Abstract
Neurons and microglia are two major components in the central nervous system (CNS). The interactions between them play important roles in maintaining homeostasis of the brain. In recent years, substantial studies have focused on the interactions between neurons and microglia, revealing that microglia become reactive when the interactions are pathophysiologically interfered, usually accompanying neuronal injury, which is a common feature for Alzheimer’s disease (AD). Many molecules and factors participate in these physiological and pathological processes, either in a contact-dependent or a contact-independent manner. Accumulating studies have revealed that in the CNS, cluster of differentiation-200 (CD200) and fractalkine (CX3CL1) expressed mainly on neurons and triggering receptor expressed on myeloid cells 2 (TREM2) expressed mainly on microglia. These molecules can mediate neuron-microglia interactions in a contact-dependent manner and contribute to the pathogenesis of AD. Here, we review the expression, distribution, and function of CD200, CX3CL1, and TREM2 in regulating neuron-microglia interactions under physiological conditions as well as in AD.
Acknowledgements
This study is supported by a grant from the Natural Science Foundation of China (Funder Id: 10.13039/501100001809, grant no. 81471232) and the Biomedical Multidisciplinary Program of Shanghai Jiao Tong University (YG2014MS31).
Conflict of interest statement: The authors declare that they have no conflict of interest.
References
Atagi, Y., Liu, C.-C., Painter, M.M., Chen, X.-F., Verbeeck, C., Zheng, H., Li, X., Rademakers, R., Kang, S.S., Xu, H., et al. (2015). Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J. Alzheimers. Dis. 290, 26043–26050.10.1074/jbc.M115.679043Search in Google Scholar PubMed PubMed Central
Azizi, G., Khannazer, N., and Mirshafiey, A. (2014). The potential role of chemokines in Alzheimer’s disease pathogenesis. Am. J. Alzheimers. Dis. 29, 415–425.10.1177/1533317513518651Search in Google Scholar PubMed
Balschun, D., Randolf, A., Pitossi, F., Schneider, H., Rey, A., and Besedovsky, H.O. (2003). Hippocampal interleukin-1β gene expression during long-term potentiation decays with age. Ann. N.Y. Acad. Sci. 992, 1–8.10.1111/j.1749-6632.2003.tb03132.xSearch in Google Scholar PubMed
Barclay, A.N. (1981). Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 44, 727–736.Search in Google Scholar
Bazan, J.F., Bacon, K.B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D.R., Zlotnik, A., and Schall, T.J. (1997). A new class of membrane-bound chemokine with a CX(3)C motif. Nature 385, 640–644.10.1038/385640a0Search in Google Scholar PubMed
Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von Zastrow, M., Beattie, M.S., and Malenka, R.C. (2002). Control of synaptic strength by glial TNFα. Science 295, 2282–2285.10.1126/science.1067859Search in Google Scholar PubMed
Bemiller, S.M., McCray, T.J., Allan, K., Formica, S.V., Xu, G., Wilson, G., Kokiko-Cochran, O.N., Crish, S.D., Lasagna-Reeves, C.A., Ransohoff, R.M., et al. (2017). TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 12, 74.10.1186/s13024-017-0216-6Search in Google Scholar PubMed PubMed Central
Boehme, S.A., Lio, F.M., Maciejewski-Lenoir, D., Bacon, K.B., and Conlon, P.J. (2000). The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J. Immunol. 165, 397–403.10.4049/jimmunol.165.1.397Search in Google Scholar PubMed
Bolós, M., Perea, J.R., and Avila, J. (2017). Alzheimer’s disease as an inflammatory disease. Biomol. Concepts 8, 37–43.10.1515/bmc-2016-0029Search in Google Scholar PubMed
Bouchon, A., Hernandez-Munain, C., Cella, M., and Colonna, M. (2001). A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122.10.1084/jem.194.8.1111Search in Google Scholar PubMed PubMed Central
Butovsky, O., Jedrychowski, M.P., Moore, C.S., Cialic, R., Lanser, A.J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P.M., Doykan, C.E., et al. (2014). Identification of a unique TGF-β dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143.10.1038/nn.3599Search in Google Scholar PubMed PubMed Central
Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., et al. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924.10.1038/nn1715Search in Google Scholar PubMed
Chen, P., Zhao, W., Guo, Y., Xu, J., and Yin, M. (2016). CX3CL1/CX3CR1 in Alzheimer’s disease: a target for neuroprotection. BioMed. Res. Int. 2016, 8090918.10.1155/2016/8090918Search in Google Scholar PubMed PubMed Central
Costello, D.A., Lyons, A., Denieffe, S., Browne, T.C., Cox, F.F., and Lynch, M.A. (2011). Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J. Biol. Chem. 286, 34722–34732.10.1074/jbc.M111.280826Search in Google Scholar PubMed PubMed Central
Cox, F.F., Carney, D., Miller, A.-M., and Lynch, M.A. (2012). CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav. Immun. 26, 789–796.10.1016/j.bbi.2011.10.004Search in Google Scholar PubMed
Daws, M.R., Sullam, P.M., Niemi, E.C., Chen, T.T., Tchao, N.K., and Seaman, W.E. (2003). Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 171, 594–599.10.4049/jimmunol.171.2.594Search in Google Scholar PubMed
Deisseroth, K. (2014). Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–317.10.1038/nature12982Search in Google Scholar PubMed PubMed Central
Delpech, J.C., Madore, C., Nadjar, A., Joffre, C., Wohleb, E.S., and Layé, S. (2015). Microglia in neuronal plasticity: influence of stress. Neuropharmacology 96, 19–28.10.1016/j.neuropharm.2014.12.034Search in Google Scholar PubMed
Desforges, N.M., Hebron, M.L., Algarzae, N.K., Lonskaya, I., and Moussa, C.E.H. (2012). Fractalkine mediates communication between pathogenic proteins and microglia: implications of anti-inflammatory treatments in different stages of neurodegenerative diseases. Int. J. Alzheimers. Dis. 2012, 345472.10.1155/2012/345472Search in Google Scholar PubMed PubMed Central
Dissing-Olesen, L., LeDue, J.M., Rungta, R.L., Hefendehl, J.K., Choi, H.B., and MacVicar, B.A. (2014). Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 34, 10511–10527.10.1523/JNEUROSCI.0405-14.2014Search in Google Scholar PubMed PubMed Central
Duan, R.-S., Yang, X., Chen, Z.-G., Lu, M.-O., Morris, C., Winblad, B., and Zhu, J. (2008). Decreased fractalkine and increased IP-10 expression in aged brain of APP(swe) transgenic mice. Neurochem. Res. 33, 1085–1089.10.1007/s11064-007-9554-zSearch in Google Scholar PubMed
Fontainhas, A.M., Wang, M., Liang, K.J., Chen, S., Mettu, P., Damani, M., Fariss, R.N., Li, W., and Wong, W.T. (2011). Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6, e15973.10.1371/journal.pone.0015973Search in Google Scholar PubMed PubMed Central
Frank, S., Burbach, G.J., Bonin, M., Walter, M., Streit, W., Bechmann, I., and Deller, T. (2008). TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56, 1438–1447.10.1002/glia.20710Search in Google Scholar PubMed
Frautschy, S.A., Yang, F.S., Irrizarry, M., Hyman, B., Saido, T.C., Hsiao, K., and Cole, G.M. (1998). Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307–317.Search in Google Scholar
Fuhrmann, M., Bittner, T., Jung, C.K.E., Burgold, S., Page, R.M., Mitteregger, G., Haass, C., LaFerla, F.M., Kretzschmar, H., and Herms, J. (2010). Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci. 13, 411–413.10.1038/nn.2511Search in Google Scholar PubMed PubMed Central
Garton, K.J., Gough, P.J., Blobel, C.P., Murphy, G., Greaves, D.R., Dempsey, P.J., and Raines, E.W. (2001). Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276, 37993–38001.10.1074/jbc.M106434200Search in Google Scholar PubMed
Gosselin, D., Link, V.M., Romanoski, C.E., Fonseca, G.J., Eichenfield, D.Z., Spann, N.J., Stender, J.D., Chun, H.B., Garner, H., Geissmann, F., et al. (2014). Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340.10.1016/j.cell.2014.11.023Search in Google Scholar PubMed PubMed Central
Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi, C., Kauwe, J.S.K., Lupton, M.K., et al. (2013). TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127.10.1056/NEJMoa1211851Search in Google Scholar PubMed PubMed Central
Hanzel, C.E., Pichet-Binette, A., Pimentel, L.S.B., Iulita, M.F., Allard, S., Ducatenzeiler, A., Do Carmo, S., and Cuello, A.C. (2014). Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35, 2249–2262.10.1016/j.neurobiolaging.2014.03.026Search in Google Scholar PubMed
Hariri, A.R. and Holmes, A. (2015). Finding translation in stress research. Nat. Neurosci. 18, 1347–1352.10.1038/nn.4111Search in Google Scholar PubMed PubMed Central
Harrison, J.K., Jiang, Y., Chen, S.Z., Xia, Y.Y., Maciejewski, D., McNamara, R.K., Streit, W.J., Salafranca, M.N., Adhikari, S., Thompson, D.A., et al. (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA 95, 10896–10901.10.1073/pnas.95.18.10896Search in Google Scholar PubMed PubMed Central
Hatherley, D. and Barclay, A.N. (2004). The CD200 and CD200 receptor cell surface proteins interact through their N-terminal immunoglobulin-like domains. Eur. J. Immunol. 34, 1688–1694.10.1002/eji.200425080Search in Google Scholar PubMed
Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405.10.1016/S1474-4422(15)70016-5Search in Google Scholar
Hensley, K. (2010). Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J. Alzheimers. Dis. 21, 1–14.10.3233/JAD-2010-1414Search in Google Scholar PubMed PubMed Central
Hernangomez, M., Carrillo-Salinas, F.J., Mecha, M., Correa, F., Mestre, L., Loria, F., Feliu, A., Docagne, F., and Guaza, C. (2014). Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. Curr. Pharm. Des. 20, 4707–4722.10.2174/1381612820666140130202911Search in Google Scholar PubMed PubMed Central
Hickman, S.E. and El Khoury, J. (2014). TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem. Pharmacol. 88, 495–498.10.1016/j.bcp.2013.11.021Search in Google Scholar PubMed PubMed Central
Hsieh, C.L., Koike, M., Spusta, S.C., Niemi, E.C., Yenari, M., Nakamura, M.C., and Seaman, W.E. (2009). A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem. 109, 1144–1156.10.1111/j.1471-4159.2009.06042.xSearch in Google Scholar PubMed PubMed Central
Ito, H. and Hamerman, J.A. (2012). TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur. J. Immunol. 42, 176–185.10.1002/eji.201141679Search in Google Scholar PubMed PubMed Central
Jiang, T., Yu, J.-T., Zhu, X.-C., and Tan, L. (2013). TREM2 in Alzheimer’s disease. Mol. Neurobiol. 48, 180–185.10.1007/s12035-013-8424-8Search in Google Scholar PubMed
Jiang, T., Tan, L., Zhu, X.-C., Zhang, Q.-Q., Cao, L., Tan, M.-S., Gus, L.-Z., Wang, H.-F., Ding, Z.-Z., Zhang, Y.-D., et al. (2014). Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 39, 2949–2962.10.1038/npp.2014.164Search in Google Scholar PubMed PubMed Central
Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P.V., Snaedal, J., Bjornsson, S., Huttenlocher, J., Levey, A.I., Lah, J.J., et al. (2013). Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116.10.1056/NEJMoa1211103Search in Google Scholar PubMed PubMed Central
Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A., and Littman, D.R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114.10.1128/MCB.20.11.4106-4114.2000Search in Google Scholar PubMed PubMed Central
Jurgens, H.A. and Johnson, R.W. (2012). Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp. Neurol. 233, 40–48.10.1016/j.expneurol.2010.11.014Search in Google Scholar PubMed PubMed Central
Kawabori, M., Kacimi, R., Kauppinen, T., Calosing, C., Kim, J.Y., Hsieh, C.L., Nakamura, M.C., and Yenari, M.A. (2015). Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 35, 3384–3396.10.1523/JNEUROSCI.2620-14.2015Search in Google Scholar PubMed PubMed Central
Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., et al. (2017). A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.10.1016/j.cell.2017.05.018Search in Google Scholar PubMed
Kettenmann, H., Kirchhoff, F., and Verkhratsky, A. (2013). Microglia: new roles for the synaptic stripper. Neuron 77, 10–18.10.1016/j.neuron.2012.12.023Search in Google Scholar PubMed
Kierdorf, K. and Prinz, M. (2013). Factors regulating microglia activation. Front. Cell Neurosci. 7, 44.10.3389/fncel.2013.00044Search in Google Scholar PubMed PubMed Central
Kim, T.-S., Lim, H.-K., Lee, J.Y., Kim, D.-J., Park, S., Lee, C., and Lee, C.-U. (2008). Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 436, 196–200.10.1016/j.neulet.2008.03.019Search in Google Scholar PubMed
Kiyota, T., Okuyama, S., Swan, R.J., Jacobsen, M.T., Gendelman, H.E., and Ikezu, T. (2010). CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J. 24, 3093–3102.10.1096/fj.10-155317Search in Google Scholar PubMed PubMed Central
Kober, D.L. and Brett, T.J. (2017). TREM2-ligand interactions in health and disease. J. Mol. Biol. 429, 1607–1629.10.1016/j.jmb.2017.04.004Search in Google Scholar PubMed PubMed Central
Koning, N., van Eijk, M., Pouwels, W., Brouwer, M.S.M., Voehringer, D., Huitinga, I., Hoek, R.M., Raes, G., and Hamann, J. (2010). Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun. 2, 195–200.10.1159/000252803Search in Google Scholar PubMed
Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., Beckers, L., O’Loughlin, E., Xu, Y., Fanek, Z., et al. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e569.10.1016/j.immuni.2017.08.008Search in Google Scholar PubMed PubMed Central
Landel, V., Baranger, K., Virard, I., Loriod, B., Khrestchatisky, M., Rivera, S., Benech, P., and Feron, F. (2014). Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease. Mol. Neurodegener. 9, 33.10.1186/1750-1326-9-33Search in Google Scholar PubMed PubMed Central
Lee, C.Y.D. and Landreth, G.E. (2010). The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960.10.1007/s00702-010-0433-4Search in Google Scholar PubMed PubMed Central
Lee, S., Varvel, N.H., Konerth, M.E., Xu, G., Cardona, A.E., Ransohoff, R.M., and Lamb, B.T. (2010). CX3CR1 deficiency alters microglial activation and reduces β-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol. 177, 2549–2562.10.2353/ajpath.2010.100265Search in Google Scholar PubMed PubMed Central
Lee, L.C., Goh, M.Q., and Koo, E.H. (2017). Transcriptional regulation of APP by apoE: to boldly go where no isoform has gone before. Bioessays 39, 1700062.10.1002/bies.201700062Search in Google Scholar PubMed PubMed Central
Lerner, T.N., Ye, L., and Deisseroth, K. (2016). Communication in neural circuits: tools, opportunities, and challenges. Cell 164, 1136–1150.10.1016/j.cell.2016.02.027Search in Google Scholar PubMed PubMed Central
Li, X., Montine, K.S., Keene, C.D., and Montine, T.J. (2015). Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E-2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J. 29, 1754–1762.10.1096/fj.14-262683Search in Google Scholar PubMed PubMed Central
Lian, H. and Zheng, H. (2016). Signaling pathways regulation neuron-glia interaction and their implication in Alzheimer’s disease. J. Neurochem. 136, 475–491.10.1111/jnc.13424Search in Google Scholar PubMed PubMed Central
Lim, S.H., Park, E., You, B., Jung, Y., Park, A.R., Park, S.G., and Lee, J.R. (2013). Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 8, e81218.10.1371/journal.pone.0081218Search in Google Scholar PubMed PubMed Central
Lyons, A., Downer, E.J., Crotty, S., Nolan, Y.M., Mills, K.H.G., and Lynch, M.A. (2007). CD200 ligand-receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J. Neurosci. 27, 8309–8313.10.1523/JNEUROSCI.1781-07.2007Search in Google Scholar PubMed PubMed Central
Lyons, A., McQuillan, K., Deighan, B.F., O’Reilly, J.-A., Downer, E.J., Murphy, A.C., Watson, M., Piazza, A., O’Connell, F., Griffin, R., et al. (2009). Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav. Immun. 23, 1020–1027.10.1016/j.bbi.2009.05.060Search in Google Scholar PubMed
Lyons, A., Downer, E.J., Costello, D.A., Murphy, N., and Lynch, M.A. (2012). Dok2 mediates the CD200Fc attenuation of A β-induced changes in glia. J. Neuroinflamm. 9, 107.10.1186/1742-2094-9-107Search in Google Scholar
Lyons, A., Minogue, A.M., Jones, R.S., Fitzpatrick, O., Noonan, J., Campbell, V.A., and Lynch, M.A. (2016). Analysis of the impact of CD200 on phagocytosis. Mol. Neurobiol. 54, 5730–5739.10.1007/s12035-016-0223-6Search in Google Scholar
McMaster, W.R. and Williams, A.F. (1979). Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur. J. Immunol. 9, 426–433.10.1002/eji.1830090603Search in Google Scholar
Melchior, B., Garcia, A.E., Hsiung, B.-K., Lo, K.M., Doose, J.M., Thrash, J.C., Stalder, A.K., Staufenbiel, M., Neumann, H., and Carson, M.J. (2010). Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease. Asn Neuro. 2, 157–170.10.1042/AN20100010Search in Google Scholar
Mihrshahi, R., Barclay, A.N., and Brown, M.H. (2009). Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J. Immunol. 183, 4879–4886.10.4049/jimmunol.0901531Search in Google Scholar
Mizuno, T., Kawanokuchi, J., Numata, K., and Suzumura, A. (2003). Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979, 65–70.10.1016/S0006-8993(03)02867-1Search in Google Scholar
Moynagh, P.N. (2005). The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J. Anat. 207, 265–269.10.1111/j.1469-7580.2005.00445.xSearch in Google Scholar PubMed PubMed Central
Murphy, K.J. (2013). Neuron-glia crosstalk in health and disease: fractalkine and CX(3)CR1 take centre stage. Open Biol. 3, 130181.10.1098/rsob.130181Search in Google Scholar PubMed PubMed Central
N’Diaye, E.-N., Branda, C.S., Branda, S.S., Nevarez, L., Colonna, M., Lowell, C., Hamerman, J.A., and Seaman, W.E. (2009). TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J. Cell. Biol. 184, 215–223.10.1083/jcb.200808080Search in Google Scholar PubMed PubMed Central
Neumann, H. and Daly, M.J. (2013). Variant TREM2 as risk factor for Alzheimer’s disease. N. Engl. J. Med. 368, 182–184.10.1056/NEJMe1213157Search in Google Scholar PubMed
Nimmervoll, B., White, R., Yang, J.W., An, S., Henn, C., Sun, J.J., and Luhmann, H.J. (2012). LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. Cereb. Cortex 23, 1742–1755.10.1093/cercor/bhs156Search in Google Scholar
Noda, M., Doi, Y., Liang, J., Kawanokuchi, J., Sonobe, Y., Takeuchi, H., Mizuno, T., and Suzumura, A. (2011). Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J. Biol. Chem. 286, 2308–2319.10.1074/jbc.M110.169839Search in Google Scholar
Painter, M.M., Atagi, Y., Liu, C.-C., Rademakers, R., Xu, H., Fryer, J.D., and Bu, G. (2015). TREM2 in CNS homeostasis and neurodegenerative disease. Mol. Neurodegener. 10, 43.10.1186/s13024-015-0040-9Search in Google Scholar
Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira, T.A., Guiducci, E., Dumas, L., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458.10.1126/science.1202529Search in Google Scholar
Perlmutter, L.S., Barron, E., and Chui, H.C. (1990). Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci. Lett. 119, 32–36.10.1016/0304-3940(90)90748-XSearch in Google Scholar
Pocock, J.M. and Kettenmann, H. (2007). Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535.10.1016/j.tins.2007.07.007Search in Google Scholar PubMed
Podbielska, M., Das, A., Smith, A.W., Chauhan, A., Ray, S.K., Inoue, J., Azuma, M., Nozaki, K., Hogan, E.L., and Banik, N.L. (2016). Neuron-microglia interaction induced bi-directional cytotoxicity associated with calpain activation. J. Neurochem. 139, 440–455.10.1111/jnc.13774Search in Google Scholar PubMed PubMed Central
Poliani, P.L., Wang, Y., Fontana, E., Robinette, M.L., Yamanish, Y., Gilfillan, S., and Colonna, M. (2015). TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170.10.1172/JCI77983Search in Google Scholar PubMed PubMed Central
Ransohoff, R.M. (2016). How neuroinflammation contributes to neurodegeneration. Science 353, 777–783.10.1126/science.aag2590Search in Google Scholar PubMed
Rogers, J.T., Morganti, J.M., Bachstetter, A.D., Hudson, C.E., Peters, M.M., Grimmig, B.A., Weeber, E.J., Bickford, P.C., and Gemma, C. (2011). CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci. 31, 16241–16250.10.1523/JNEUROSCI.3667-11.2011Search in Google Scholar PubMed PubMed Central
Salminen, A., Ojala, J., Kauppinen, A., Kaarniranta, K., and Suuronen, T. (2009). Inflammation in Alzheimer’s disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog. Neurobiol. 87, 181–194.10.1016/j.pneurobio.2009.01.001Search in Google Scholar PubMed
Stancu, I.-C., Vasconcelos, B., Terwel, D., and Dewachter, I. (2014). Models of β-amyloid induced Tau-pathology: the long and ‘folded’ road to understand the mechanism. Mol. Neurodegen. 9, 51.10.1186/1750-1326-9-51Search in Google Scholar PubMed PubMed Central
Strobel, S., Gruenblatt, E., Riederer, P., Heinsen, H., Arzberger, T., Al-Sarraj, S., Troakes, C., Ferrer, I., and Monoranu, C.M. (2015). Changes in the expression of genes related to neuroinflammation over the course of sporadic Alzheimer’s disease progression: CX3CL1, TREM2, and PPARγ. J. Neural Transm. 122, 1069–1076.10.1007/s00702-015-1369-5Search in Google Scholar PubMed
Takahashi, K., Rochford, C.D.P., and Neumann, H. (2005). Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657.10.1084/jem.20041611Search in Google Scholar PubMed PubMed Central
Tan, M.-S., Yu, J.-T., Jiang, T., Zhu, X.-C., Wang, H.-F., Zhang, W., Wang, Y.-L., Jiang, W., and Tan, L. (2013). NLRP3 polymorphisms are associated with late-onset Alzheimer’s disease in Han Chinese. J. Neuroimmunol. 265, 91–95.10.1016/j.jneuroim.2013.10.002Search in Google Scholar PubMed
Tang, Y. and Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181–1194.10.1007/s12035-014-9070-5Search in Google Scholar PubMed
Turnbull, I.R., Gilfillan, S., Cella, M., Aoshi, T., Miller, M., Piccio, L., Hernandez, M., and Colonna, M. (2006). Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524.10.4049/jimmunol.177.6.3520Search in Google Scholar PubMed
Varnum, M.M. and Ikezu, T. (2012). The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch. Immunol. Ther. Ex. 60, 251–266.10.1007/s00005-012-0181-2Search in Google Scholar PubMed PubMed Central
Varnum, M.M., Kiyota, T., Ingraham, K.L., Ikezu, S., and Ikezu, T. (2015). The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiol Aging 36, 2995–3007.10.1016/j.neurobiolaging.2015.07.027Search in Google Scholar PubMed PubMed Central
Walker, D.G. and Lue, L.-F. (2013). Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? Future Neurol. 8, 321–332.10.2217/fnl.13.14Search in Google Scholar PubMed PubMed Central
Walker, D.G., Dalsing-Hernandez, J.E., Campbell, N.A., and Lue, L.-F. (2009). Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp. Neurol. 215, 5–19.10.1016/j.expneurol.2008.09.003Search in Google Scholar PubMed PubMed Central
Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., Schulz-Schaeffer, W., et al. (2007). Role of the toll-like receptor 4 in neuro-inflammation in Alzheimer’s disease. Cell. Physiol. Biochem. 20, 947–956.10.1159/000110455Search in Google Scholar PubMed
Wang, Y., Cella, M., Mallinson, K., Ulrich, J.D., Young, K.L., Robinette, M.L., Gilfillan, S., Krishnan, G.M., Sudhakar, S., Zinselmeyer, B.H., et al. (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071.10.1016/j.cell.2015.01.049Search in Google Scholar PubMed PubMed Central
Webb, M. and Barclay, A.N. (1984). Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones. J. Neurochem. 43, 1061–1067.10.1111/j.1471-4159.1984.tb12844.xSearch in Google Scholar PubMed
Wohleb, E.S. (2016). Neuron-microglia interactions in mental health disorders: ‘for better, and for worse’. Front Immunol. 7, 544.10.3389/fimmu.2016.00544Search in Google Scholar PubMed PubMed Central
Wolf, S.A., Boddeke, H.W.G.M., and Kettenmann, H. (2017). Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619–643.10.1146/annurev-physiol-022516-034406Search in Google Scholar PubMed
Xiang, X., Werner, G., Bohrmann, B., Liesz, A., Mazaheri, F., Capell, A., Feederle, R., Knuesel, I., Kleinberger, G., and Haass, C. (2016). TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol. Med. 8, 992–1004.10.15252/emmm.201606370Search in Google Scholar PubMed PubMed Central
Yamamoto, M., Kiyota, T., Walsh, S.M., Liu, J., Kipnis, J., and Ikezu, T. (2008). Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes. J. Immunol. 181, 3877–3886.10.4049/jimmunol.181.6.3877Search in Google Scholar PubMed PubMed Central
Yeo, S.I., Kim, J.E., Ryu, H.J., Seo, C.H., Lee, B.C., Choi, I.G., Kim, D.S., and Kang, T.C. (2011). The roles of fractalkine/CX3CR1 system in neuronal death following pilocarpine-induced status epilepticus. J. Neuroimmunol. 234, 93–102.10.1016/j.jneuroim.2011.03.005Search in Google Scholar PubMed
Zhao, W., Dumanis, S.B., Tamboli, I.Y., Rodriguez, G.A., Jo LaDu, M., Moussa, C.E., and William Rebeck, G. (2013). Human APOE genotype affects intraneuronal Aβ1-42 accumulation in a lentiviral gene transfer model. Human Mol Genet 23, 1365–1375.10.1093/hmg/ddt525Search in Google Scholar PubMed PubMed Central
Zheng, H., Liu, C.-C., Atagi, Y., Chen, X.-F., Jia, L., Yang, L., He, W., Zhang, X., Kang, S.S., Rosenberry, T.L., et al. (2016). Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging 42, 132–141.10.1016/j.neurobiolaging.2016.03.004Search in Google Scholar
Zhong, L., Chen, X.-F., Zhang, Z.-L., Wang, Z., Shi, X.-Z., Xu, K., Zhang, Y.-W., Xu, H., and Bu, G. (2015). DAP12 stabilizes the C-terminal fragment of the triggering receptor expressed on myeloid cells-2 (TREM2) and protects against LPS-induced pro-inflammatory response. J. Biol. Chem. 290, 15866–15877.10.1074/jbc.M115.645986Search in Google Scholar
Zujovic, V., Benavides, J., Vige, X., Carter, C., and Taupin, V. (2000). Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. Glia 29, 305–315.10.1002/(SICI)1098-1136(20000215)29:4<305::AID-GLIA2>3.0.CO;2-VSearch in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Roles of the exon junction complex components in the central nervous system: a mini review
- Metabolic regulation of synaptic activity
- CD200-, CX3CL1-, and TREM2-mediated neuron-microglia interactions and their involvements in Alzheimer’s disease
- Rab23 and developmental disorders
- When your face describes your memories: facial expressions during retrieval of autobiographical memories
- Balo’s concentric sclerosis: an update and comprehensive literature review
- How different priming stimulations affect the corticospinal excitability induced by noninvasive brain stimulation techniques: a systematic review and meta-analysis
- Corrigendum
- Corrigendum to: The functional role of all postsynaptic potentials examined from a first-person frame of reference
Articles in the same Issue
- Frontmatter
- Roles of the exon junction complex components in the central nervous system: a mini review
- Metabolic regulation of synaptic activity
- CD200-, CX3CL1-, and TREM2-mediated neuron-microglia interactions and their involvements in Alzheimer’s disease
- Rab23 and developmental disorders
- When your face describes your memories: facial expressions during retrieval of autobiographical memories
- Balo’s concentric sclerosis: an update and comprehensive literature review
- How different priming stimulations affect the corticospinal excitability induced by noninvasive brain stimulation techniques: a systematic review and meta-analysis
- Corrigendum
- Corrigendum to: The functional role of all postsynaptic potentials examined from a first-person frame of reference