Abstract
Central nervous system (CNS) diseases are common diseases that threaten human health. The CNS is highly enriched in lipids, which play important roles in maintaining normal physiological functions of the nervous system. Moreover, many CNS diseases are closely associated with abnormal lipid metabolism. Exosomes are a subtype of extracellular vesicles (EVs) secreted from multivesicular bodies (MVBs) . Through novel forms of intercellular communication, exosomes secreted by brain cells can mediate inter-neuronal signaling and play important roles in the pathogenesis of CNS diseases. Lipids are essential components of exosomes, with cholesterol and sphingolipid as representative constituents of its bilayer membrane. In the CNS, lipids are closely related to the formation and function of exosomes. Their dysregulation causes abnormalities in exosomes, which may, in turn, lead to dysfunctions in inter-neuronal communication and promote diseases. Therefore, the role of lipids in the treatment of neurological diseases through exosomes has received increasing attention. The aim of this review is to discuss the relationship between lipids and exosomes and their roles in CNS diseases.
Funding source: Central South University
Award Identifier / Grant number: 160020020, China
Funding source: National College Students Innovation and Entrepreneurship Training Program of Central South University
Award Identifier / Grant number: GS201910533249, ZY20181004
Acknowledgments
This study is supported by research funds from Graduate Education Reform Program of Central South University (160020020) and National College Students Innovation and Entrepreneurship Training Program of Central South University (GS201910533249 and ZY20181004).
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare that they have no competing interests.
References
Aeffner, S., Reusch, T., Weinhausen, B., and Salditt, T. (2012). Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc. Natl. Acad. Sci. U. S. A. 109: E1609–1618, https://doi.org/10.1073/pnas.1119442109.Suche in Google Scholar PubMed PubMed Central
Alvarez-Erviti, L., Seow, Y., Schapira, A.H., Gardiner, C., Sargent, I.L., Wood, M.J.A., and Cooper, J.M. (2011). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42: 360–367, https://doi.org/10.1016/j.nbd.2011.01.029.Suche in Google Scholar PubMed PubMed Central
An, Q., van Bel, A.J., and Hückelhoven, R. (2007). Do plant cells secrete exosomes derived from multivesicular bodies?. Plant Signal Behav. 2: 4–7, https://doi.org/10.4161/psb.2.1.3596.Suche in Google Scholar PubMed PubMed Central
Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., Wolozin, B., Butovsky, O., Kügler, S., and Ikezu, T. (2015). Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18: 1584–1593, https://doi.org/10.1038/nn.4132.Suche in Google Scholar PubMed PubMed Central
Ashley, J., Cordy, B., Lucia, D., Fradkin, L.G., Budnik, V., and Thomson, T. (2018). Retrovirus-like gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172: 262–274.e211, https://doi.org/10.1016/j.cell.2017.12.022.Suche in Google Scholar PubMed PubMed Central
Badawy, S.M.M., Okada, T., Kajimoto, T., Hirase, M., Matovelo, S.A., Nakamura, S., Yoshida, D., Ijuin, T., and Nakamura, S.I. (2018). Extracellular α-synuclein drives sphingosine 1-phosphate receptor subtype 1 out of lipid rafts, leading to impaired inhibitory G-protein signaling. J. Biol. Chem. 293: 8208–8216, https://doi.org/10.1074/jbc.ra118.001986.Suche in Google Scholar
Barbero-Camps, E., Roca-Agujetas, V., Bartolessis, I., de Dios, C., Fernández-Checa, J.C., Marí, M., Morales, A., Hartmann, T., and Colell, A. (2018). Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy 14: 1129–1154, https://doi.org/10.1080/15548627.2018.1438807.Suche in Google Scholar PubMed PubMed Central
Blackwood, R.A., Smolen, J.E., Transue, A., Hessler, R.J., Harsh, D.M., Brower, R.C., and French, S. (1997). Phospholipase D activity facilitates Ca2+-induced aggregation and fusion of complex liposomes. Am. J. Physiol. 272: C1279–C1285, https://doi.org/10.1152/ajpcell.1997.272.4.c1279.Suche in Google Scholar
Braverman, N.E. and Moser, A.B. (2012). Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 1822: 1442–1452, https://doi.org/10.1016/j.bbadis.2012.05.008.Suche in Google Scholar PubMed
Breiden, B. and Sandhoff, K. (2019). Lysosomal glycosphingolipid storage diseases. Annu. Rev. Biochem. 88: 461–485, https://doi.org/10.1146/annurev-biochem-013118-111518.Suche in Google Scholar PubMed
Bruckner, R.J., Mansy, S.S., Ricardo, A., Mahadevan, L., and Szostak, J.W. (2009). Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys. J. 97: 3113–3122, https://doi.org/10.1016/j.bpj.2009.09.025.Suche in Google Scholar PubMed PubMed Central
Caby, M.-P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., and Bonnerot, C. (2005). Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17: 879–887, https://doi.org/10.1093/intimm/dxh267.Suche in Google Scholar PubMed
Callaghan, B.C., O’Brien, P.D., Hinder, L.M., and Feldman, E.L. (2017). Obesity and the nervous system: more questions – Authors’ reply. Lancet Neurol. 16: 774, https://doi.org/10.1016/s1474-4422(17)30293-4.Suche in Google Scholar
Chen, H., Yang, J., Low, P.S., and Cheng, J.-X. (2008). Cholesterol level regulates endosome motility via Rab proteins. Biophys. J. 94: 1508–1520, https://doi.org/10.1529/biophysj.106.099366.Suche in Google Scholar PubMed PubMed Central
Chen, F.W., Li, C., and Ioannou, Y.A. (2010). Cyclodextrin induces calcium-dependent lysosomal exocytosis. PLoS ONE 5: e15054, https://doi.org/10.1371/journal.pone.0015054.Suche in Google Scholar PubMed PubMed Central
Chevallier, J., Chamoun, Z., Jiang, G., Prestwich, G., Sakai, N., Matile, S., Parton, R.G., and Gruenberg, J. (2008). Lysobisphosphatidic acid controls endosomal cholesterol levels. J. Biol. Chem. 283: 27871–27880, https://doi.org/10.1074/jbc.m801463200.Suche in Google Scholar
Choi, D., Montermini, L., Kim, D.K., Meehan, B., Roth, F.P., and Rak, J. (2018). The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol. Cell. Proteomics 17: 1948–1964, https://doi.org/10.1074/mcp.ra118.000644.Suche in Google Scholar PubMed PubMed Central
Choo-Smith, L.P., Garzon-Rodriguez, W., Glabe, C.G., and Surewicz, W.K. (1997). Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J. Biol. Chem. 272: 22987–22990, https://doi.org/10.1074/jbc.272.37.22987.Suche in Google Scholar PubMed
Del Conde, I., Shrimpton, C.N., Thiagarajan, P., and López, J.A. (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106: 1604–1611, https://doi.org/10.1182/blood-2004-03-1095.Suche in Google Scholar PubMed
Demais, V., Barthélémy, A., Perraut, M., Ungerer, N., Keime, C., Reibel, S., and Pfrieger, F.W. (2016). Reversal of pathologic lipid accumulation in NPC1-deficient neurons by drug-promoted release of LAMP1-coated lamellar inclusions. J. Neurosci. 36: 8012–8025, https://doi.org/10.1523/jneurosci.0900-16.2016.Suche in Google Scholar PubMed PubMed Central
Deng, Z., Mu, J., Tseng, M., Wattenberg, B., Zhuang, X., Egilmez, N.K., Wang, Q., Zhang, L., Norris, J., Guo, H., et al. (2015). Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat. Commun. 6: 6956, https://doi.org/10.1038/ncomms7956.Suche in Google Scholar PubMed PubMed Central
Dinkins, M.B., Dasgupta, S., Wang, G., Zhu, G., and Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 35: 1792–1800, https://doi.org/10.1016/j.neurobiolaging.2014.02.012.Suche in Google Scholar PubMed PubMed Central
Dinkins, M.B., Enasko, J., Hernandez, C., Wang, G., Kong, J., Helwa, I., Liu, Y., Terry, A.V., and Bieberich, E. (2016). Neutral sphingomyelinase-2 deficiency ameliorates Alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J. Neurosci. 36: 8653–8667, https://doi.org/10.1523/jneurosci.1429-16.2016.Suche in Google Scholar
Egea-Jimenez, A.L. and Zimmermann, P. (2018). Phospholipase D and phosphatidic acid in the biogenesis and cargo loading of extracellular vesicles. J. Lipid Res. 59: 1554–1560, https://doi.org/10.1194/jlr.r083964.Suche in Google Scholar
Ermini, L., Ausman, J., Melland-Smith, M., Yeganeh, B., Rolfo, A., Litvack, M.L., Todros, T., Letarte, M., Post, M., and Caniggia, I. (2017). A single sphingomyelin species promotes exosomal release of endoglin into the maternal circulation in preeclampsia. Sci. Rep. 7: 12172, https://doi.org/10.1038/s41598-017-12491-4.Suche in Google Scholar PubMed PubMed Central
Faille, D., El-Assaad, F., Mitchell, A.J., Alessi, M.-C., Chimini, G., Fusai, T., Grau, G.E., and Combes, V. (2012). Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J. Cell. Mol. Med. 16: 1731–1738, https://doi.org/10.1111/j.1582-4934.2011.01434.x.Suche in Google Scholar PubMed PubMed Central
Falguières, T., Luyet, P.-P., Bissig, C., Scott, C.C., Velluz, M.-C., and Gruenberg, J. (2008). In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101. Mol. Biol. Cell 19: 4942–4955, https://doi.org/10.1091/mbc.e08-03-0239.Suche in Google Scholar PubMed PubMed Central
Falker, C., Hartmann, A., Guett, I., Dohler, F., Altmeppen, H., Betzel, C., Schubert, R., Thurm, D., Wegwitz, F., Joshi, P., et al. (2016). Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity. J. Neurochem. 137: 88–100, https://doi.org/10.1111/jnc.13514.Suche in Google Scholar PubMed
Feng, D., Zhao, W.L., Ye, Y.Y., Bai, X.C., Liu, R.Q., Chang, L.F., Zhou, Q., and Sui, S.F. (2010). Cellular internalization of exosomes occurs through phagocytosis. Traffic (Copenhagen, Denmark) 11: 675–687, https://doi.org/10.1111/j.1600-0854.2010.01041.x.Suche in Google Scholar PubMed
Fitzner, D., Schnaars, M., van Rossum, D., Krishnamoorthy, G., Dibaj, P., Bakhti, M., Regen, T., Hanisch, U.-K., and Simons, M. (2011). Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124: 447–458, https://doi.org/10.1242/jcs.074088.Suche in Google Scholar PubMed
Fomina, A.F., Deerinck, T.J., Ellisman, M.H., and Cahalan, M.D. (2003). Regulation of membrane trafficking and subcellular organization of endocytic compartments revealed with FM1-43 in resting and activated human T cells. Exp. Cell Res. 291: 150–166, https://doi.org/10.1016/s0014-4827(03)00372-0.Suche in Google Scholar PubMed PubMed Central
Frühbeis, C., Fröhlich, D., Kuo, W.P., and Krämer-Albers, E.-M. (2013). Extracellular vesicles as mediators of neuron-glia communication. Front. Cell Neurosci. 7: 182, https://doi.org/10.3389/fncel.2013.00182.Suche in Google Scholar PubMed PubMed Central
Galvagnion, C., Buell, A.K., Meisl, G., Michaels, T.C., Vendruscolo, M., Knowles, T.P., and Dobson, C.M. (2015). Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11: 229–234, https://doi.org/10.1038/nchembio.1750.Suche in Google Scholar PubMed PubMed Central
Giovannone, A.J., Reales, E., Bhattaram, P., Fraile-Ramos, A., and Weimbs, T. (2017). Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes. Mol. Biol. Cell 28: 2843–2853, https://doi.org/10.1091/mbc.e17-07-0461.Suche in Google Scholar
Grey, M., Dunning, C.J., Gaspar, R., Grey, C., Brundin, P., Sparr, E., and Linse, S. (2015). Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290: 2969–2982, https://doi.org/10.1074/jbc.m114.585703.Suche in Google Scholar
Grozdanov, V., Bousset, L., Hoffmeister, M., Bliederhaeuser, C., Meier, C., Madiona, K., Pieri, L., Kiechle, M., McLean, P.J., Kassubek, J., et al. (2019). Increased immune activation by pathologic α-synuclein in Parkinson’s disease. Ann. Neurol. 86: 593–606, https://doi.org/10.1002/ana.25557.Suche in Google Scholar PubMed
He, M., Qin, H., Poon, T.C.W., Sze, S.-C., Ding, X., Co, N.N., Ngai, S.-M., Chan, T.-F., and Wong, N. (2015). Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis 36: 1008–1018, https://doi.org/10.1093/carcin/bgv081.Suche in Google Scholar PubMed
Henriques, A., Croixmarie, V., Priestman, D.A., Rosenbohm, A., Dirrig-Grosch, S., D’Ambra, E., Huebecker, M., Hussain, G., Boursier-Neyret, C., Echaniz-Laguna, A., et al. (2015). Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase. Hum. Mol. Genet. 24: 7390–7405, https://doi.org/10.1093/hmg/ddv439.Suche in Google Scholar PubMed PubMed Central
Henriques, A., Croixmarie, V., Bouscary, A., Mosbach, A., Keime, C., Boursier-Neyret, C., Walter, B., Spedding, M., and Loeffler, J.P. (2017). Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosis. Front. Mol. Neurosci. 10: 433, https://doi.org/10.3389/fnmol.2017.00433.Suche in Google Scholar PubMed PubMed Central
Hira, K., Ueno, Y., Tanaka, R., Miyamoto, N., Yamashiro, K., Inaba, T., Urabe, T., Okano, H., and Hattori, N. (2018). Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D synthase. Stroke 49: 2483–2494, https://doi.org/10.1161/strokeaha.118.021272.Suche in Google Scholar
Huotari, J. and Helenius, A. (2011). Endosome maturation. EMBO J. 30: 3481–3500, https://doi.org/10.1038/emboj.2011.286.Suche in Google Scholar PubMed PubMed Central
Iguchi, Y., Eid, L., Parent, M., Soucy, G., Bareil, C., Riku, Y., Kawai, K., Takagi, S., Yoshida, M., Katsuno, M., et al. (2016). Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139: 3187–3201, https://doi.org/10.1093/brain/aww237.Suche in Google Scholar PubMed PubMed Central
Jarsch, I.K., Daste, F., and Gallop, J.L. (2016). Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214: 375–387, https://doi.org/10.1083/jcb.201604003.Suche in Google Scholar PubMed PubMed Central
Joshi, P., Turola, E., Ruiz, A., Bergami, A., Libera, D.D., Benussi, L., Giussani, P., Magnani, G., Comi, G., Legname, G., et al. (2014). Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ. 21: 582–593, https://doi.org/10.1038/cdd.2013.180.Suche in Google Scholar PubMed PubMed Central
Ju, S., Mu, J., Dokland, T., Zhuang, X., Wang, Q., Jiang, H., Xiang, X., Deng, Z.-B., Wang, B., Zhang, L., et al. (2013). Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 21: 1345–1357, https://doi.org/10.1038/mt.2013.64.Suche in Google Scholar PubMed PubMed Central
Kajimoto, T., Okada, T., Miya, S., Zhang, L., and Nakamura, S.-I. (2013). Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun. 4: 2712, https://doi.org/10.1038/ncomms3712.Suche in Google Scholar PubMed
Kajimoto, T., Mohamed, N.N.I., Badawy, S.M.M., Matovelo, S.A., Hirase, M., Nakamura, S., Yoshida, D., Okada, T., Ijuin, T., and Nakamura, S.I. (2018). Involvement of Gβγ subunits of G protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J. Biol. Chem. 293: 245–253, https://doi.org/10.1074/jbc.m117.808733.Suche in Google Scholar PubMed PubMed Central
Kawahara, H. and Hanayama, R. (2018). The role of exosomes/extracellular vesicles in neural signal transduction. Biol. Pharm. Bull. 41: 1119–1125, https://doi.org/10.1248/bpb.b18-00167.Suche in Google Scholar PubMed
Kerr, M.C., and Teasdale, R.D. (2009). Defining macropinocytosis. Traffic (Copenhagen, Denmark) 10: 364–371, https://doi.org/10.1111/j.1600-0854.2009.00878.x.Suche in Google Scholar PubMed
Kirkegaard, T., Roth, A.G., Petersen, N.H.T., Mahalka, A.K., Olsen, O.D., Moilanen, I., Zylicz, A., Knudsen, J., Sandhoff, K., Arenz, C., et al. (2010). Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463: 549–553, https://doi.org/10.1038/nature08710.Suche in Google Scholar PubMed
Kobayashi, T., Beuchat, M.-H., Chevallier, J., Makino, A., Mayran, N., Escola, J.-M., Lebrand, C., Cosson, P., Kobayashi, T., and Gruenberg, J. (2002). Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277: 32157–32164, https://doi.org/10.1074/jbc.m202838200.Suche in Google Scholar PubMed
Kou, X., Xu, X., Chen, C., Sanmillan, M.L., Cai, T., Zhou, Y., Giraudo, C., Le, A., and Shi, S. (2018). The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med. 10, https://doi.org/10.1126/scitranslmed.aai8524.Suche in Google Scholar PubMed PubMed Central
Kowal, J., Tkach, M., and Théry, C. (2014). Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 29: 116–125, https://doi.org/10.1016/j.ceb.2014.05.004.Suche in Google Scholar PubMed
Krämer-Albers, E.-M., Bretz, N., Tenzer, S., Winterstein, C., Möbius, W., Berger, H., Nave, K.-A., Schild, H., and Trotter, J. (2007). Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl. 1: 1446–1461, https://doi.org/10.1002/prca.200700522.Suche in Google Scholar PubMed
Lakkaraju, A. and Rodriguez-Boulan, E. (2008). Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18: 199–209, https://doi.org/10.1016/j.tcb.2008.03.002.Suche in Google Scholar PubMed PubMed Central
Lalier, L., Cartron, P.F., Pedelaborde, F., Olivier, C., Loussouarn, D., Martin, S.A., Meflah, K., Menanteau, J., and Vallette, F.M. (2007). Increase in PGE2 biosynthesis induces a Bax dependent apoptosis correlated to patients’ survival in glioblastoma multiforme. Oncogene 26: 4999–5009, https://doi.org/10.1038/sj.onc.1210303.Suche in Google Scholar PubMed
Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., Vincent-Schneider, H., Lankar, D., Salles, J.-P., Bonnerot, C., Perret, B., and Record, M. (2004a). PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett. 572: 11–14, https://doi.org/10.1016/j.febslet.2004.06.082.Suche in Google Scholar PubMed
Laulagnier, K., Motta, C., Hamdi, S., Roy, S., Fauvelle, F., Pageaux, J.-F., Kobayashi, T., Salles, J.-P., Perret, B., Bonnerot, C., et al. (2004b). Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 380: 161–171, https://doi.org/10.1042/bj20031594.Suche in Google Scholar
Lauwers, E., Goodchild, R., and Verstreken, P. (2016). Membrane lipids in presynaptic function and disease. Neuron 90: 11–25, https://doi.org/10.1016/j.neuron.2016.02.033.Suche in Google Scholar PubMed
Lazar, A.N., Bich, C., Panchal, M., Desbenoit, N., Petit, V.W., Touboul, D., Dauphinot, L., Marquer, C., Laprévote, O., Brunelle, A., et al. (2013). Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol. 125: 133–144, https://doi.org/10.1007/s00401-012-1041-1.Suche in Google Scholar PubMed
Lepore, D.M., Martínez-Núñez, L., and Munson, M. (2018). Exposing the elusive exocyst structure. Trends Biochem. Sci. 43: 714–725, https://doi.org/10.1016/j.tibs.2018.06.012.Suche in Google Scholar PubMed PubMed Central
Liang, B., Peng, P., Chen, S., Li, L., Zhang, M., Cao, D., Yang, J., Li, H., Gui, T., Li, X., et al. (2013). Characterization and proteomic analysis of ovarian cancer-derived exosomes. J. Proteomics 80: 171–182, https://doi.org/10.1016/j.jprot.2012.12.029.Suche in Google Scholar PubMed
Lydic, T.A., Townsend, S., Adda, C.G., Collins, C., Mathivanan, S., and Reid, G.E. (2015). Rapid and comprehensive ’shotgun’ lipidome profiling of colorectal cancer cell derived exosomes. Methods (San Diego, Calif.) 87: 83–95, https://doi.org/10.1016/j.ymeth.2015.04.014.Suche in Google Scholar PubMed PubMed Central
Makdissy, N., Haddad, K., AlBacha, J.D., Chaker, D., Ismail, B., Azar, A., Oreibi, G., Ayoub, D., Achkar, I., Quilliot, D., et al. (2018). Essential role of ATP6AP2 enrichment in caveolae/lipid raft microdomains for the induction of neuronal differentiation of stem cells. Stem Cell Res. Ther. 9: 132, https://doi.org/10.1186/s13287-018-0862-9.Suche in Google Scholar PubMed PubMed Central
Marfia, G., Campanella, R., Navone, S.E., Di Vito, C., Riccitelli, E., Hadi, L.A., Bornati, A., de Rezende, G., Giussani, P., Tringali, C., et al. (2014). Autocrine/paracrine sphingosine-1-phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. Glia 62: 1968–1981, https://doi.org/10.1002/glia.22718.Suche in Google Scholar PubMed
Mathieu, M., Martin-Jaular, L., Lavieu, G., and Théry, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21: 9–17, https://doi.org/10.1038/s41556-018-0250-9.Suche in Google Scholar PubMed
Matsuo, H., Chevallier, J., Mayran, N., Le Blanc, I., Ferguson, C., Fauré, J., Blanc, N.S., Matile, S., Dubochet, J., Sadoul, R., et al. (2004). Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303: 531–534, https://doi.org/10.1126/science.1092425.Suche in Google Scholar PubMed
Men, Y., Yelick, J., Jin, S., Tian, Y., Chiang, M.S.R., Higashimori, H., Brown, E., Jarvis, R., and Yang, Y. (2019). Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat. Commun. 10: 4136, https://doi.org/10.1038/s41467-019-11534-w.Suche in Google Scholar PubMed PubMed Central
Menck, K., Sönmezer, C., Worst, T.S., Schulz, M., Dihazi, G.H., Streit, F., Erdmann, G., Kling, S., Boutros, M., Binder, C., et al. (2017). Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J. Extracell. Vesicles 6: 1378056, https://doi.org/10.1080/20013078.2017.1378056.Suche in Google Scholar PubMed PubMed Central
Minakaki, G., Menges, S., Kittel, A., Emmanouilidou, E., Schaeffner, I., Barkovits, K., Bergmann, A., Rockenstein, E., Adame, A., Marxreiter, F., et al. (2018). Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14: 98–119, https://doi.org/10.1080/15548627.2017.1395992.Suche in Google Scholar PubMed PubMed Central
Miranda, A.M., Lasiecka, Z.M., Xu, Y., Neufeld, J., Shahriar, S., Simoes, S., Chan, R.B., Oliveira, T.G., Small, S.A., and Di Paolo, G. (2018). Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat. Commun. 9: 291, https://doi.org/10.1038/s41467-017-02533-w.Suche in Google Scholar PubMed PubMed Central
Mizuno, T., Nakata, M., Naiki, H., Michikawa, M., Wang, R., Haass, C., and Yanagisawa, K. (1999). Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J. Biol. Chem. 274: 15110–15114, https://doi.org/10.1074/jbc.274.21.15110.Suche in Google Scholar PubMed
Moreau, D., Vacca, F., Vossio, S., Scott, C., Colaco, A., Paz Montoya, J., Ferguson, C., Damme, M., Moniatte, M., Parton, R.G., et al. (2019). Drug-induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann-Pick type C cells and mice. EMBO Rep. 20: e47055, https://doi.org/10.15252/embr.201847055.Suche in Google Scholar PubMed PubMed Central
Moyano, A.L., Li, G., Boullerne, A.I., Feinstein, D.L., Hartman, E., Skias, D., Balavanov, R., van Breemen, R.B., Bongarzone, E.R., Månsson, J.E., et al. (2016). Sulfatides in extracellular vesicles isolated from plasma of multiple sclerosis patients. J. Neurosci. Res. 94: 1579–1587, https://doi.org/10.1002/jnr.23899.Suche in Google Scholar PubMed
Mrowczynski, O.D., Zacharia, B.E., and Connor, J.R. (2019). Exosomes and their implications in central nervous system tumor biology. Prog. Neurobiol. 172: 71–83, https://doi.org/10.1016/j.pneurobio.2018.06.006.Suche in Google Scholar PubMed
Nanbo, A., Kawanishi, E., Yoshida, R., and Yoshiyama, H. (2013). Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 87: 10334–10347, https://doi.org/10.1128/jvi.01310-13.Suche in Google Scholar PubMed PubMed Central
Nicastro, M.C., Spigolon, D., Librizzi, F., Moran, O., Ortore, M.G., Bulone, D., Biagio, P.L., and Carrotta, R. (2016). Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains. Biophys. Chem. 208: 9–16, https://doi.org/10.1016/j.bpc.2015.07.010.Suche in Google Scholar PubMed
Nuriel, T., Peng, K.Y., Ashok, A., Dillman, A.A., Figueroa, H.Y., Apuzzo, J., Ambat, J., Levy, E., Cookson, M.R., Mathews, P.M., et al. (2017). The endosomal-lysosomal pathway is dysregulated by expression. Front. Neurosci. 11: 702, https://doi.org/10.3389/fnins.2017.00702.Suche in Google Scholar PubMed PubMed Central
O’Brien, R.J. and Wong, P.C. (2011). Amyloid precursor protein processing and Alzheimer’s disease. Annual Rev. Neurosci. 34: 185–204, https://doi.org/10.1146/annurev-neuro-061010-113613.Suche in Google Scholar PubMed PubMed Central
Oskouie, M.N., Aghili Moghaddam, N.S., Butler, A.E., Zamani, P., and Sahebkar, A. (2019). Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. J. Cell Physiol. 234: 8182–8191, https://doi.org/10.1002/jcp.27615.Suche in Google Scholar PubMed
Peferoen, L., Kipp, M., van der Valk, P., van Noort, J.M., and Amor, S. (2014). Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141: 302–313, https://doi.org/10.1111/imm.12163.Suche in Google Scholar PubMed PubMed Central
Peng, K.Y., Pérez-González, R., Alldred, M.J., Goulbourne, C.N., Morales-Corraliza, J., Saito, M., Saito, M., Ginsberg, S.D., Mathews, P.M., and Levy, E. (2019). Apolipoprotein E4 genotype compromises brain exosome production. Brain 142: 163–175, https://doi.org/10.1093/brain/awy289.Suche in Google Scholar PubMed PubMed Central
Perez-Gonzalez, R., Gauthier, S.A., Kumar, A., and Levy, E. (2012). The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J. Biol. Chem. 287: 43108–43115, https://doi.org/10.1074/jbc.m112.404467.Suche in Google Scholar
Phuyal, S., Skotland, T., Hessvik, N.P., Simolin, H., Øverbye, A., Brech, A., Parton, R.G., Ekroos, K., Sandvig, K., and Llorente, A. (2015). The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem. 290: 4225–4237, https://doi.org/10.1074/jbc.m114.593962.Suche in Google Scholar PubMed PubMed Central
Pieragostino, D., Cicalini, I., Lanuti, P., Ercolino, E., di Ioia, M., Zucchelli, M., Zappacosta, R., Miscia, S., Marchisio, M., Sacchetta, P., et al. (2018). Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of multiple sclerosis patients. Sci. Rep. 8: 3071, https://doi.org/10.1038/s41598-018-21497-5.Suche in Google Scholar PubMed PubMed Central
Pike, L.J., Han, X., Chung, K.-N., and Gross, R.W. (2002). Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41: 2075–2088, https://doi.org/10.1021/bi0156557.Suche in Google Scholar PubMed
Pituch, K.C., Moyano, A.L., Lopez-Rosas, A., Marottoli, F.M., Li, G., Hu, C., van Breemen, R., Månsson, J.E., and Givogri, M.I. (2015). Dysfunction of platelet-derived growth factor receptor α (PDGFRα) represses the production of oligodendrocytes from arylsulfatase A-deficient multipotential neural precursor cells. J. Biol. Chem. 290: 7040–7053, https://doi.org/10.1074/jbc.m115.636498.Suche in Google Scholar PubMed PubMed Central
Podbielska, M., Szulc, Z.M., Kurowska, E., Hogan, E.L., Bielawski, J., Bielawska, A., and Bhat, N.R. (2016). Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J. Lipid Res. 57: 2028–2039, https://doi.org/10.1194/jlr.m070664.Suche in Google Scholar
Potolicchio, I., Carven, G.J., Xu, X., Stipp, C., Riese, R.J., Stern, L.J., and Santambrogio, L. (2005). Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 175: 2237–2243, https://doi.org/10.4049/jimmunol.175.4.2237.Suche in Google Scholar PubMed
Puchkov, D. and Haucke, V. (2013). Greasing the synaptic vesicle cycle by membrane lipids. Trends Cell Biol. 23: 493–503, https://doi.org/10.1016/j.tcb.2013.05.002.Suche in Google Scholar PubMed
Record, M., Amara, S., Subra, C., Jiang, G., Prestwich, G.D., Ferrato, F., and Carrière, F. (2011). Bis (monoacylglycero) phosphate interfacial properties and lipolysis by pancreatic lipase-related protein 2, an enzyme present in THP-1 human monocytes. Biochim. Et. Biophys. Acta 1811: 419–430, https://doi.org/10.1016/j.bbalip.2011.04.008.Suche in Google Scholar PubMed
Record, M., Poirot, M. and Silvente-Poirot, S. (2014). Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie 96: 67–74, https://doi.org/10.1016/j.biochi.2013.06.016.Suche in Google Scholar PubMed
Sackmann, V., Sinha, M.S., Sackmann, C., Civitelli, L., Bergström, J., Ansell-Schultz, A., and Hallbeck, M. (2019). Inhibition of nSMase2 reduces the transfer of oligomeric α-synuclein irrespective of hypoxia. Front. Mol. Neurosci. 12: 200, https://doi.org/10.3389/fnmol.2019.00200.Suche in Google Scholar PubMed PubMed Central
Scesa, G., Moyano, A.L., Bongarzone, E.R., and Givogri, M.I. (2016). Port-to-port delivery: mobilization of toxic sphingolipids via extracellular vesicles. J. Neurosci. Res. 94: 1333–1340, https://doi.org/10.1002/jnr.23798.Suche in Google Scholar PubMed PubMed Central
Sharma, R., Huang, X., Brekken, R.A., and Schroit, A.J. (2017). Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br. J. Cancer 117: 545–552, https://doi.org/10.1038/bjc.2017.183.Suche in Google Scholar PubMed PubMed Central
Sharma, P., Mesci, P., Carromeu, C., McClatchy, D.R., Schiapparelli, L., Yates, J.R., Muotri, A.R., and Cline, H.T. (2019). Exosomes regulate neurogenesis and circuit assembly. Proc. Natl. Acad. Sci. U. S. A. 116: 16086–16094, https://doi.org/10.1073/pnas.1902513116.Suche in Google Scholar PubMed PubMed Central
Siddiqi, K.S., Husen, A., Sohrab, S.S., and Yassin, M.O. (2018). Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res. Lett. 13: 231, https://doi.org/10.1186/s11671-018-2638-7.Suche in Google Scholar PubMed PubMed Central
Simons, M., Keller, P., Dichgans, J., and Schulz, J.B. (2001). Cholesterol and Alzheimer’s disease: is there a link?. Neurology 57: 1089–1093, https://doi.org/10.1212/wnl.57.6.1089.Suche in Google Scholar PubMed
Sims, B., Gu, L., Krendelchtchikov, A., and Matthews, Q.L. (2014). Neural stem cell-derived exosomes mediate viral entry. Int. J. Nanomed. 9: 4893–4897, https://doi.org/10.2147/ijn.s70999.Suche in Google Scholar
Sindeeva, O.A., Verkhovskii, R.A., Sarimollaoglu, M., Afanaseva, G.A., Fedonnikov, A.S., Osintsev, E.Y., Kurochkina, E.N., Gorin, D.A., Deyev, S.M., Zharov, V.P., et al. (2019). New frontiers in diagnosis and therapy of circulating tumor markers in cerebrospinal fluid in vitro and in vivo. Cells 8, https://doi.org/10.3390/cells8101195.Suche in Google Scholar PubMed PubMed Central
Skotland, T., Sandvig, K., and Llorente, A. (2017). Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res. 66: 30-41, https://doi.org/10.1016/j.plipres.2017.03.001.Suche in Google Scholar PubMed
Strauss, K., Goebel, C., Runz, H., Möbius, W., Weiss, S., Feussner, I., Simons, M., and Schneider, A. (2010). Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease. J. Biol. Chem. 285: 26279–26288, https://doi.org/10.1074/jbc.m110.134775.Suche in Google Scholar PubMed PubMed Central
Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., De Medina, P., Monsarrat, B., Perret, B., Silvente-Poirot, S., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res. 51: 2105–2120, https://doi.org/10.1194/jlr.m003657.Suche in Google Scholar
Svensson, K.J., Christianson, H.C., Wittrup, A., Bourseau-Guilmain, E., Lindqvist, E., Svensson, L.M., Mörgelin, M., and Belting, M. (2013). Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 288: 17713–17724, https://doi.org/10.1074/jbc.m112.445403.Suche in Google Scholar PubMed PubMed Central
Tarling, E.J. and Edwards, P.A. (2011). ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc. Natl. Acad. Sci. U. S. A. 108: 19719–19724, https://doi.org/10.1073/pnas.1113021108.Suche in Google Scholar PubMed PubMed Central
Toda, Y., Takata, K., Nakagawa, Y., Kawakami, H., Fujioka, S., Kobayashi, K., Hattori, Y., Kitamura, Y., Akaji, K., and Ashihara, E. (2015). Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components. Biochem. Biophys. Res. Commun. 456: 768–773, https://doi.org/10.1016/j.bbrc.2014.12.015.Suche in Google Scholar PubMed
Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247, https://doi.org/10.1126/science.1153124.Suche in Google Scholar PubMed
Tsutsumi, R., Hori, Y., Seki, T., Kurauchi, Y., Sato, M., Oshima, M., Hisatsune, A., and Katsuki, H. (2019). Involvement of exosomes in dopaminergic neurodegeneration by microglial activation in midbrain slice cultures. Biochem. Biophys. Res. Commun. 511: 427–433, https://doi.org/10.1016/j.bbrc.2019.02.076.Suche in Google Scholar PubMed
van Niel, G., D’Angelo, G., and Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19: 213–228, https://doi.org/10.1038/nrm.2017.125.Suche in Google Scholar PubMed
Varma, V.R., Oommen, A.M., Varma, S., Casanova, R., An, Y., Andrews, R.M., O’Brien, R., Pletnikova, O., Troncoso, J.C., Toledo, J., et al. (2018). Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 15: e1002482, https://doi.org/10.1371/journal.pmed.1002482.Suche in Google Scholar PubMed PubMed Central
Vingtdeux, V., Hamdane, M., Loyens, A., Gelé, P., Drobeck, H., Bégard, S., Galas, M.-C., Delacourte, A., Beauvillain, J.-C., Buée, L., et al. (2007). Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies. J. Biol. Chem. 282: 18197–18205, https://doi.org/10.1074/jbc.m609475200.Suche in Google Scholar
Voisset, C., Lavie, M., Helle, F., Op De Beeck, A., Bilheu, A., Bertrand-Michel, J., Tercé, F., Cocquerel, L., Wychowski, C., Vu-Dac, N., et al. (2008). Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol. 10: 606–617, https://doi.org/10.1111/j.1462-5822.2007.01070.x.Suche in Google Scholar PubMed
Von Bartheld, C.S. and Altick, A.L. (2011). Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog. Neurobiol. 93: 313–340, https://doi.org/10.1016/j.pneurobio.2011.01.003.Suche in Google Scholar PubMed PubMed Central
Wang, P., Zhang, Y., Li, H., Chieu, H.K., Munn, A.L., and Yang, H. (2005). AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism. EMBO J. 24: 2989-2999, https://doi.org/10.1038/sj.emboj.7600764.Suche in Google Scholar PubMed PubMed Central
Wang, G., Dinkins, M., He, Q., Zhu, G., Poirier, C., Campbell, A., Mayer-Proschel, M., and Bieberich, E. (2012). Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J. Biol. Chem. 287: 21384–21395, https://doi.org/10.1074/jbc.m112.340513.Suche in Google Scholar
Wang, Q., Zhuang, X., Mu, J., Deng, Z.-B., Jiang, H., Zhang, L., Xiang, X., Wang, B., Yan, J., Miller, D., et al. (2013). Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 4: 1867, https://doi.org/10.1038/ncomms3358.Suche in Google Scholar
Wellington, C.L., and Frikke-Schmidt, R. (2016). Relation between plasma and brain lipids. Curr. Opin. lipidol. 27: 225–232, https://doi.org/10.1097/mol.0000000000000291.Suche in Google Scholar
Wennberg, C.L., van der Spoel, D., and Hub, J.S. (2012). Large influence of cholesterol on solute partitioning into lipid membranes. J. Am. Chem. Soc. 134: 5351–5361, https://doi.org/10.1021/ja211929h.Suche in Google Scholar PubMed
Wu, B.X., Clarke, C.J., Matmati, N., Montefusco, D., Bartke, N., and Hannun, Y.A. (2011). Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J. Biol. Chem. 286: 22362–22371, https://doi.org/10.1074/jbc.m110.156471.Suche in Google Scholar
Wydro, P., Flasiński, M., and Broniatowski, M. (2013). Does cholesterol preferentially pack in lipid domains with saturated sphingomyelin over phosphatidylcholine? A comprehensive monolayer study combined with grazing incidence X-ray diffraction and Brewster angle microscopy experiments. J. Colloid Interface Sci. 397: 122–130, https://doi.org/10.1016/j.jcis.2013.01.060.Suche in Google Scholar PubMed
Yang, C., Zhang, M., and Merlin, D. (2018). Advances in plant-derived edible nanoparticle-based lipid nano-drug delivery systems as therapeutic nanomedicines. J. Mater. Chem. B 6: 1312–1321, https://doi.org/10.1039/c7tb03207b.Suche in Google Scholar PubMed PubMed Central
Yuyama, K., Yamamoto, N., and Yanagisawa, K. (2008). Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: another putative pathway for GM1-induced amyloid fibril formation. J. Neurochem. 105: 217–224, https://doi.org/10.1111/j.1471-4159.2007.05128.x.Suche in Google Scholar PubMed
Yuyama, K., Sun, H., Mitsutake, S., and Igarashi, Y. (2012). Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem. 287: 10977–10989, https://doi.org/10.1074/jbc.m111.324616.Suche in Google Scholar PubMed PubMed Central
Yuyama, K., Takahashi, K., Usuki, S., Mikami, D., Sun, H., Hanamatsu, H., Furukawa, J., Mukai, K., and Igarashi, Y. (2019). Plant sphingolipids promote extracellular vesicle release and alleviate amyloid-β pathologies in a mouse model of Alzheimer’s disease. Sci. Rep. 9: 16827, https://doi.org/10.1038/s41598-019-53394-w.Suche in Google Scholar PubMed PubMed Central
Zakharova, L., Svetlova, M., and Fomina, A.F. (2007). T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J. Cell Physiol. 212: 174–181, https://doi.org/10.1002/jcp.21013.Suche in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19)
- Depression in post-traumatic stress disorder
- The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal
- The role of exosome lipids in central nervous system diseases
- Detection of disease-associated microRNAs — application for autism spectrum disorders
- The biological and diagnostic roles of MicroRNAs in meningiomas
- Training the brain: could it improve multiple sclerosis treatment?
- Treatment strategies for encephalopathy related to status epilepticus during slow sleep, a narrative review of the literature
Artikel in diesem Heft
- Frontmatter
- Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19)
- Depression in post-traumatic stress disorder
- The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal
- The role of exosome lipids in central nervous system diseases
- Detection of disease-associated microRNAs — application for autism spectrum disorders
- The biological and diagnostic roles of MicroRNAs in meningiomas
- Training the brain: could it improve multiple sclerosis treatment?
- Treatment strategies for encephalopathy related to status epilepticus during slow sleep, a narrative review of the literature