001/jamanetworkopen.2019.5776.Search in Google Scholar PubMed PubMed Central

Swerdlow, R.H., Burns, J.M., and Khan, S.M. (2014). The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim. Biophys. Acta 1842: 1219–1231, https://doi.org/10.1016/j.bbadis.2013.09.010.Search in Google Scholar PubMed PubMed Central

Swerdlow, R.H. and Khan, S.M. (2004). A "mitochondrial cascade hypothesis" for sporadic Alzheimer’s disease. Med. Hypotheses 63: 8–20, https://doi.org/10.1016/j.mehy.2003.12.045.Search in Google Scholar PubMed

Szablewski, L. (2021). Brain glucose transporters: role in pathogenesis and potential targets for the treatment of Alzheimer’s disease. Int. J. Mol. Sci. 22: 8142, https://doi.org/10.3390/ijms22158142.Search in Google Scholar PubMed PubMed Central

Taillard, J., Sagaspe, P., Berthomier, C., Brandewinder, M., Amieva, H., Dartigues, J.F., Rainfray, M., Harston, S., Micoulaud-Franchi, J.A., and Philip, P. (2019). Non-REM sleep characteristics predict early cognitive impairment in an aging population. Front. Neurol. 10: 197, https://doi.org/10.3389/fneur.2019.00197.Search in Google Scholar PubMed PubMed Central

Talbot, K., Wang, H.Y., Kazi, H., Han, L.Y., Bakshi, K.P., Stucky, A., Fuino, R.L., Kawaguchi, K.R., Samoyedny, A.J., Wilson, R.S., et al.. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122: 1316–1338, https://doi.org/10.1172/jci59903.Search in Google Scholar PubMed PubMed Central

Tang, K., Xia, F.C., Wagner, P.D., and Breen, E.C. (2010). Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir. Physiol. Neurobiol. 170: 16–22, https://doi.org/10.1016/j.resp.2009.10.007.Search in Google Scholar PubMed PubMed Central

Tapia-Rojas, C., Aranguiz, F., Varela-Nallar, L., and Inestrosa, N.C. (2016). Voluntary running attenuates memory loss, decreases neuropathological changes and induces neurogenesis in a mouse model of Alzheimer’s disease. Brain Pathol. 26: 62–74, https://doi.org/10.1111/bpa.12255.Search in Google Scholar PubMed PubMed Central

Taylor, H.L., Buskirk, E., and Henschel, A. (1955). Maximal oxygen intake as an objective measure of cardio-respiratory performance. J. Appl. Physiol. 8: 73–80, https://doi.org/10.1152/jappl.1955.8.1.73.Search in Google Scholar PubMed

Thomas, B.P., Tarumi, T., Sheng, M., Tseng, B., Womack, K.B., Cullum, C.M., Rypma, B., Zhang, R., and Lu, H. (2020). Brain perfusion change in patients with mild cognitive impairment after 12 Months of aerobic exercise training. J. Alzheim. Dis. 75: 617–631, https://doi.org/10.3233/jad-190977.Search in Google Scholar

Tian, Q., Bilgel, M., Walker, K.A., Moghekar, A.R., Fishbein, K.W., Spencer, R.G., Resnick, S.M., and Ferrucci, L. (2023). Skeletal muscle mitochondrial function predicts cognitive impairment and is associated with biomarkers of Alzheimer’s disease and neurodegeneration. Alzheim. Dement 19: 4436–4445, https://doi.org/10.1002/alz.13388.Search in Google Scholar PubMed PubMed Central

Tosun, D., Schuff, N., Jagust, W., and Weiner, M.W. (2016). Discriminative power of arterial spin labeling magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography changes for amyloid-β-positive subjects in the Alzheimer’s disease continuum. Neurodegener. Dis. 16: 87–94, https://doi.org/10.1159/000439257.Search in Google Scholar PubMed

Tractenberg, R.E., Singer, C.M., and Kaye, J.A. (2005). Symptoms of sleep disturbance in persons with Alzheimer’s disease and normal elderly. J. Sleep Res. 14: 177–185, https://doi.org/10.1111/j.1365-2869.2005.00445.x.Search in Google Scholar PubMed PubMed Central

Tsai, C.L., Ukropec, J., Ukropcová, B., and Pai, M.C. (2018). An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. Neuroimage Clin. 17: 272–284, https://doi.org/10.1016/j.nicl.2017.10.028.Search in Google Scholar PubMed PubMed Central

Tyas, S.L., White, L.R., Petrovitch, H., Webster Ross, G., Foley, D.J., Heimovitz, H.K., and Launer, L.J. (2003). Mid-life smoking and late-life dementia: the honolulu-Asia aging study. Neurobiol. Aging 24: 589–596, https://doi.org/10.1016/s0197-4580(02)00156-2.Search in Google Scholar PubMed

Uchida, S., Shioda, K., Morita, Y., Kubota, C., Ganeko, M., and Takeda, N. (2012). Exercise effects on sleep physiology. Front. Neurol. 3: 48, https://doi.org/10.3389/fneur.2012.00048.Search in Google Scholar PubMed PubMed Central

Umpierre, D. and Stein, R. (2007). Hemodynamic and vascular effects of resistance training: implications for cardiovascular disease. Arq. Bras. Cardiol. 89: 256–262, https://doi.org/10.1590/s0066-782x2007001600008.Search in Google Scholar PubMed

Valenzuela, P.L., Castillo-García, A., Morales, J.S., de la Villa, P., Hampel, H., Emanuele, E., Lista, S., and Lucia, A. (2020). Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res. Rev. 62: 101108, https://doi.org/10.1016/j.arr.2020.101108.Search in Google Scholar PubMed

van der Kleij, L.A., Petersen, E.T., Siebner, H.R., Hendrikse, J., Frederiksen, K.S., Sobol, N.A., Hasselbalch, S.G., and Garde, E. (2018). The effect of physical exercise on cerebral blood flow in Alzheimer’s disease. Neuroimage Clin. 20: 650–654, https://doi.org/10.1016/j.nicl.2018.09.003.Search in Google Scholar PubMed PubMed Central

Vasconcelos-Filho, F.S.L., da Rocha Oliveira, L.C., de Freitas, T.B.C., de Pontes, P., da Rocha, E.S.R.C., Chaves, E.M.C., da Silva, C.G.L., Soares, P.M., and Ceccatto, V.M. (2021). Neuroprotective mechanisms of chronic physical exercise via reduction of β-amyloid protein in experimental models of Alzheimer’s disease: a systematic review. Life Sci. 275: 119372, https://doi.org/10.1016/j.lfs.2021.119372.Search in Google Scholar PubMed

Venegas-Sanabria, L.C., Cavero-Redondo, I., Martínez-Vizcaino, V., Cano-Gutierrez, C.A., and Álvarez-Bueno, C. (2022). Effect of multicomponent exercise in cognitive impairment: a systematic review and meta-analysis. BMC Geriatr. 22: 617, https://doi.org/10.1186/s12877-022-03302-1.Search in Google Scholar PubMed PubMed Central

Venturelli, M., Scarsini, R., and Schena, F. (2011). Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. Am. J. Alzheimers Dis. Other Demen. 26: 381–388, https://doi.org/10.1177/1533317511418956.Search in Google Scholar PubMed PubMed Central

Verdile, G., Keane, K.N., Cruzat, V.F., Medic, S., Sabale, M., Rowles, J., Wijesekara, N., Martins, R.N., Fraser, P.E., and Newsholme, P. (2015). Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediat. Inflamm. 2015: 105828, https://doi.org/10.1155/2015/105828.Search in Google Scholar PubMed PubMed Central

Vidoni, E.D., Johnson, D.K., Morris, J.K., Van Sciver, A., Greer, C.S., Billinger, S.A., Donnelly, J.E., and Burns, J.M. (2015). Dose-response of aerobic exercise on cognition: a community-based, pilot randomized controlled trial. PLoS One 10: e0131647, https://doi.org/10.1371/journal.pone.0131647.Search in Google Scholar PubMed PubMed Central

Vital, T.M., Hernández, S.S.S., Pedroso, R.V., Teixeira, C.V.L., Garuffi, M., Stein, A.M., Costa, J.L.R., and Stella, F. (2012). Effects of weight training on cognitive functions in elderly with Alzheimer’s disease. Dement Neuropsychol. 6: 253–259, https://doi.org/10.1590/s1980-57642012dn06040009.Search in Google Scholar PubMed PubMed Central

Viticchi, G., Falsetti, L., Buratti, L., Boria, C., Luzzi, S., Bartolini, M., Provinciali, L., and Silvestrini, M. (2015). Framingham risk score can predict cognitive decline progression in Alzheimer’s disease. Neurobiol. Aging 36: 2940–2945, https://doi.org/10.1016/j.neurobiolaging.2015.07.023.Search in Google Scholar PubMed

Wagner, P.D. (2000). New ideas on limitations to VO2max. Exerc. Sport Sci. Rev. 28: 10–14.Search in Google Scholar

Wang, Q., Hu, J., Liu, Y., Li, J., Liu, B., Li, M., and Lou, S. (2019). Aerobic exercise improves synaptic-related proteins of diabetic rats by inhibiting FOXO1/NF-κB/NLRP3 inflammatory signaling pathway and ameliorating PI3K/akt insulin signaling pathway. J. Mol. Neurosci. 69: 28–38, https://doi.org/10.1007/s12031-019-01302-2.Search in Google Scholar PubMed

Wang, R. and Holsinger, R.M.D. (2018). Exercise-induced brain-derived neurotrophic factor expression: therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev. 48: 109–121, https://doi.org/10.1016/j.arr.2018.10.002.Search in Google Scholar PubMed

Weiler, M., de Campos, B.M., Nogueira, M.H., Pereira Damasceno, B., Cendes, F., and Balthazar, M.L. (2014). Structural connectivity of the default mode network and cognition in Alzheimer׳s disease. Psychiatr. Res. 223: 15–22, https://doi.org/10.1016/j.pscychresns.2014.04.008.Search in Google Scholar PubMed

Weiner, O.M., O’Byrne, J., Cross, N.E., Giraud, J., Tarelli, L., Yue, V., Homer, L., Walker, K., Carbone, R., and Dang-Vu, T.T. (2024). Slow oscillation-spindle cross-frequency coupling predicts overnight declarative memory consolidation in older adults. Eur. J. Neurosci. 59: 662–685, https://doi.org/10.1111/ejn.15980.Search in Google Scholar PubMed

Wendell, C.R., Gunstad, J., Waldstein, S.R., Wright, J.G., Ferrucci, L., and Zonderman, A.B. (2014). Cardiorespiratory fitness and accelerated cognitive decline with aging. J. Gerontol. A Biol. Sci. Med. Sci. 69: 455–462, https://doi.org/10.1093/gerona/glt144.Search in Google Scholar PubMed PubMed Central

Weng, Y.Y., Lei, X., and Yu, J. (2020). Sleep spindle abnormalities related to Alzheimer’s disease: a systematic mini-review. Sleep Med. 75: 37–44, https://doi.org/10.1016/j.sleep.2020.07.044.Search in Google Scholar PubMed

Westerberg, C.E., Mander, B.A., Florczak, S.M., Weintraub, S., Mesulam, M.M., Zee, P.C., and Paller, K.A. (2012). Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. J. Int. Neuropsychol. Soc. 18: 490–500, https://doi.org/10.1017/s135561771200001x.Search in Google Scholar PubMed PubMed Central

Wilckens, K.A., Stillman, C.M., Waiwood, A.M., Kang, C., Leckie, R.L., Peven, J.C., Foust, J.E., Fraundorf, S.H., and Erickson, K.I. (2021). Exercise interventions preserve hippocampal volume: a meta-analysis. Hippocampus 31: 335–347, https://doi.org/10.1002/hipo.23292.Search in Google Scholar PubMed PubMed Central

Williamson, W., Lewandowski, A.J., Forkert, N.D., Griffanti, L., Okell, T.W., Betts, J., Boardman, H., Siepmann, T., McKean, D., Huckstep, O., et al.. (2018). Association of cardiovascular risk factors with MRI indices of cerebrovascular structure and function and white matter hyperintensities in Young adults. Jama 320: 665–673, https://doi.org/10.1001/jama.2018.11498.Search in Google Scholar PubMed PubMed Central

Winer, J.R., Mander, B.A., Helfrich, R.F., Maass, A., Harrison, T.M., Baker, S.L., Knight, R.T., Jagust, W.J., and Walker, M.P. (2019). Sleep as a potential biomarker of tau and β-amyloid burden in the human brain. J. Neurosci. 39: 6315–6324, https://doi.org/10.1523/jneurosci.0503-19.2019.Search in Google Scholar PubMed PubMed Central

Wolk, D.A. and Detre, J.A. (2012). Arterial spin labeling MRI: an emerging biomarker for Alzheimer’s disease and other neurodegenerative conditions. Curr. Opin. Neurol. 25: 421–428, https://doi.org/10.1097/wco.0b013e328354ff0a.Search in Google Scholar

Wolters, F.J., Zonneveld, H.I., Hofman, A., van der Lugt, A., Koudstaal, P.J., Vernooij, M.W., and Ikram, M.A. (2017). Cerebral perfusion and the risk of dementia: a population-based study. Circulation 136: 719–728, https://doi.org/10.1161/circulationaha.117.027448.Search in Google Scholar

Wu, C., Yang, L., Tucker, D., Dong, Y., Zhu, L., Duan, R., Liu, T.C., and Zhang, Q. (2018). Beneficial effects of exercise pretreatment in a sporadic Alzheimer’s rat model. Med. Sci. Sports Exerc. 50: 945–956, https://doi.org/10.1249/mss.0000000000001519.Search in Google Scholar

Yaffe, K., Bahorik, A.L., Hoang, T.D., Forrester, S., Jacobs, D.R.Jr., Lewis, C.E., Lloyd-Jones, D.M., Sidney, S., and Reis, J.P. (2020). Cardiovascular risk factors and accelerated cognitive decline in midlife: the CARDIA Study. Neurology 95: e839–e846, https://doi.org/10.1212/wnl.0000000000010078.Search in Google Scholar PubMed PubMed Central

Yaffe, K., Vittinghoff, E., Pletcher, M.J., Hoang, T.D., Launer, L.J., Whitmer, R., Coker, L.H., and Sidney, S. (2014). Early adult to midlife cardiovascular risk factors and cognitive function. Circulation 129: 1560–1567, https://doi.org/10.1161/circulationaha.113.004798.Search in Google Scholar PubMed PubMed Central

Yang, S.Y., Shan, C.L., Qing, H., Wang, W., Zhu, Y., Yin, M.M., Machado, S., Yuan, T.F., and Wu, T. (2015). The effects of aerobic exercise on cognitive function of Alzheimer’s disease patients. CNS Neurol. Disord. Drug Targets 14: 1292–1297, https://doi.org/10.2174/1871527315666151111123319.Search in Google Scholar PubMed

Ye, K.X., Sun, L., Wang, L., Khoo, A.L.Y., Lim, K.X., Lu, G., Yu, L., Li, C., Maier, A.B., and Feng, L. (2023). The role of lifestyle factors in cognitive health and dementia in oldest-old: a systematic review. Neurosci. Biobehav. Rev. 152: 105286, https://doi.org/10.1016/j.neubiorev.2023.105286.Search in Google Scholar PubMed

Yu, F., Han, S.Y., Salisbury, D., Pruzin, J.J., Geda, Y., Caselli, R.J., and Li, D. (2022). Feasibility and preliminary effects of exercise interventions on plasma biomarkers of Alzheimer’s disease in the FIT-AD trial: a randomized pilot study in older adults with Alzheimer’s dementia. Pilot Feasibility Stud. 8: 243, https://doi.org/10.1186/s40814-022-01200-2.Search in Google Scholar PubMed PubMed Central

Yu, F. and Kolanowski, A. (2009). Facilitating aerobic exercise training in older adults with Alzheimer’s disease. Geriatr. Nurs. 30: 250–259, https://doi.org/10.1016/j.gerinurse.2008.11.001.Search in Google Scholar PubMed

Yu, F., Vock, D.M., and Barclay, T.R. (2018). Executive function: responses to aerobic exercise in Alzheimer’s disease. Geriatr. Nurs. 39: 219–224, https://doi.org/10.1016/j.gerinurse.2017.09.005.Search in Google Scholar PubMed PubMed Central

Yu, F., Vock, D.M., Zhang, L., Salisbury, D., Nelson, N.W., Chow, L.S., Smith, G., Barclay, T.R., Dysken, M., and Wyman, J.F. (2021). Cognitive effects of aerobic exercise in Alzheimer’s disease: a pilot randomized controlled trial. J. Alzheim. Dis. 80: 233–244, https://doi.org/10.3233/jad-201100.Search in Google Scholar PubMed PubMed Central

Zhang, J., Liu, Y., Sun, Q., Shi, J., Ni, J., Li, T., Long, Z., Wei, M., and Tian, J. (2024). Comparative efficacy of various exercise interventions on sleep in patients with cognitive impairment: a systematic review and meta-analysis. Front. Neurol. 15: 1300459, https://doi.org/10.3389/fneur.2024.1300459.Search in Google Scholar PubMed PubMed Central

Zhang, S., Zhen, K., Su, Q., Chen, Y., Lv, Y., and Yu, L. (2022a). The effect of aerobic exercise on cognitive function in people with Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Int. J. Environ. Res. Publ. Health 19: 15700, https://doi.org/10.3390/ijerph192315700.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Ren, R., Yang, L., Zhang, H., Shi, Y., Okhravi, H.R., Vitiello, M.V., Sanford, L.D., and Tang, X. (2022b). Sleep in Alzheimer’s disease: a systematic review and meta-analysis of polysomnographic findings. Transl. psychiatr. 12: 136, https://doi.org/10.1038/s41398-022-01897-y.Search in Google Scholar PubMed PubMed Central

Received: 2024-03-29
Accepted: 2024-07-08
Published Online: 2024-07-22
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0046/html
Scroll to top button