Abstract
MicroRNAs (miRNAs) refer to a class of small endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level. Emerging studies have shown that miRNAs play critical roles in tumorigenesis and cancer progression. However, roles and mechanisms of miRNA dysregulation in the pathogenesis of meningioma are not fully understood. Here, we first reviewed existing research of aberrantly expressed miRNAs identified by high throughput microarray profiling in meningioma. We also explored the potential of miRNA as biomarkers and therapeutic targets for novel treatment paradigms of meningiomas. In addition, we summarized recent researches that focused on the possible mechanisms involved in miRNA-mediate meningioma occurrence and progression. This review provides an overview of miRNA deregulation in meningioma and indicates the potential of miRNAs to be used as biomarkers or novel therapeutic targets.
Funding source: National Key R&D Program of China
Award Identifier / Grant number: No.2018YFB1107103
Funding source: Hunan Provincial Natural Science Foundation of China
Award Identifier / Grant number: No.2019JJ40182
Funding source: Scientific Research Project of Hunan Provincial Health Commission
Award Identifier / Grant number: No.20200709
Funding source: China Postdoctoral Science Foundation
Award Identifier / Grant number: No.2019M660713
Funding source: Science Research Foundation of Hunan Provincial Education Department
Award Identifier / Grant number: No. 13B067
Funding source: Hunan Cancer Hospital Climb Plan
Award Identifier / Grant number: No.QH201906
Acknowledgements
This study was supported by the National Key R&D Program of China (No. 2018YFB1107103), Hunan Provincial Natural Science Foundation of China (No. 2019JJ40182), Scientific Research Project of Hunan Provincial Health Commission (No. 20200709), China Postdoctoral Science Foundation (No. 2019M660713), Science Research Foundation of Hunan Provincial Education Department (No. 13B067) and Hunan Cancer Hospital Climb Plan (No. QH201906).
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declare.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adams, L.C., Böker, S.M., Bender, Y.Y., Fallenberg, E.M., Wagner, M., Buchert, R., Hamm, B., and Makowski, M.R. (2017). Assessment of intracranial meningioma-associated calcifications using susceptibility-weighted MRI. Int. J. Magn. Reson. Imag. 46: 1177–1186, https://doi.org/10.1002/jmri.25614.Search in Google Scholar
Akao, Y., Iio, A., Itoh, T., Noguchi, S., Itoh, Y., Ohtsuki, Y., and Naoe, T. (2011). Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol. Ther. 19: 395–399, https://doi.org/10.1038/mt.2010.254.Search in Google Scholar
Azeemuddin, M., Nizamani, W.M., Tariq, M.U., and Wasay, M. (2018). Role of ADC values and ratios of MRI scan in differentiating typical from atypical/anaplastic meningiomas. J. Pak. Med. Assoc. 68: 1403–1406.Search in Google Scholar
Bano, S., Waraich, M.M., Khan, M.A., Buzdar, S.A., and Manzur, S. (2013). Diagnostic value of apparent diffusion coefficient for the accurate assessment and differentiation of intracranial meningiomas. Acta Radiol Short Rep 2, https://doi.org/10.1177/2047981613512484.Search in Google Scholar
Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297, https://doi.org/10.1016/s0092-8674(04)00045-5.Search in Google Scholar
Bica-Pop, C., Cojocneanu-Petric, R., Magdo, L., Raduly, L., Gulei, D., and Berindan-Neagoe, I. (2018). Overview upon miR-21 in lung cancer: focus on NSCLC. Cell. Mol. Life Sci. 75: 3539–3551, https://doi.org/10.1007/s00018-018-2877-x.Search in Google Scholar PubMed
Boetto, J., Bielle, F., Sanson, M., Peyre, M., and Kalamarides, M. (2017). SMO mutation status defines a distinct and frequent molecular subgroup in olfactory groove meningiomas. Neuro. Oncol. 19: 345–351.10.1093/neuonc/now276Search in Google Scholar
Brastianos, P.K., Horowitz, P.M., Santagata, S., Jones, R.T., McKenna, A., Getz, G., Ligon, K.L., Palescandolo, E., Van Hummelen, P, Ducar, M.D., et al. (2013). Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 45: 285–289, https://doi.org/10.1038/ng.2526.Search in Google Scholar PubMed PubMed Central
Buerki, R.A., Horbinski, C.M., Kruser, T., Horowitz, P.M., James, C.D., and Lukas, R.V. (2018). An overview of meningiomas. Future. Oncol. 14: 2161–2177, https://doi.org/10.2217/fon-2018-0006.Search in Google Scholar PubMed PubMed Central
Chen, K.S., Stroup, E.K., Budhipramono, A., Rakheja, D., Nichols-Vinueza, D., Xu, L., Stuart, S.H., Shukla, A.A., Fraire, C., Mendell, J.T., et al. (2018). Mutations in microRNA processing genes in Wilms tumors derepress the IGF2 regulator PLAG1. Genes. Dev. 32: 996–1007, https://doi.org/10.1101/gad.313783.118.Search in Google Scholar PubMed PubMed Central
Cimino, P.J. (2015). Malignant progression to anaplastic meningioma: neuropathology, molecular pathology, and experimental models. Exp. Mol. Pathol. 99: 354–359, https://doi.org/10.1016/j.yexmp.2015.08.007.Search in Google Scholar PubMed
Clark, V.E., Erson-Omay, E.Z., Serin, A., Yin, J., Cotney, J., Ozduman, K., Avşar, T., Li, J., Murray, P.B., Henegariu, O., et al. (2013). Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339: 1077–1080, https://doi.org/10.1126/science.1233009.Search in Google Scholar PubMed PubMed Central
Clark, V.E., Harmancı, A.S., Bai, H., Youngblood, M.W., Lee, T.I., Baranoski, J.F., Ercan-Sencicek, A.G., Abraham, B.J., Weintraub, A.S., Hnisz, D., et al. (2016). Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat. Genet. 48: 1253–1259, https://doi.org/10.1038/ng.3651.Search in Google Scholar PubMed PubMed Central
Cohen-Inbar, O. (2019). Geriatric brain tumor management part I: meningioma. J. Clin. Neurosci. 67: 5–9, https://doi.org/10.1016/j.jocn.2019.05.063.Search in Google Scholar PubMed
de Almeida, AN, BJA, P., Pires, A.P.H., Paiva, W.S., Cabrera, H.N., da, S.C.C., Teixeira, M.J., and SKN, M. (2017). Clinical outcome, tumor recurrence, and causes of death: a long-term follow-up of surgically treated meningiomas. World. Neurosurg. 102: 139–143, https://doi.org/10.1016/j.wneu.2017.03.009.Search in Google Scholar PubMed
Dirks, M.S., Butman, J.A., Kim, H.J., Wu, T., Morgan, K., Tran, A.P., Lonser, R.R., and Asthagiri, A.R. (2012). Long-term natural history of neurofibromatosis Type 2-associated intracranial tumors. J. Neurosurg. 117: 109–117, https://doi.org/10.3171/2012.3.jns111649.Search in Google Scholar PubMed PubMed Central
El-Gewely, M.R., Andreassen, M., Walquist, M., Ursvik, A., Knutsen, E., Nystad, M., Coucheron, D.H., Myrmel, K.S., Hennig, R., and Johansen, S.D. (2016). Differentially expressed micrornas in meningiomas grades i and ii suggest shared biomarkers with malignant tumors. Cancers (Basel) 8, https://doi.org/10.3390/cancers8030031.Search in Google Scholar PubMed PubMed Central
Galani, V., Alexiou, G.A., Miliaras, G., Dimitriadis, E., Triantafyllou, E., Galani, A., Goussia, A., Kanavaros, P., and Trangas, T. (2015). Expression of stem cell marker nestin and microrna-21 in meningiomas. Turk. Neurosurg. 25: 574–577.10.5137/1019-5149.JTN.10800-14.2Search in Google Scholar PubMed
Galani, V., Lampri, E., Varouktsi, A., Alexiou, G., Mitselou, A., and Kyritsis, A.P. (2017). Genetic and epigenetic alterations in meningiomas. Clin. Neurol. Neurosurg. 158: 119–125, https://doi.org/10.1016/j.clineuro.2017.05.002.Search in Google Scholar PubMed
Goutagny, S., Bah, A.B., Henin, D., Parfait, B., Grayeli, A.B., Sterkers, O., and Kalamarides, M. (2012). Long-term follow-up of 287 meningiomas in neurofibromatosis type 2 patients: clinical, radiological, and molecular features. Neuro. Oncol. 14: 1090–1096, https://doi.org/10.1093/neuonc/nos129.Search in Google Scholar PubMed PubMed Central
Goutagny, S. and Kalamarides, M. (2010). Meningiomas and neurofibromatosis. J. Neurooncol. 99: 341–347, https://doi.org/10.1007/s11060-010-0339-x.Search in Google Scholar PubMed
Hart, M., Walch-Rückheim, B., Krammes, L., Kehl, T., Rheinheimer, S., Tänzer, T., Glombitza, B., Sester, M., Lenhof, H.P., Keller, A., et al. (2019). miR-34a as hub of T cell regulation networks. J. Immunother. Cancer. 7: 187, https://doi.org/10.1186/s40425-019-0670-5.Search in Google Scholar PubMed PubMed Central
He, M., Gao, L., Zhang, S., Tao, L., Wang, J., Yang, J., and Zhu, M. (2014). Prognostic significance of miR-34a and its target proteins of FOXP1, p53, and BCL2 in gastric MALT lymphoma and DLBCL. Gastric. Cancer. 17: 431–441, https://doi.org/10.1007/s10120-013-0313-3.Search in Google Scholar PubMed
Hu, S.A., Wei, W., Yuan, J., and Cheng, J. (2019). Resveratrol inhibits proliferation in HBL-52 meningioma cells. Onco. Targets. Ther. 12: 11579–11586, https://doi.org/10.2147/ott.s228513.Search in Google Scholar
Ito, K., Imagama, S., Ando, K., Kobayashi, K., Shido, Y., Go, Y., Arima, H., Kanbara, S., Hirose, T., Matsuyama, Y., et al. (2017). Intraspinal meningioma with malignant transformation and distant metastasis. Nagoya J. Med. Sci. 79: 97–102.Search in Google Scholar
Jiang, B.H. and Liu, L.Z. (2008). PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim. Biophys. Acta. 1784: 150–158, https://doi.org/10.1016/j.bbapap.2007.09.008.Search in Google Scholar PubMed
Jungwirth, G., Warta, R., Beynon, C., Sahm, F., von, D.A., Unterberg, A., Herold-Mende, C., and Jungk, C. (2019). Intraventricular meningiomas frequently harbor NF2 mutations but lack common genetic alterations in TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT. Acta Neuropathol. Commun. 7: 140, https://doi.org/10.1186/s40478-019-0793-4.Search in Google Scholar PubMed PubMed Central
Katar, S., Baran, O., Evran, S., Cevik, S., Akkaya, E., Baran, G., Antar, V., Hanimoglu, H., and Kaynar, M.Y. (2017). Expression of miRNA-21, miRNA-107, miRNA-137 and miRNA-29b in meningioma. Clin. Neurol. Neurosurg. 156: 66–70, https://doi.org/10.1016/j.clineuro.2017.03.016.Search in Google Scholar PubMed
Kliese, N., Gobrecht, P., Pachow, D., Andrae, N., Wilisch-Neumann, A., Kirches, E., Riek-Burchardt, M., Angenstein, F., Reifenberger, G., Riemenschneider, M.J., et al. (2013). miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene 32: 4712–4720, https://doi.org/10.1038/onc.2012.468.Search in Google Scholar PubMed
KMM, A. and Garcia, R.L. (2019). MicroRNA-92a promotes cell proliferation, migration and survival by directly targeting the tumor suppressor gene NF2 in colorectal and lung cancer cells. Oncol. Rep. 41: 2103–2116.Search in Google Scholar
Kopkova, A., Sana, J., Fadrus, P., and Slaby, O. (2018). Cerebrospinal fluid microRNAs as diagnostic biomarkers in brain tumors. Clin. Chem. Lab. Med. 56: 869–879, https://doi.org/10.1515/cclm-2017-0958.Search in Google Scholar PubMed
Kopkova, A., Sana, J., Machackova, T., Vecera, M., Radova, L., Trachtova, K., Vybihal, V., Smrcka, M., Kazda, T., Slaby, O., et al. (2019). Cerebrospinal fluid microrna signatures as diagnostic biomarkers in brain tumors. Cancers (Basel) 11, https://doi.org/10.3390/cancers11101546.Search in Google Scholar PubMed PubMed Central
Kotecha, R.S., Junckerstorff, R.C., Lee, S., Cole, C.H., and Gottardo, N.G. (2011). Pediatric meningioma: current approaches and future direction. J. Neurooncol. 104: 1–10, https://doi.org/10.1007/s11060-010-0503-3.Search in Google Scholar PubMed
Koutsaki, M., Libra, M., Spandidos, D.A., and Zaravinos, A. (2017). The miR-200 family in ovarian cancer. Oncotarget 8: 66629–66640, https://doi.org/10.18632/oncotarget.18343.Search in Google Scholar PubMed PubMed Central
Lan, F., Qing, Q., Pan, Q., Hu, M., Yu, H., and Yue, X. (2018). Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell. Oncol. (Dordr) 41: 25–33, https://doi.org/10.1007/s13402-017-0355-3.Search in Google Scholar PubMed
Lee, H., Hwang, S.J., Kim, H.R., Shin, C.H., Choi, K.H., Joung, J.G., and Kim, H.H. (2016). Neurofibromatosis 2 (NF2) controls the invasiveness of glioblastoma through YAP-dependent expression of CYR61/CCN1 and miR-296-3p. Biochim. Biophys. Acta. 1859: 599–611, https://doi.org/10.1016/j.bbagrm.2016.02.010.Search in Google Scholar PubMed
Lee, S., Karas, P.J., Hadley, C.C., Bayley, V.J.C., Khan, A.B., Jalali, A., Sweeney, A.D., Klisch, T.J., and Patel, A.J. (2019). The Role of Merlin/NF2 Loss in Meningioma Biology. Cancers (Basel) 11, https://doi.org/10.3390/cancers11111633.Search in Google Scholar PubMed PubMed Central
Li, B., Tao, B., Bai, H., Zhong, J., Wu, X., Shi, J., Sun, H., and Li, S. (2016). Papillary meningioma: an aggressive variant meningioma with clinical features and treatment: a retrospective study of 10 cases. Int. J. Neurosci. 126: 878–887, https://doi.org/10.3109/00207454.2015.1077833.Search in Google Scholar PubMed
Li, X.C., Hai, J.J., Tan, Y.J., Yue, Q.F., and Liu, L.J. (2019). MiR-218 suppresses metastasis and invasion of endometrial cancer via negatively regulating ADD2. Eur. Rev. Med. Pharmacol. Sci. 23: 1408–1417.Search in Google Scholar
Ludwig, N., Kim, Y.J., Mueller, S.C., Backes, C., Werner, T.V., Galata, V., Sartorius, E., Bohle, R.M., Keller, A., and Meese, E. (2015). Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs. Neuro. Oncol. 17: 1250–1260, https://doi.org/10.1093/neuonc/nov014.Search in Google Scholar PubMed PubMed Central
Mao, Y., Zhang, L., and Li, Y. (2019). circEIF4G2 modulates the malignant features of cervical cancer via the miR-218/HOXA1 pathway. Mol. Med. Rep. 19: 3714–3722.10.3892/mmr.2019.10032Search in Google Scholar PubMed PubMed Central
Marosi, C., Hassler, M., Roessler, K., Reni, M., Sant, M., Mazza, E., and Vecht, C. (2008). Meningioma. Crit. Rev. Oncol. Hematol. 67: 153–171, https://doi.org/10.1016/j.critrevonc.2008.01.010.Search in Google Scholar PubMed
Mawrin, C. and Perry, A. (2010). Pathological classification and molecular genetics of meningiomas. J. Neurooncol. 99: 379–391, https://doi.org/10.1007/s11060-010-0342-2.Search in Google Scholar PubMed
Mercado-Pimentel, M.E, Ly, N.H, Smith, B, Retana, C.C, Pizarro, J.K, Rolph, D.N Almario, R.D Wang, S and Jacob, A. (2018). ILK/AKT signaling regulates miR-21 expression in vestibular Schwannoma and Meningioma. Austin Journal of Medical Oncology 5.Search in Google Scholar
Mezue, W.C., Ohaegbulam, S.C., Ndubuisi, C.A., Chikani, M.C., and Achebe, D.S. (2012). Management of intracranial meningiomas in Enugu, Nigeria. Surg. Neurol. Int. 3: 110, https://doi.org/10.4103/2152-7806.101788.Search in Google Scholar PubMed PubMed Central
Murugaiyan, G., da, C.A.P., Ajay, A.K., Joller, N., Garo, L.P., Kumaradevan, S., Yosef, N., Vaidya, V.S., and Weiner, H.L. (2015). MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J. Clin. Invest. 125: 1069–1080, https://doi.org/10.1172/jci74347.Search in Google Scholar PubMed PubMed Central
O’Brien, S.J., Carter, J.V., Burton, J.F., Oxford, B.G., Schmidt, M.N., Hallion, J.C., and Galandiuk, S. (2018). The role of the miR-200 family in epithelial-mesenchymal transition in colorectal cancer: a systematic review. Int. J. Cancer 142: 2501–2511, https://doi.org/10.1002/ijc.31282.Search in Google Scholar
Ostrom, Q.T., Gittleman, H., Liao, P., Vecchione-Koval, T., Wolinsky, Y., Kruchko, C., and Barnholtz-Sloan, J.S. (2017). CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro. Oncol. 19: v1–1v88, https://doi.org/10.1093/neuonc/nox158.Search in Google Scholar
Ostrom, Q.T., Gittleman, H., Xu, J., Kromer, C., Wolinsky, Y., Kruchko, C., and Barnholtz-Sloan, J.S. (2016). CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro. Oncol. 18: v1–1v75, https://doi.org/10.1093/neuonc/now207.Search in Google Scholar
Peng, L., Fu, J., and Ming, Y. (2018). The miR-200 family: multiple effects on gliomas. Cancer Manag. Res. 10: 1987–1992, https://doi.org/10.2147/cmar.s160945.Search in Google Scholar
Pfeffer, S.R., Yang, C.H., and Pfeffer, L.M. (2015). The role of miR-21 in cancer. Drug. Dev. Res. 76: 270–277, https://doi.org/10.1002/ddr.21257.Search in Google Scholar
Proctor, D.T., Ramachandran, S., Lama, S., and Sutherland, G.R. (2018). Towards molecular classification of meningioma: evolving treatment and diagnostic paradigms. World Neurosurg. 119: 366–373, https://doi.org/10.1016/j.wneu.2018.08.019.Search in Google Scholar
Sahm, F., Schrimpf, D., Olar, A., Koelsche, C., Reuss, D., Bissel, J., Kratz, A., Capper, D., Schefzyk, S., Hielscher, T., et al. (2016). TERT Promoter Mutations and Risk of Recurrence in Meningioma. J. Natl. Cancer. Inst. 108, https://doi.org/10.1093/jnci/djv377.Search in Google Scholar
Sahm, F., Schrimpf, D., Stichel, D., DTW, J., Hielscher, T., Schefzyk, S., Okonechnikov, K., Koelsche, C., Reuss, D.E., Capper, D., et al. (2017). DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 18: 682–694, https://doi.org/10.1016/s1470-2045(17)30155-9.Search in Google Scholar
Sanson, M. and Kalamarides, M. (2017). Epigenetics: a new tool for meningioma management. Lancet. Oncol. 18: 569–570, https://doi.org/10.1016/s1470-2045(17)30153-5.Search in Google Scholar
Saydam, O., Shen, Y., Würdinger, T., Senol, O., Boke, E., James, M.F., Tannous, B.A., Stemmer-Rachamimov, A.O., Yi, M., Stephens, R.M., et al. (2009). Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol. Cell. Biol. 29: 5923–5940, https://doi.org/10.1128/mcb.00332-09.Search in Google Scholar
Senol, O., Schaaij-Visser, T.B., Erkan, E.P., Dorfer, C., Lewandrowski, G., Pham, T.V., Piersma, S.R., Peerdeman, S.M., Ströbel, T., Tannous, B., et al. (2015). miR-200a-mediated suppression of non-muscle heavy chain IIb inhibits meningioma cell migration and tumor growth in vivo. Oncogene 34: 1790–1798, https://doi.org/10.1038/onc.2014.120.Search in Google Scholar PubMed
Shaikh, N., Dixit, K., and Raizer, J. (2018). Recent advances in managing/understanding meningioma. F1000Res 7.10.12688/f1000research.13674.1Search in Google Scholar PubMed PubMed Central
Shalaby, T. and Grotzer, M.A. (2015). Tumor-associated csf micrornas for the prediction and evaluation of CNS malignancies. Int. J. Mol. Sci. 16: 29103–29119, https://doi.org/10.3390/ijms161226150.Search in Google Scholar PubMed PubMed Central
Shi, L., Jiang, D., Sun, G., Wan, Y., Zhang, S., Zeng, Y., Pan, T. and Wang, Z. (2012). miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas. J. Neurooncol. 110: 155–162, https://doi.org/10.1007/s11060-012-0951-z.Search in Google Scholar PubMed
Spiegl-Kreinecker, S., Lötsch, D., Neumayer, K., Kastler, L., Gojo, J., Pirker, C., Pichler, J., Weis, S., Kumar, R., Webersinke, G., et al. (2018). TERT promoter mutations are associated with poor prognosis and cell immortalization in meningioma. Neuro. Oncol. 20: 1584–1593, https://doi.org/10.1093/neuonc/noy104.Search in Google Scholar PubMed PubMed Central
Sun, J., Tian, X., Zhang, J., Huang, Y., Lin, X., Chen, L., and Zhang, S. (2017). Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2 : MiR-152-3p regulate glioma cell apoptosis and invasion. J. Exp. Clin. Cancer Res. 36: 100, https://doi.org/10.1186/s13046-017-0567-4.Search in Google Scholar PubMed PubMed Central
Wang, M., Deng, X., Ying, Q., Jin, T., Li, M., and Liang, C. (2015). MicroRNA-224 targets ERG2 and contributes to malignant progressions of meningioma. Biochem. Biophys. Res. Commun. 460: 354–361, https://doi.org/10.1016/j.bbrc.2015.03.038.Search in Google Scholar PubMed
Wang, Q., Li, P., Li, A., Jiang, W., Wang, H., Wang, J., and Xie, K. (2012). Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J. Exp. Clin. Cancer. Res. 31: 97, https://doi.org/10.1186/1756-9966-31-97.Search in Google Scholar PubMed PubMed Central
Wang, X., Wang, E., Cao, J., Xiong, F., Yang, Y., and Liu, H. (2017). MiR-145 inhibits the epithelial-to-mesenchymal transition via targeting ADAM19 in human glioblastoma. Oncotarget 8: 92545–92554, https://doi.org/10.18632/oncotarget.21442.Search in Google Scholar PubMed PubMed Central
Wang, Y., Wang, F., Wu, Y., Zuo, L., Zhang, S., Zhou, Q., Wei, W., Wang, Y., and Zhu, H. (2015). MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs. Mol. Cell. Biochem. 399: 123–130, https://doi.org/10.1007/s11010-014-2239-4.Search in Google Scholar PubMed
Wen, S.W., Zhang, Y.F., Li, Y., Liu, Z.X., Lv, H.L., Li, Z.H., Xu, Y.Z., Zhu, Y.G., and Tian, Z.Q. (2015). Characterization and effects of miR-21 expression in esophageal cancer. Genet. Mol. Res. 14: 8810–8818, https://doi.org/10.4238/2015.august.3.4.Search in Google Scholar PubMed
Werner, T.V., Hart, M., Nickels, R., Kim, Y.J., Menger, M.D., Bohle, R.M., Keller, A., Ludwig, N., and Meese, E. (2017). MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2. Aging (Albany) 9: 932–954, https://doi.org/10.18632/aging.101201.Search in Google Scholar PubMed PubMed Central
Xu, L.G., Li, L.Y., and Shu, H.B. (2004). TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J. Biol. Chem. 279: 17278–17282, https://doi.org/10.1074/jbc.c400063200.Search in Google Scholar
Yang, C., Wang, C., Chen, X., Chen, S., Zhang, Y., Zhi, F., Wang, J., Li, L., Zhou, X., Li, N., et al. (2013). Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int. J. Cancer. 132: 116–127, https://doi.org/10.1002/ijc.27657.Search in Google Scholar PubMed
Yang, Y., Ding, L., Hu, Q., Xia, J., Sun, J., Wang, X., Xiong, H., Gurbani, D., Li, L., Liu, Y., et al. (2017). MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis. Mol. Cancer. 16: 141, https://doi.org/10.1186/s12943-017-0710-z.Search in Google Scholar PubMed PubMed Central
Youngblood, M.W., Duran, D., Montejo, J.D., Li, C., Omay, S.B., Özduman, K., Sheth, A.H., Zhao, A.Y., Tyrtova, E., Miyagishima, D.F., et al. (2019). Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. J. Neurosurg., 1–10, https://doi.org/10.3171/2019.8.jns191266.Search in Google Scholar
Zeinali, T., Mansoori, B., Mohammadi, A., and Baradaran, B. (2019). Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed. Pharmacother. 109: 195–207, https://doi.org/10.1016/j.biopha.2018.10.037.Search in Google Scholar PubMed
Zhi, F., Shao, N., Li, B., Xue, L., Deng, D., Xu, Y., Lan, Q., Peng, Y., and Yang, Y. (2016). A serum 6-miRNA panel as a novel non-invasive biomarker for meningioma. Sci. Rep. 6: 32067, https://doi.org/10.1038/srep-32067.Search in Google Scholar
Zhi, F., Zhou, G., Wang, S., Shi, Y., Peng, Y., Shao, N., Guan, W., Qu, H., Zhang, Y., Wang, Q., et al. (2013). A microRNA expression signature predicts meningioma recurrence. Int. J. Cancer. 132: 128–136, https://doi.org/10.1002/ijc.27658.Search in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19)
- Depression in post-traumatic stress disorder
- The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal
- The role of exosome lipids in central nervous system diseases
- Detection of disease-associated microRNAs — application for autism spectrum disorders
- The biological and diagnostic roles of MicroRNAs in meningiomas
- Training the brain: could it improve multiple sclerosis treatment?
- Treatment strategies for encephalopathy related to status epilepticus during slow sleep, a narrative review of the literature
Articles in the same Issue
- Frontmatter
- Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19)
- Depression in post-traumatic stress disorder
- The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal
- The role of exosome lipids in central nervous system diseases
- Detection of disease-associated microRNAs — application for autism spectrum disorders
- The biological and diagnostic roles of MicroRNAs in meningiomas
- Training the brain: could it improve multiple sclerosis treatment?
- Treatment strategies for encephalopathy related to status epilepticus during slow sleep, a narrative review of the literature