Abstract
Prepulse inhibition (PPI) of acoustic startle reflex is a well-established behavior paradigm to measure sensorimotor gating deficits. PPI is disrupted in several neuropsychiatric disorders, including schizophrenia. PPI tests can be used to screen new drugs for treatment of such disorders. In this review, we discuss how PPI paradigm can help in screening the therapeutic effects of cannabidiol (CBD). We look into recent literature about CBD effects on PPI response in animal models, especially in nonhuman primates. CBD has been shown to modify PPI in N-methyl d-aspartate receptor antagonist models for schizophrenia, both in rodents and in nonhuman primates. These results show CBD as a potential drug for the treatment of neurologic disorders that present alterations in sensorimotor system, such as schizophrenia. Moreover, the PPI paradigm seems to be a useful and relative simple paradigm to test the efficacy of CBD as a potential therapeutic drug.
Acknowledgment
This work was supported by the Fundação de Apoio à Pesquisa do Distrito Federal (grant no. 193.000.033/2012) to C.T.
References
Ahmari, S.E., Risbrough, V.B., Geyer, M.A., and Simpson, H.B. (2012). Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 37, 1216–1223.10.1038/npp.2011.308Suche in Google Scholar PubMed
Ahmari, S.E., Risbrough, V.B., Geyer, M.A., and Simpson, H.B. (2016). Prepulse inhibition deficits in obsessive compulsive disorder are more pronounced in females. Neuropsychopharmacology 41, 2963–2964.10.1038/npp.2015.363Suche in Google Scholar PubMed
Auclair, A.L., Kleven, M.S., Barret-Grévoz, C., Barreto, M., Newman-Tancredi, A., and Depoortère, R. (2009). Differences among conventional, atypical and novel putative D2/5-HT1A antipsychotics on catalepsy-associated behaviour in cynomolgus monkeys. Behav. Brain Res. 203, 288–295.10.1016/j.bbr.2009.05.015Suche in Google Scholar
Baker, D., Pryce, G., Giovannoni, G., and Thompson, A.J. (2003). The therapeutic potential of cannabis. Lancet Neurol. 2, 291–298.10.1016/S1474-4422(03)00381-8Suche in Google Scholar PubMed
Bakshi, V.P. and Geyer, M.A. (1998). Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizocilpine. J. Neurosci. 18, 8394–8401.10.1523/JNEUROSCI.18-20-08394.1998Suche in Google Scholar PubMed
Berardelli, A., Rothwell, J.C., Day, B.L., and Marsden, C.D. (1985). Pathophysiology of blepharospasm and oromandibular dystonia. Brain 108, 593–608.10.1093/brain/108.3.593Suche in Google Scholar PubMed
Bhattacharyya, S., Morrison, P.D., Fusar-Poli, P., Martin-Santos, R., Borgwardt, S., Winton-Brown, T., Nosarti, C., O’Carroll, C.M., Seal, M., Allen, P., et al. (2010). Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 35, 764–774.10.1038/npp.2009.184Suche in Google Scholar PubMed
Bisogno, T., Hanuš, L., De Petrocellis, L., Tchilibon, S., Ponde, D.E., Aniello, I.B., Moriello, S., Davis, J.B., Mechoulam, R., and Di Marzo, V. (2001). Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 134, 845–852.10.1038/sj.bjp.0704327Suche in Google Scholar PubMed
Boyce, S., Rupniak, N.M., Steventon, M.J., Cook, G., and Iversen, S.D. (1991). Psychomotor activity and cognitive disruption attributable to NMDA, but not sigma, interactions in primates. Behav. Brain Res. 42, 115–121.10.1016/S0166-4328(05)80002-6Suche in Google Scholar PubMed
Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., and Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15, 339–343.10.1111/j.1469-8986.1978.tb01390.xSuche in Google Scholar PubMed
Braff, D.L., Geyer, M.A., Light, G.A., Sprock, J., Perry, W., Cadenhead, K.S., and Swerdlow, N.R. (2001a). Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr. Res. 49, 171–178.10.1016/S0920-9964(00)00139-0Suche in Google Scholar
Braff, D.L., Geyer, M.A., and Swerdlow, N.R. (2001b). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl.) 156, 234–258.10.1007/s002130100810Suche in Google Scholar
Campos, A.C. and Guimarães, F.S. (2008). Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology (Berl.) 199, 223–230.10.1007/s00213-008-1168-xSuche in Google Scholar PubMed
Campos, A.C., Fogaça, M.V., Sonego, A.B., and Guimarães, F.S. (2016). Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol. Res. 112, 119–127.10.1016/j.phrs.2016.01.033Suche in Google Scholar PubMed
Carlini, E.A. and Cunha, J.M. (1981). Hypnotic and antiepileptic effects of cannabidiol. Clin. Pharmacol. 21, 417–427.10.1002/j.1552-4604.1981.tb02622.xSuche in Google Scholar
Castellanos, F.X., Fine, E.J., Kaysen, D., Marsh, W.L., Rapoport, J.L., and Hallett, M. (1996). Sensorimotor gating in boys with Tourette’s syndrome and ADHD: preliminary results. Biol. Psychiatry 39, 33–41.10.1016/0006-3223(95)00101-8Suche in Google Scholar PubMed
Chan, W.Y.M. and McNally, G.P. (2009). Conditioned stimulus familiarity determines effects of MK-801 on fear extinction. Behav. Neurosci. 123, 303–314.10.1037/a0014988Suche in Google Scholar PubMed
Console-Bram, L., Marcu, J., and Abood, M.E. (2012). Cannabinoid receptors: nomenclature and pharmacological principles. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 38, 4–15.10.1016/j.pnpbp.2012.02.009Suche in Google Scholar PubMed PubMed Central
Crippa, J.A.D.S., Zuardi, A.W., Garrido, G.E.J., Wichert-Ana, L., Guarnieri, R., Ferrari, L., Azevedo-Marques, P.M., Hallak, J.E., McGuire, P.K., and Filho Busatto, G. (2004). Effects of cannabidiol (CBD) on regional cerebral blood flow. Neuropsychopharmacology 29, 417–426.10.1038/sj.npp.1300340Suche in Google Scholar PubMed
Crippa, J.A.S., Derenusson, G.N., Ferrari, T.B., Wichert-Ana, L., Duran, F.L.S., Martin-Santos, R., Simões, M.V., Bhattacharyya, S., Fusar-Poli, P., Atakan, Z., et al. (2011). Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J. Psychopharmacol. 25, 121–130.10.1177/0269881110379283Suche in Google Scholar PubMed
Crippa, J.A.S., Crippa, A.C.S., Hallak, J.E.C., Martín-Santos, R., and Zuardi, A.W. (2016). Δ9-THC intoxication by cannabidiol-enriched cannabis extract in two children with refractory epilepsy: full remission after switching to purified cannabidiol. Front. Pharmacol. 7, 1–6.10.3389/fphar.2016.00359Suche in Google Scholar
Cristino, L., de Petrocellis, L., Pryce, G., Baker, D., Guglielmotti, V., and Di Marzo, V. (2006). Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139, 1405–1415.10.1016/j.neuroscience.2006.02.074Suche in Google Scholar PubMed
Dahmen, J.C. and Corr, P. J. (2004). Prepulse-elicited startle in prepulse inhibition. Biol. Psychiatry 55, 98–101.10.1016/S0006-3223(03)00638-3Suche in Google Scholar PubMed
Davis, M., Gendelman, D.S., Tischler, M.D., and Gendelman, P.M. (1982). A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 2, 791–805.10.1523/JNEUROSCI.02-06-00791.1982Suche in Google Scholar PubMed
Davis, M., Antoniadis, E.A., Amaral, D.G., and Winslow, J.T. (2008). Acoustic startle reflex in Rhesus monkeys: a review. Rev. Neurosci. 19, 171–185.10.1515/REVNEURO.2008.19.2-3.171Suche in Google Scholar PubMed
Dean, B., Sundram, S., Bradbury, R., Scarr, E., and Copolov, D.D. (2001). Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 103, 9–15.10.1016/S0306-4522(00)00552-2Suche in Google Scholar PubMed
De Petrocellis, L., Cascio, M.G., and Di Marzo, V. (2004). The endocannabinoid system: a general view and latest additions. Br. J. Pharmacol. 141, 765–774.10.1038/sj.bjp.0705666Suche in Google Scholar PubMed
Deutsch, S.I., Rosse, R.B., Schwartz, B.L., and Mastropaolo, J. (2001). A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin. Neuropharmacol. 24, 43–49.10.1097/00002826-200101000-00008Suche in Google Scholar PubMed
Di Marzo, V. and Matias, I. (2005). Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8, 585–589.10.1038/nn1457Suche in Google Scholar PubMed
Di Marzo, V., Bisogno, T., and De Petrocellis, L. (2001). Anandamide: some like it hot. Trends Pharmacol. Sci. 22, 346–349.10.1016/S0165-6147(00)01712-0Suche in Google Scholar PubMed
Di Marzo, V., Bifulco, M., and De Petrocellis, L. (2004). The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 3, 771–784.10.1038/nrd1495Suche in Google Scholar PubMed
Do Val-da Silva, R.A., Peixoto-Santos, J.E., Kandratavicius, L., de Ross, J.B., Esteves, I., de Martinis, B.S., Alves, M.N.R., Scandiuzzi, R.C., Hallak, J.E.C., Zuardi, A.W., et al. (2017). Protective effects of cannabidiol against seizures and neuronal death in a rat model of mesial temporal lobe epilepsy. Front. Pharmacol. 8, 1–15.10.3389/fphar.2017.00131Suche in Google Scholar
Duncan, E.J., Madonick, S.H., Parwani, A., Angrist, B., Rajan, R., Chawravorty, S., Efferen, T.R., Szilagyi, S., Stephanides, M., Chappell, P.B., et al. (2001). Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 25, 72–83.10.1016/S0893-133X(00)00240-2Suche in Google Scholar PubMed
Eggan, S.M. and Lewis, D.A. (2007). Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb. Cortex 17, 175–191.10.1093/cercor/bhj136Suche in Google Scholar PubMed
Ennaceur, A., Michalikova, S., Van Rensburg, R., and Chazot, P.L. (2011). MK-801 increases the baseline level of anxiety in mice introduced to a spatial memory task without prior habituation. Neuropharmacology 61, 981–991.10.1016/j.neuropharm.2011.06.027Suche in Google Scholar PubMed
Geyer, M. and Mansbach, R. (1989). Disruption of prepulse inhibition of acoustic startile in rats by phencyclidine and MK801. Schizophr. Res. 2, 186.10.1016/0920-9964(89)90222-3Suche in Google Scholar
Geyer, M.A., Krebs-Thomson, K., Braff, D.L., and Swerdlow, N.R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156, 117–154.10.1007/s002130100811Suche in Google Scholar PubMed
Giuffrida, A., Leweke, F.M., Gerth, C.W., Schreiber, D., Koethe, D., Faulhaber, J., Klosterkötter, J., and Piomelli, D. (2004). Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29, 2108–2114.10.1038/sj.npp.1300558Suche in Google Scholar PubMed
Glass, M. (2001). The role of cannabinoids in neurodegenerative diseases. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 25, 743–765.10.1016/S0278-5846(01)00162-2Suche in Google Scholar
Gomes, F.V., Issy, A.C., Ferreira, F.R., Viveros, M.-P., Del Bel, E.A., and Guimaraes, F.S. (2015). Cannabidiol attenuates sensorimotor gating disruption and molecular changes induced by chronic antagonism of NMDA receptors in mice. Int. J. Neuropsychopharmacol. 18, 1–10.10.1093/ijnp/pyu041Suche in Google Scholar PubMed PubMed Central
Gómez-Wong, E., Martí, M.J., Tolosa, E., and Valls-Solé, J. (1998). Sensory modulation of the blink reflex in patients with blepharospasm. Arch. Neurol. 55, 1233–1237.10.1001/archneur.55.9.1233Suche in Google Scholar PubMed
Gong, J.P., Onaivi, E.S., Ishiguro, H., Liu, Q.R., Tagliaferro, P.A., Brusco, A., and Uhl, G.R. (2006). Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 1071, 10–23.10.1016/j.brainres.2005.11.035Suche in Google Scholar PubMed
Grillon, C., Ameli, R., Charney, D.S., Krystal, J., and Braff, D. (1992). Startle gating deficits occur across prepulse intensities in schizophrenic patients. Biol. Psychiatry 32, 939–943.10.1016/0006-3223(92)90183-ZSuche in Google Scholar PubMed
Gururajan, A., Taylor, D.A., and Malone, D.T. (2011). Effect of cannabidiol in a MK-801-rodent model of aspects of schizophrenia. Behav. Brain Res. 222, 299–308.10.1016/j.bbr.2011.03.053Suche in Google Scholar PubMed
Hampson, A.J., Grimaldi, M., Axelrod, J., and Wink, D. (1998). Cannabidiol and Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA 95, 8268–8273.10.1073/pnas.95.14.8268Suche in Google Scholar PubMed PubMed Central
Hoenig, K., Hochrein, A., Quednow, B.B., Maier, W., and Wagner, M. (2005). Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol. Psychiatry 57, 1153–1158.10.1016/j.biopsych.2005.01.040Suche in Google Scholar PubMed
Hurd, Y.L., Yoon, M., Manini, A.F., Hernandez, S., Olmedo, R., Ostman, M., and Jutras-Aswad, D. (2015). Early phase in the development of cannabidiol as a treatment for addiction: opioid relapse takes initial center stage. Neurotherapeutics 12, 807–815.10.1007/s13311-015-0373-7Suche in Google Scholar PubMed PubMed Central
Izquierdo, I., Orsingher, O.A., and Berardi, A.C. (1973). Effect of cannabidiol and of other Cannabis sativa compounds on hippocampal seizure discharges. Psychopharmacologia 28, 95–102.10.1007/BF00413961Suche in Google Scholar PubMed
Javitt, D.C. and Lindsley, R.W. (2001). Effects of phencyclidine on prepulse inhibition of acoustic startle response in the macaque. Psychopharmacology (Berl.) 156, 165–168.10.1007/s002130100758Suche in Google Scholar PubMed
Jones, N.A., Glyn, S.E., Akiyama, S., Hill, T.D.M., Hill, A.J., Weston, S.E., Burnett, M.D., Yamasaki, Y., Stephens, G.J., Whalley, B.J., et al. (2012). Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21, 344–352.10.1016/j.seizure.2012.03.001Suche in Google Scholar PubMed
Judd, L.L., McAdams, L., Budnick, B., and Braff, D.L. (1992). Sensory gating deficits in schizophrenia: new results. Am. J. Psychiatry 149, 488–493.10.1176/ajp.149.4.488Suche in Google Scholar PubMed
Jurkus, R., Day, H.L.L., Guimaraes, F.S., Lee, J.L.C., Bertoglio, L.J., and Stevenson, C.W. (2016). Cannabidiol regulation of learned fear: implications for treating anxiety-related disorders. Front. Pharmacol. 7, 1–8.10.3389/fphar.2016.00454Suche in Google Scholar
Koch, M. (1999). The neurobiology of startle. Prog. Neurobiol. 59, 107–128.10.1016/S0301-0082(98)00098-7Suche in Google Scholar PubMed
Kohl, S., Heekeren, K., Klosterkötter, J., and Kuhn, J. (2013). Prepulse inhibition in psychiatric disorders – apart from schizophrenia. J. Psychiatr. Res. 47, 445–452.10.1016/j.jpsychires.2012.11.018Suche in Google Scholar PubMed
Kumari, V., Soni, W., and Sharma, T. (1999). Normalization of information processing deficits in schizophrenia with clozapine. Am. J. Psychiatry 156, 1046–1051.10.1176/ajp.156.7.1046Suche in Google Scholar PubMed
Lang, P.J., Bradley, M.M., and Cuthbert, B.N. (1990). Emotion, attention, and the startle reflex. Psychol. Rev. 97, 377–395.10.1037/0033-295X.97.3.377Suche in Google Scholar PubMed
Lee, J.L.C., Bertoglio, L.J., Guimaraes, F.S., and Stevenson, C.W. (2017). Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders. Br. J. Pharmacol. 174, 3242–3256.10.1111/bph.13724Suche in Google Scholar PubMed PubMed Central
Levin, R., Peres, F.F., Almeida, V., Calzavara, M.B., Zuardi, A.W., Hallak, J.E.C., Crippa, J.A.S, and Abílio, V.C. (2014). Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain. Front. Pharmacol. 5, 1–10.10.3389/fphar.2014.00010Suche in Google Scholar PubMed PubMed Central
Leweke, F.M., Giuffrida, A., Wurster, U., Emrich, H.M., and Piomelli, D. (1999). Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10, 1665–1669.10.1097/00001756-199906030-00008Suche in Google Scholar PubMed
Leweke, F.M., Gerth, C.W., and Klosterkötter, J. (2004). Cannabis-associated psychosis: current status of research. CNS Drugs 18, 895–910.10.2165/00023210-200418130-00005Suche in Google Scholar PubMed
Leweke, F.M., Piomelli, D., Pahlisch, F., Muhl, D., Gerth, C.W., Hoyer, C., Klosterkötter, J., Hellmich, M., and Koethe, D. (2012). Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2, e94.10.1038/tp.2012.15Suche in Google Scholar PubMed PubMed Central
Li, L., Korngut, L.M., Frost, B.J., and Beninger, R.J. (1998). Prepulse inhibition following lesions of the inferior colliculus: prepulse intensity functions. Physiol. Behav. 65, 133–139.10.1016/S0031-9384(98)00143-7Suche in Google Scholar PubMed
Linn, G.S. and Javitt, D.C. (2001). Phencyclidine (PCP)-induced deficits of prepulse inhibition in monkeys. Neuroreport 12, 117–120.10.1097/00001756-200101220-00031Suche in Google Scholar PubMed
Linn, G.S., Negi, S.S., Gerum, S.V., and Javitt, D.C. (2003). Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology (Berl). 169, 234–239.10.1007/s00213-003-1533-8Suche in Google Scholar PubMed
Long, L.E., Malone, D.T., and Taylor, D.A. (2006). Cannabidiol reverses MK-801-induced disruption of prepulse inhibition in mice. Neuropsychopharmacology 31, 795–803.10.1038/sj.npp.1300838Suche in Google Scholar PubMed
Ludewig, S., Ludewig, K., Geyer, M.a., Hell, D., and Vollenweider, F.X. (2002). Prepulse inhibition deficits in patients with panic disorder. Depress. Anxiety 15, 55–60.10.1002/da.10026Suche in Google Scholar PubMed
Ludewig, S., Geyer, M.A., Ramseier, M., Vollenweider, F.X., Rechsteiner, E., and Cattapan-Ludewig, K. (2005). Information-processing deficits and cognitive dysfunction in panic disorder. J. Psychiatry Neurosci. 30, 37–43.Suche in Google Scholar PubMed
Lutz, B., Marsicano, G., Maldonado, R., and Hillard, C.J. (2015). The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16, 705–718.10.1038/nrn4036Suche in Google Scholar PubMed PubMed Central
Malfait, A.M., Gallily, R., Sumariwalla, P.F., Malik, A.S., Andreakos, E., Mechoulam, R., and Feldmann, M. (2000). The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc. Natl. Acad. Sci. USA 97, 9561–9566.10.1073/pnas.160105897Suche in Google Scholar PubMed PubMed Central
Mansbach, R.S. and Geyer, M.A. (1991). Parametric determinants in pre-stimulus modification of acoustic startle: interaction with ketamine. Psychopharmacology (Berl.) 105, 162–168.10.1007/BF02244303Suche in Google Scholar PubMed
Marinho, A.L.Z., Vila-Verde, C., Fogaça, M.V., and Guimarães, F.S. (2015). Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: contribution of 5HT1A receptors and stressful experiences. Behav. Brain Res. 286, 49–56.10.1016/j.bbr.2015.02.023Suche in Google Scholar PubMed
Mechoulam, R., Parker, L.A., and Gallily, R. (2002). Cannabidiol: an overview of some pharmacological aspects. J. Clin. Pharmacol. 42, 11S–19S.10.1002/j.1552-4604.2002.tb05998.xSuche in Google Scholar PubMed
Munro, S., Thomas, K.L., and Abu-Shaar, M. (1993). Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65.10.1038/365061a0Suche in Google Scholar PubMed
Newell, K.A., Deng, C., and Huang, X.F. (2006). Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp. Brain Res. 172, 556–560.10.1007/s00221-006-0503-xSuche in Google Scholar PubMed
Osborne, A.L., Solowij, N., and Weston-Green, K. (2017). A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia. Neurosci. Biobehav. Rev. 72, 310–324.10.1016/j.neubiorev.2016.11.012Suche in Google Scholar PubMed
Otnaess, M.K., Brun, V.H., Moser, M.B., and Moser, E.I. (1999). Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation. J. Neurosci. 19, 1–5.10.1523/JNEUROSCI.19-24-j0007.1999Suche in Google Scholar
Pacher, P., Bátkai, S., Kunos, G. (2006). The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 58, 389–462.10.1124/pr.58.3.2Suche in Google Scholar PubMed
Pedrazzi, J.F.C., Issy, A.C., Gomes, F.V., Guimarães, F.S., and Del-Bel, E.A. (2015). Cannabidiol effects in the prepulse inhibition disruption induced by amphetamine. Psychopharmacology (Berl.) 232, 3057–3065.10.1007/s00213-015-3945-7Suche in Google Scholar PubMed
Peres, F.F., Levin, R., Almeida, V., Zuardi, W.A., Hallak, J.E., Crippa, J.A., and Abílio, V. (2016). Cannabidiol, among other cannabinoid drugs, modulates prepulse inhibition of startle in the SHR animal model: implications for schizophrenia pharmacotherapy. Front. Pharmacol. 7, 303.10.3389/fphar.2016.00303Suche in Google Scholar PubMed
Peres, F.F., Almeida, V., and Abilio, V.C. (2017). Cannabidiol: an overview of its antipsychotic properties. Handbook of Cannabis and Related Pathologies. V.R. Preedy, ed. Biol. Pharmacol. Diagn. Treat. 787–794.10.1016/B978-0-12-800756-3.00092-2Suche in Google Scholar
Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4, 873–884.10.1038/nrn1247Suche in Google Scholar PubMed
Reijmers, L.G., Vanderheyden, P.M., and Peeters, B.W. (1995). Changes in prepulse inhibition after local administration of NMDA receptor ligands in the core region of the rat nucleus accumbens. Eur. J. Pharmacol. 272, 131–138.10.1016/0014-2999(94)00629-LSuche in Google Scholar PubMed
Ren, Y., Whittard, J., Higuera-Matas, A., Morris, C.V., and Hurd, Y.L. (2009). Cannabidiol, a nonpsychotropic component of cannabis, inhibits cue-induced heroin seeking and normalizes discrete mesolimbic neuronal disturbances. J. Neurosci. 29, 14764–14769.10.1523/JNEUROSCI.4291-09.2009Suche in Google Scholar PubMed
Resstel, L.B.M., Tavares, R.F., Lisboa, S.F.S., Joca, S.R.L., Corrêa, F.M.A., and Guimarães, F.S. (2009). 5-HT 1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br. J. Pharmacol. 156, 181–188.10.1111/j.1476-5381.2008.00046.xSuche in Google Scholar PubMed
Robson, P.J., Guy, G.W., and Di Marzo, V. (2014). Cannabinoids and schizophrenia: therapeutic prospects. Curr. Pharm. Des. 20, 2194–2204.10.2174/13816128113199990427Suche in Google Scholar PubMed
Rock, E.M., Limebeer, C.L., Petrie, G.N., Williams, L.A., Mechoulam, R., and Parker, L.A. (2017). Effect of prior foot shock stress and Δ9-tetrahydrocannabinol, cannabidiolic acid, and cannabidiol on anxiety-like responding in the light-dark emergence test in rats. Psychopharmacology (Berl.) 234, 2207–2217.10.1007/s00213-017-4626-5Suche in Google Scholar PubMed
Roesler, R., Vianna, M., Sant’Anna, M.K., Kuyven, C.R., Kruel, A.V, Quevedo, J., and Ferreira, M.B. (1998). Intrahippocampal infusion of the NMDA receptor antagonist AP5 impairs retention of an inhibitory avoidance task: protection from impairment by pretraining or preexposure to the task apparatus. Neurobiol. Learn. Mem. 69, 87–91.10.1006/nlme.1997.3810Suche in Google Scholar PubMed
Rupniak, N.M.J., Boyce, S., Steventon, M.J., Iversen, S.D., and Marsden, C.D. (1992). Dystonia induced by combined treatment with l-dopa and MK-801 in parkinsonian monkeys. Ann. Neurol. 32, 103–105.10.1002/ana.410320118Suche in Google Scholar PubMed
Saletti, P.G., Maior, R.S., Hori, E., Almeida, R.M.De, Nishijo, H., and Tomaz, C. (2014). Whole-body prepulse inhibition protocol to test sensorymotor gating mechanisms in monkeys. PLoS One 9, e105551.10.1371/journal.pone.0105551Suche in Google Scholar PubMed
Saletti, P.G., Maior, R.S., Hori, E., Nishijo, H., and Tomaz, C. (2015). Sensorimotor gating impairments induced by MK-801 treatment may be reduced by tolerance effect and by familiarization in monkeys. Front. Pharmacol. 6, 204.10.3389/fphar.2015.00204Suche in Google Scholar PubMed
Saletti, P.G., Maior, R.S., Barros, M., Nishijo, H., and Tomaz, C. (2017). Cannabidiol affects MK-801-induced changes in the PPI learned response of capuchin monkeys (Sapajus spp.). Front. Pharmacol. 8, 1–7.10.3389/fphar.2017.00093Suche in Google Scholar
Sanders, M.J. and Fanselow, M.S. (2003). Pre-training prevents context fear conditioning deficits produced by hippocampal NMDA receptor blockade. Neurobiol. Learn. Mem. 80, 123–129.10.1016/S1074-7427(03)00040-6Suche in Google Scholar PubMed
Saucier, D., Hargreaves, E.L., Boon, F., Vanderwolf, C.H., and Cain, D.P. (1996). Detailed behavioral analysis of water maze acquisition under systemic NMDA or muscarinic antagonism: nonspatial pretraining eliminates spatial learning deficits. Behav. Neurosci. 110, 103–116.10.1037/0735-7044.110.1.103Suche in Google Scholar PubMed
Schulz, B., Fendt, M., Pedersen, V., and Koch, M. (2001). Sensitization of prepulse inhibition deficits by repeated administration of dizocilpine. Psychopharmacology (Berl.) 156, 177–181.10.1007/s002130100776Suche in Google Scholar PubMed
Seillier, A. and Giuffrida, A. (2009). Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav. Brain Res. 204, 410–415.10.1016/j.bbr.2009.02.007Suche in Google Scholar PubMed
Shannon, S. and Opila-Lehman, J. (2016). Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: a case report. Perm. J. 20, 108–111.10.7812/TPP/16-005Suche in Google Scholar PubMed
Shapiro, M.L. and O’Connor, C. (1992). N-methyl-D-aspartate receptor antagonist MK-801 and spatial memory representation: working memory is impaired in an unfamiliar environment but not in a familiar environment. Behav. Neurosci. 106, 604–612.10.1037/0735-7044.106.4.604Suche in Google Scholar
Steinman, S.A., Ahmari, S.E., Choo, T., Kimeldorf, M.B., Feit, R., Loh, S., Risbrough, V., Geyer, M.A., Steinglass, J.E., Wall, M., et al. (2016). Prepulse inhibition deficits only in females with obsessive-compulsive disorder. Depress. Anxiety 33, 238–246.10.1002/da.22474Suche in Google Scholar PubMed
Swerdlow, N.R., Benbow, C.H., Zisook, S., Geyer, M.A., and Braff, D.L. (1993). A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol. Psychiatry 33, 298–301.10.1016/0006-3223(93)90300-3Suche in Google Scholar PubMed
Swerdlow, N.R., Karban, B., Ploum, Y., Sharp, R., Geyer, M.A., and Eastvold, A. (2001). Tactile prepuff inhibition of startle in children with Tourette’s syndrome: in search of an “fMRI-friendly” startle paradigm. Biol. Psychiatry 50, 578–585.10.1016/S0006-3223(01)01164-7Suche in Google Scholar PubMed
Swerdlow, N.R., Light, G.A., Thomas, M.A., Sprock, J., Calkins, M.E., Green, M.F., Greenwood, T.A., Gur, R.E., Gur, R.C., Lazzeroni, L.C., et al. (2017). Deficient prepulse inhibition in schizophrenia in a multi-site cohort: internal replication and extension.Schizophrenia Res. pii: S0920-9964(17)30272-4.10.1016/j.schres.2017.05.013Suche in Google Scholar PubMed PubMed Central
Tamir, I., Mechoulam, R., and Meyer, A.Y. (1980). Cannabidiol and phenytoin: a structural comparison. J. Med. Chem. 23, 220–223.10.1021/jm00176a022Suche in Google Scholar PubMed
Thomas, A., Baillie, G.L., Phillips, A.M., Razdan, R.K., Ross, R.A., and Pertwee, R.G. (2007). Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br. J. Pharmacol. 150, 613–623.10.1038/sj.bjp.0707133Suche in Google Scholar PubMed
Uekita, T. and Okaichi, H. (2005). NMDA antagonist MK-801 does not interfere with the use of spatial representation in a familiar environment. Behav. Neurosci. 119, 548–556.10.1037/0735-7044.119.2.548Suche in Google Scholar
Vigano, D., Guidali, C., Petrosino, S., Realini, N., Rubino, T., Di Marzo, V., and Parolaro, D. (2009). Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia. Int. J. Neuropsychopharmacol. 12, 599–614.10.1017/S1461145708009371Suche in Google Scholar PubMed
Volk, D.W. and Lewis, D.A. (2016). The role of endocannabinoid signaling in cortical inhibitory neuron dysfunction in schizophrenia. Biol. Psychiatry 79, 595–603.10.1016/j.biopsych.2015.06.015Suche in Google Scholar PubMed
Warf, B. (2014). High points: an historical geography of cannabis. Geogr. Rev. 104, 414–438.10.1111/j.1931-0846.2014.12038.xSuche in Google Scholar
Weike, A.I., Bauer, U., and Hamm, A.O. (2000). Effective neuroleptic medication removes prepulse inhibition deficits in schizophrenia patients. Biol. Psychiatry 47, 61–70.10.1016/S0006-3223(99)00229-2Suche in Google Scholar PubMed
Winslow, J.T., Parr, L.A., and Davis, M. (2002). Acoustic startle, prepulse inhibition, and fear-potentiated startle measured in rhesus monkeys. Biol. Psychiatry. 51, 859–866.10.1016/S0006-3223(02)01345-8Suche in Google Scholar PubMed
Winslow, J.T., Noble, P.L., and Davis, M. (2007). Modulation of fear-potentiated startle and vocalizations in juvenile rhesus monkeys by morphine, diazepam, and buspirone. Biol. Psychiatry 61, 389–395.10.1016/j.biopsych.2006.03.012Suche in Google Scholar PubMed
Wolf, R., Dobrowolny, H., Matzke, K., Paelchen, K., Bogerts, B., and Schwegler, H. (2006). Prepulse inhibition is different in two inbred mouse strains (CPB-K and BALB/cJ) with different hippocampal NMDA receptor densities. Behav Brain Res. 166, 78–84.10.1016/j.bbr.2005.07.027Suche in Google Scholar PubMed
Xing, J. and Li, J. (2007). TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons. J. Neurophysiol. 97, 503–511.10.1152/jn.01023.2006Suche in Google Scholar PubMed
Zavitsanou, K., Garrick, T., and Huang, X.F. (2004). Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog. Neuro-Psychopharmacology Biol. Psychiatry 28, 355–360.10.1016/j.pnpbp.2003.11.005Suche in Google Scholar PubMed
Zuardi, A.W., Shirakawa, I., Finkelfarb, E., and Karniol, I.G. (1982). Action of cannabidiol on the anxiety and other effects produced by delta-9-THC in normal subjects. Psychopharmacology (Berl.) 76, 245–250.10.1007/BF00432554Suche in Google Scholar PubMed
Zuardi, A.W., Antunes Rodrigues, J., and Cunha, J.M. (1991). Effects of cannabidiol in animal models predictive of antipsychotic activity. Psychopharmacology (Berl.) 104, 260–264.10.1007/BF02244189Suche in Google Scholar PubMed
Zuardi, A.W., Crippa, J.A., Hallak, J.E., Bhattacharyya, S., Atakan, Z., Martin-Santos, R., McGuire, P.K., and Guimarães, F.S. (2012). A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation. Curr. Pharm. Des. 18, 5131–5140.10.2174/138161212802884681Suche in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Therapeutic potential of JAK/STAT pathway modulation in mood disorders
- Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy
- Segmentation and clustering in brain MRI imaging
- Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment
- Multiple sclerosis pathogenesis: missing pieces of an old puzzle
- A review on future episodic thinking in mood and anxiety disorders
- Cannabidiol effects on prepulse inhibition in nonhuman primates
Artikel in diesem Heft
- Frontmatter
- Therapeutic potential of JAK/STAT pathway modulation in mood disorders
- Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy
- Segmentation and clustering in brain MRI imaging
- Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment
- Multiple sclerosis pathogenesis: missing pieces of an old puzzle
- A review on future episodic thinking in mood and anxiety disorders
- Cannabidiol effects on prepulse inhibition in nonhuman primates