Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia in the aging population worldwide. SIRT1 deacetylation of histones and transcription factors impinge on multiple neuronal and non-neuronal targets, and modulates stress response, energy metabolism and cellular senescence/death pathways. Collectively, SIRT1 activity could potentially affect multiple aspects of hippocampal and cortical neuron function and survival, thus modifying disease onset and progression. In this review, the known and potential mechanisms of action of SIRT1 with regard to AD, and its potential as a therapeutic target, are discussed.
Acknowledgments
BLT is supported by the NUS Graduate School for Integrative Sciences and Engineering.
Conflict of interest statement: The authors declare that they have no conflict of interest.
References
Ahmed, T., Van der Jeugd, A., Blum, D., Galas, M.C., D’Hooge, R., Buee, L., and Balschun, D. (2014). Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol. Aging 35, 2474–2478.10.1016/j.neurobiolaging.2014.05.005Suche in Google Scholar PubMed
Alcendor, R.R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., Tian, B., Wagner, T., Vatner, S.F., and Sadoshima, J. (2007). Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100, 1512–1521.10.1161/01.RES.0000267723.65696.4aSuche in Google Scholar PubMed
Alzheimer’s Association. (2014). 2014 Alzheimer’s disease facts and figures. Alzheimers Dement. 10, e47–e92.10.1016/j.jalz.2014.02.001Suche in Google Scholar PubMed
Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O., and Sinclair, D.A. (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185.10.1038/nature01578Suche in Google Scholar PubMed PubMed Central
Avila-Muñoz, E., and Arias, C. (2014). When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res. Rev. 18, 29–40.10.1016/j.arr.2014.07.004Suche in Google Scholar PubMed
Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342.10.1038/nature05354Suche in Google Scholar PubMed PubMed Central
Baur, J.A., Ungvari, Z., Minor, R.K., Le Couteur, D.G., and de Cabo, R. (2012). Are sirtuins viable targets for improving healthspan and lifespan? Nat. Rev. Drug Discov. 11, 443–461.10.1038/nrd3738Suche in Google Scholar PubMed PubMed Central
Benito, E., Urbanke, H., Ramachandran, B., Barth, J., Halder, R., Awasthi, A., Jain, G., Capece, V., Burkhardt, S., Navarro-Sala, M., et al. (2015). HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J. Clin. Invest. 125, 3572–3584.10.1172/JCI79942Suche in Google Scholar PubMed PubMed Central
Bhalla, A., Vetanovetz, C.P., Morel, E., Chamoun, Z., Di Paolo, G., and Small, S.A. (2012). The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol. Dis. 47, 126–134.10.1016/j.nbd.2012.03.030Suche in Google Scholar PubMed PubMed Central
Bithell, A. (2011). REST: transcriptional and epigenetic regulator. Epigenomics 3, 47–58.10.2217/epi.10.76Suche in Google Scholar PubMed
Blander, G. and Guarente, L. (2004). The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73, 417–435.10.1146/annurev.biochem.73.011303.073651Suche in Google Scholar PubMed
Bloom, G.S. (2014). Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. J. Am. Med. Assoc. Neurol. 71, 505–508.10.1001/jamaneurol.2013.5847Suche in Google Scholar PubMed
Boily, G., Seifert, E.L., Bevilacqua, L., He, X.H., Sabourin, G., Estey, C., Moffat, C., Crawford, S., Saliba, S., Jardine, K., et al. (2008). SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3, e1759.10.1371/journal.pone.0001759Suche in Google Scholar PubMed PubMed Central
Brownlow, M.L., Joly-Amado, A., Azam, S., Elza, M., Selenica, M.L., Pappas, C., Small, B., Engelman, R., Gordon, M.N., and Morgan, D. (2014). Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav. Brain Res. 271, 79–88.10.1016/j.bbr.2014.06.001Suche in Google Scholar PubMed
Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvári, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J., et al. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485.10.1038/nature10296Suche in Google Scholar PubMed PubMed Central
Cantó, C. and Auwerx, J. (2009a). Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325–331.10.1016/j.tem.2009.03.008Suche in Google Scholar PubMed PubMed Central
Cantó, C. and Auwerx, J. (2009b). PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105.10.1097/MOL.0b013e328328d0a4Suche in Google Scholar PubMed PubMed Central
Chakraborty, C. and Doss, C.G.P. (2013). Sirtuins family – recent development as a drug target for aging, metabolism, and age related diseases. Curr. Drug Targets 14, 666–675.10.2174/1389450111314060008Suche in Google Scholar PubMed
Chang, H.C. and Guarente, L. (2014). SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 25, 138–145.10.1016/j.tem.2013.12.001Suche in Google Scholar PubMed PubMed Central
Chang, C., Su, H., Zhang, D., Wang, Y., Shen, Q., Liu, B., Huang, R., Zhou, T., Peng, C., Wong, C.C.L., et al. (2015). AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol. Cell 60, 930–940.10.1016/j.molcel.2015.10.037Suche in Google Scholar PubMed
Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L.F., Kwon, H., Yi, S., Mucke, L., and Gan, L. (2005). SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem. 280, 40364–40374.10.1074/jbc.M509329200Suche in Google Scholar PubMed
Chen, D., Steele, A.D., Hutter, G., Bruno, J., Govindarajan, A., Easlon, E., Lin, S.J., Aguzzi, A., Lindquist, S., and Guarente, L. (2008). The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration. Exp. Gerontol. 43, 1086–1093.10.1016/j.exger.2008.08.050Suche in Google Scholar PubMed PubMed Central
Cheng, Y., Takeuchi, H., Sonobe, Y., Jin, S., Wang, Y., Horiuchi, H., Parajuli, B., Kawanokuchi, J., Mizuno, T., and Suzumura, A. (2014). Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. J. Neuroimmunol. 269, 38–43.10.1016/j.jneuroim.2014.02.001Suche in Google Scholar PubMed
Cho, S.H., Chen, J.A., Sayed, F., Ward, M.E., Gao, F., Nguyen, T.A., Krabbe, G., Sohn, P.D., Lo, I., Minami, S., et al. (2015). SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci. 35, 807–818.10.1523/JNEUROSCI.2939-14.2015Suche in Google Scholar PubMed PubMed Central
Choy, R.W.Y., Cheng, Z., and Schekman, R. (2012). Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc. Natl. Acad. Sci. USA 109, E2077–E2082.10.1073/pnas.1208635109Suche in Google Scholar PubMed PubMed Central
Chung, K.W., Kim, D.H., Park, M.H., Choi, Y.J., Kim, N.D., Lee, J., Yu, B.P., and Chung, H.Y. (2013). Recent advances in calorie restriction research on aging. Exp. Gerontol. 48, 1049–1053.10.1016/j.exger.2012.11.007Suche in Google Scholar PubMed
Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R., and Sinclair, D.A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392.10.1126/science.1099196Suche in Google Scholar PubMed
Coppé, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118.10.1146/annurev-pathol-121808-102144Suche in Google Scholar PubMed PubMed Central
Dar, T.A., Sheikh, I.A., Ganie, S.A., Ali, R., Singh, L.R., Gan, S.H., Kamal, M.A., and Zargar, M.A. (2014). Molecular linkages between diabetes and Alzheimer’s disease: current scenario and future prospects. CNS Neurol. Disord. Drug Targets 13, 290–298.10.2174/18715273113126660135Suche in Google Scholar PubMed
Dasgupta, B. and Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104, 7217–7222.10.1073/pnas.0610068104Suche in Google Scholar PubMed PubMed Central
Dawson, G.R., Seabrook, G.R., Zheng, H., Smith, D.W., Graham, S., O’Dowd, G., Bowery, B.J., Boyce, S., Trumbauer, M.E., Chen, H.Y., et al. (1999). Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90, 1–13.10.1016/S0306-4522(98)00410-2Suche in Google Scholar
de Picciotto, N.E., Gano, L.B., Johnson, L.C., Martens, C.R., Sindler, A.L., Mills, K.F., Imai, S.I., and Seals, D.R. (2016). Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530.10.1111/acel.12461Suche in Google Scholar PubMed PubMed Central
De Strooper, B. and Karran, E. (2016). The cellular phase of Alzheimer’s disease. Cell 164, 603–615.10.1016/j.cell.2015.12.056Suche in Google Scholar PubMed
De Strooper, B., Iwatsubo, T., and Wolfe, M.S. (2012). Presenilins and γ-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb. Perspect Med. 2, a006304.10.1101/cshperspect.a006304Suche in Google Scholar PubMed PubMed Central
Du, L.L., Xie, J.Z., Cheng, X.S., Li, X.H., Kong, F.L., Jiang, X., Ma, Z.W., Wang, J.Z., Chen, C., and Zhou, X.W. (2014). Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age (Dordr). 36, 613–623.10.1007/s11357-013-9592-1Suche in Google Scholar PubMed PubMed Central
El-Sayed, N.S. and Bayan, Y. (2015). Possible role of resveratrol targeting estradiol and neprilysin pathways in lipopolysaccharide model of Alzheimer disease. Adv. Exp. Med. Biol. 822, 107–118.10.1007/978-3-319-08927-0_12Suche in Google Scholar PubMed
Endres, K. and Fahrenholz, F. (2010). Upregulation of the α-secretase ADAM10 – risk or reason for hope? FEBS J. 277, 1585–1596.10.1111/j.1742-4658.2010.07566.xSuche in Google Scholar PubMed
Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V.D. (2005). Sir2 blocks extreme life-span extension. Cell 123, 655–667.10.1016/j.cell.2005.08.042Suche in Google Scholar PubMed
Falone, S., D’Alessandro, A., Mirabilio, A., Cacchio, M., Di Ilio, C., Di Loreto, S., and Amicarelli, F. (2012). Late-onset running biphasically improves redox balance, energy- and methylglyoxal-related status, as well as SIRT1 expression in mouse hippocampus. PLoS One 7, e48334.10.1371/journal.pone.0048334Suche in Google Scholar PubMed PubMed Central
Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Tanzi, R.E., Selkoe, D.J., and Guenette, S. (2003). Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162–4167.10.1073/pnas.0230450100Suche in Google Scholar PubMed PubMed Central
Feng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., et al. (2013). Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One 8, e59888.10.1371/journal.pone.0059888Suche in Google Scholar PubMed PubMed Central
Furuya, T.K., da Silva, P.N.O., Payão, S.L.M., Rasmussen, L.T., de Labio, R.W., Bertolucci, P.H.F., Braga, I.L.S., Chen, E.S., Turecki, G., Mechawar, N., et al. (2012). SORL1 and SIRT1 mRNA expression and promoter methylation levels in aging and Alzheimer’s disease. Neurochem. Int. 61, 973–975.10.1016/j.neuint.2012.07.014Suche in Google Scholar PubMed
Gao, J., Wang, W.Y., Mao, Y.W., Gräff, J., Guan, J.S., Pan, L., Mak, G., Kim, D., Su, S.C., and Tsai, L.H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105–1109.10.1038/nature09271Suche in Google Scholar PubMed PubMed Central
Gao, J., Zhou, R., You, X., Luo, F., He, H., Chang, X., Zhu, L., Ding, X., and Yan, T. (2016). Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-κB pathway. Metab. Brain Dis. 31, 771–778.10.1007/s11011-016-9813-2Suche in Google Scholar PubMed
Ghosh, H.S., McBurney, M., and Robbins, P.D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199.10.1371/journal.pone.0009199Suche in Google Scholar PubMed PubMed Central
Gjoneska, E., Pfenning, A.R., Mathys, H., Quon, G., Kundaje, A., Tsai, L.H., and Kellis, M. (2015). Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369.10.1038/nature14252Suche in Google Scholar PubMed PubMed Central
Gräff, J., Kahn, M., Samiei, A., Gao, J., Ota, K.T., Rei, D., and Tsai, L.H. (2013). A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J. Neurosci. 33, 8951–8960.10.1523/JNEUROSCI.5657-12.2013Suche in Google Scholar PubMed PubMed Central
Green, K.N., Steffan, J.S., Martinez-Coria, H., Sun, X., Schreiber, S.S., Thompson, L.M., and LaFerla, F.M. (2008). Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 28, 11500–11510.10.1523/JNEUROSCI.3203-08.2008Suche in Google Scholar PubMed PubMed Central
Guarente, L. (2013). Calorie restriction and sirtuins revisited. Genes Dev. 27, 2072–2085.10.1101/gad.227439.113Suche in Google Scholar PubMed PubMed Central
Guedes-Dias, P. and Oliveira, J.M.A. (2013). Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim. Biophys. Acta 1832, 1345–1359.10.1016/j.bbadis.2013.04.005Suche in Google Scholar PubMed
Guo, W., Qian, L., Zhang, J., Zhang, W., Morrison, A., Hayes, P., Wilson, S., Chen, T., and Zhao, J. (2011). Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling. J. Neurosci. Res. 89, 1723–1736.10.1002/jnr.22725Suche in Google Scholar
Haigis, M.C. and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295.10.1146/annurev.pathol.4.110807.092250Suche in Google Scholar
Haque, R. and Nazir, A. (2014). Insulin-degrading enzyme: a link between Alzheimer’s and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 13, 259–264.10.2174/18715273113126660139Suche in Google Scholar
Hasegawa, K. and Yoshikawa, K. (2008). Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J. Neurosci. 28, 8772–8784.10.1523/JNEUROSCI.3052-08.2008Suche in Google Scholar
Hayakawa, T., Iwai, M., Aoki, S., Takimoto, K., Maruyama, M., Maruyama, W., and Motoyama, N. (2015). SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10, e0116480.10.1371/journal.pone.0116480Suche in Google Scholar
Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405.10.1016/S1474-4422(15)70016-5Suche in Google Scholar
Hernández-Jiménez, M., Hurtado, O., Cuartero, M.I., Ballesteros, I., Moraga, A., Pradillo, J.M., McBurney, M.W., Lizasoain, I., and Moro, M.A. (2013). Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44, 2333–2337.10.1161/STROKEAHA.113.001715Suche in Google Scholar PubMed
Herranz, D., Muñoz-Martin, M., Cañamero, M., Mulero, F., Martinez-Pastor, B., Fernandez-Capetillo, O., and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3.10.1038/ncomms1001Suche in Google Scholar PubMed PubMed Central
Herskovits, A.Z. and Guarente, L. (2014). SIRT1 in neurodevelopment and brain senescence. Neuron 81, 471–483.10.1016/j.neuron.2014.01.028Suche in Google Scholar PubMed PubMed Central
Heyward, F.D., Walton, R.G., Carle, M.S., Coleman, M.A., Garvey, W.T., and Sweatt, J.D. (2012). Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol. Learn Mem. 98, 25–32.10.1016/j.nlm.2012.04.005Suche in Google Scholar PubMed PubMed Central
Ho, L., Qin, W., Pompl, P.N., Xiang, Z., Wang, J., Zhao, Z., Peng, Y., Cambareri, G., Rocher, A., Mobbs, C.V., et al. (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 18, 902–904.10.1096/fj.03-0978fjeSuche in Google Scholar PubMed
Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196.10.1038/nature01960Suche in Google Scholar PubMed
Hubbard, B.P., Gomes, A.P., Dai, H., Li, J., Case, A.W., Considine, T., Riera, T.V., Lee, J.E., E, S.Y., Lamming, D.W., et al. (2013). Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219.10.1126/science.1231097Suche in Google Scholar PubMed PubMed Central
Hubbard, B.P. and Sinclair, D.A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146–154.10.1016/j.tips.2013.12.004Suche in Google Scholar PubMed PubMed Central
Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800.10.1038/35001622Suche in Google Scholar PubMed
Irwin, D.J., Cohen, T.J., Grossman, M., Arnold, S.E., McCarty-Wood, E., Van Deerlin, V.M., Lee, V.M.Y., and Trojanowski, J.Q. (2013). Acetylated tau neuropathology in sporadic and hereditary tauopathies. Am. J. Pathol. 183, 344–351.10.1016/j.ajpath.2013.04.025Suche in Google Scholar PubMed PubMed Central
Ittner, L.M. and Götz, J. (2011). Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72.10.1038/nrn2967Suche in Google Scholar PubMed
Jeong, H., Cohen, D.E., Cui, L., Supinski, A., Savas, J.N., Mazzulli, J.R., Yates, J.R., Bordone, L., Guarente, L., and Krainc, D. (2011). Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 18, 159–165.10.1038/nm.2559Suche in Google Scholar PubMed PubMed Central
Jeong, J.K., Moon, M.H., Lee, Y.J., Seol, J.W., and Park, S.Y. (2013). Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol. Aging 34, 146–156.10.1016/j.neurobiolaging.2012.04.002Suche in Google Scholar PubMed
Jiang, M., Wang, J., Fu, J., Du, L., Jeong, H., West, T., Xiang, L., Peng, Q., Hou, Z., Cai, H., et al. (2011). Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat. Med. 18, 153–158.10.1038/nm.2558Suche in Google Scholar PubMed PubMed Central
Jiang, S., Li, Y., Zhang, X., Bu, G., Xu, H., and Zhang, Y.W. (2014). Trafficking regulation of proteins in Alzheimer’s disease. Mol. Neurodegener. 9, 6.10.1186/1750-1326-9-6Suche in Google Scholar PubMed PubMed Central
Julien, C., Tremblay, C., Emond, V., Lebbadi, M., Salem, N., Bennett, D.A., and Calon, F. (2009). Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 68, 48–58.10.1097/NEN.0b013e3181922348Suche in Google Scholar PubMed PubMed Central
Kaeberlein, M. and Powers, R.W. (2007). Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 6, 128–140.10.1016/j.arr.2007.04.001Suche in Google Scholar PubMed
Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.10.1101/gad.13.19.2570Suche in Google Scholar PubMed PubMed Central
Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., and Cohen, H.Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221.10.1038/nature10815Suche in Google Scholar PubMed
Karran, E., Mercken, M., and De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712.10.1038/nrd3505Suche in Google Scholar PubMed
Kida, S. and Serita, T. (2014). Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res. Bull. 105, 17–24.10.1016/j.brainresbull.2014.04.011Suche in Google Scholar PubMed
Kim, D., Nguyen, M.D., Dobbin, M.M., Fischer, A., Sananbenesi, F., Rodgers, J.T., Delalle, I., Baur, J.A., Sui, G., Armour, S.M., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169–3179.10.1038/sj.emboj.7601758Suche in Google Scholar PubMed PubMed Central
Kinsella, K.G. (1992). Changes in life expectancy 1900–1990. Am. J. Clin. Nutr. 55, 1196S–1202S.10.1093/ajcn/55.6.1196SSuche in Google Scholar PubMed
Koronowski, K.B. and Perez-Pinzon, M.A. (2015). Sirt1 in cerebral ischemia. Brain Circ. 1, 69–78.10.4103/2394-8108.162532Suche in Google Scholar PubMed PubMed Central
Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374–3379.10.1073/pnas.0712145105Suche in Google Scholar PubMed PubMed Central
Lee, K.J., Moussa, C.E.H., Lee, Y., Sung, Y., Howell, B.W., Turner, R.S., Pak, D.T.S., and Hoe, H.S. (2010). Beta amyloid-independent role of amyloid precursor protein in generation and maintenance of dendritic spines. Neuroscience 169, 344–356.10.1016/j.neuroscience.2010.04.078Suche in Google Scholar PubMed PubMed Central
Lee, H.R., Shin, H.K., Park, S.Y., Kim, H.Y., Lee, W.S., Rhim, B.Y., Hong, K.W., and Kim, C.D. (2014a). Attenuation of β-amyloid-induced tauopathy via activation of CK2α/SIRT1: targeting for cilostazol. J. Neurosci. Res. 92, 206–217.10.1002/jnr.23310Suche in Google Scholar PubMed
Lee, H.R., Shin, H.K., Park, S.Y., Kim, H.Y., Lee, W.S., Rhim, B.Y., Hong, K.W., and Kim, C.D. (2014b). Cilostazol suppresses β-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-β. J. Neurosci. Res. 92, 1581–1590.10.1002/jnr.23421Suche in Google Scholar PubMed
Lee, H.R., Shin, H.K., Park, S.Y., Kim, H.Y., Bae, S.S., Lee, W.S., Rhim, B.Y., Hong, K.W., and Kim, C.D. (2015). Cilostazol upregulates autophagy via SIRT1 activation: reducing amyloid-β peptide and APP-CTFβ levels in neuronal cells. PLoS One 10, e0134486.10.1371/journal.pone.0134486Suche in Google Scholar PubMed PubMed Central
Lei, P., Ayton, S., Moon, S., Zhang, Q., Volitakis, I., Finkelstein, D.I., and Bush, A.I. (2014). Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol. Neurodegener. 9, 29.10.1186/1750-1326-9-29Suche in Google Scholar PubMed PubMed Central
Li, Y., Xu, W., McBurney, M.W., and Longo, V.D. (2008). SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38–48.10.1016/j.cmet.2008.05.004Suche in Google Scholar PubMed PubMed Central
Li, K., Jiang, Q., Xu, A., and Liu, G. (2015a). REST rs3796529 variant does not confer susceptibility to Alzheimer’s disease. Ann. Neurol. 78, 835–836.10.1002/ana.24503Suche in Google Scholar PubMed
Li, L., Sun, Q., Li, Y., Yang, Y., Yang, Y., Chang, T., Man, M., and Zheng, L. (2015b). Overexpression of SIRT1 induced by resveratrol and inhibitor of miR-204 suppresses activation and proliferation of microglia. J. Mol. Neurosci. 56, 858–867.10.1007/s12031-015-0526-5Suche in Google Scholar PubMed
Lin, S.J., Defossez, P.A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128.10.1126/science.289.5487.2126Suche in Google Scholar PubMed
Liu, D., Gharavi, R., Pitta, M., Gleichmann, M., and Mattson, M.P. (2009). Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol. Med. 11, 28–42.10.1007/s12017-009-8058-1Suche in Google Scholar
Liu, M., Wilk, S.A., Wang, A., Zhou, L., Wang, R.H., Ogawa, W., Deng, C., Dong, L.Q., and Liu, F. (2010). Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 285, 36387–36394.10.1074/jbc.M110.169284Suche in Google Scholar
Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T.H., Kim, H.M., Drake, D., Liu, X.S., et al. (2014). REST and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–454.10.1038/nature13163Suche in Google Scholar
Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148.10.1016/S0092-8674(01)00524-4Suche in Google Scholar
Lutz, M.I., Milenkovic, I., Regelsberger, G., and Kovacs, G.G. (2014). Distinct patterns of sirtuin expression during progression of Alzheimer’s disease. Neuromol. Med. 16, 405–414.10.1007/s12017-014-8288-8Suche in Google Scholar
Ma, Q.L., Zuo, X., Yang, F., Ubeda, O.J., Gant, D.J., Alaverdyan, M., Kiosea, N.C., Nazari, S., Chen, P.P., Nothias, F., et al. (2014). Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J. Neurosci. 34, 7124–7136.10.1523/JNEUROSCI.3439-13.2014Suche in Google Scholar
Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P., and Kivipelto, M. (2010). Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 9, 702–716.10.1016/S1474-4422(10)70119-8Suche in Google Scholar
Marwarha, G., Raza, S., Meiers, C., and Ghribi, O. (2014). Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta 1842, 1587–1595.10.1016/j.bbadis.2014.05.015Suche in Google Scholar PubMed PubMed Central
Michán, S., Li, Y., Chou, M.M.H., Parrella, E., Ge, H., Long, J.M., Allard, J.S., Lewis, K., Miller, M., Xu, W., et al. (2010). SIRT1 is essential for normal cognitive function and synaptic plasticity. J. Neurosci. 30, 9695–9707.10.1523/JNEUROSCI.0027-10.2010Suche in Google Scholar PubMed PubMed Central
Milne, J.C., Lambert, P.D., Schenk, S., Carney, D.P., Smith, J.J., Gagne, D.J., Jin, L., Boss, O., Perni, R.B., Vu, C.B., et al. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716.10.1038/nature06261Suche in Google Scholar PubMed PubMed Central
Min, S.W., Cho, S.H., Zhou, Y., Schroeder, S., Haroutunian, V., Seeley, W.W., Huang, E.J., Shen, Y., Masliah, E., Mukherjee, C., et al. (2010). Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966.10.1016/j.neuron.2010.08.044Suche in Google Scholar PubMed PubMed Central
Min, S.W., Chen, X., Tracy, T.E., Li, Y., Zhou, Y., Wang, C., Shirakawa, K., Minami, S.S., Defensor, E., Mok, S.A., et al. (2015). Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162.10.1038/nm.3951Suche in Google Scholar PubMed PubMed Central
Miners, J.S., Baig, S., Palmer, J., Palmer, L.E., Kehoe, P.G., and Love, S. (2008). Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol. 18, 240–252.10.1111/j.1750-3639.2008.00132.xSuche in Google Scholar PubMed PubMed Central
Mitchell, S.J., Martin-Montalvo, A., Mercken, E.M., Palacios, H.H., Ward, T.M., Abulwerdi, G., Minor, R.K., Vlasuk, G.P., Ellis, J.L., Sinclair, D.A., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843.10.1016/j.celrep.2014.01.031Suche in Google Scholar PubMed PubMed Central
Mittal, K. and Katare, D.P. (2016). Shared links between type 2 diabetes mellitus and Alzheimer’s disease: a review. Diabetes Metab. Syndr. (in press).10.1016/j.dsx.2016.01.021Suche in Google Scholar PubMed
Mouton, P.R., Chachich, M.E., Quigley, C., Spangler, E., and Ingram, D.K. (2009). Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice. Neurosci. Lett. 464, 184–187.10.1016/j.neulet.2009.08.038Suche in Google Scholar PubMed PubMed Central
Mudò, G., Mäkelä, J., Di Liberto, V., Tselykh, T.V., Olivieri, M., Piepponen, P., Eriksson, O., Mälkiä, A., Bonomo, A., Kairisalo, M., et al. (2012). Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol. Life Sci. 69, 1153–1165.10.1007/s00018-011-0850-zSuche in Google Scholar PubMed
Ng, F. and Tang, B.L. (2013a). When is Sirt1 activity bad for dying neurons? Front Cell Neurosci. 7, 186.10.3389/fncel.2013.00186Suche in Google Scholar PubMed PubMed Central
Ng, F., and Tang, B.L. (2013b). Sirtuins’ modulation of autophagy. J. Cell Physiol. 228, 2262–2270.10.1002/jcp.24399Suche in Google Scholar PubMed
Ng, F., Wijaya, L., and Tang, B.L. (2015). SIRT1 in the brain-connections with aging-associated disorders and lifespan. Front Cell Neurosci. 9, 64.10.3389/fncel.2015.00064Suche in Google Scholar PubMed PubMed Central
Nho, K., Kim, S., Risacher, S.L., Shen, L., Corneveaux, J.J., Swaminathan, S., Lin, H., Ramanan, V.K., Liu, Y., Foroud, T.M., et al. (2015). Protective variant for hippocampal atrophy identified by whole exome sequencing. Ann. Neurol. 77, 547–552.10.1002/ana.24349Suche in Google Scholar PubMed PubMed Central
Nisbet, R.M., Polanco, J.C., Ittner, L.M., and Götz, J. (2015). Tau aggregation and its interplay with amyloid-β. Acta Neuropathol. 129, 207–220.10.1007/s00401-014-1371-2Suche in Google Scholar PubMed PubMed Central
North, B.J., Rosenberg, M.A., Jeganathan, K.B., Hafner, A.V., Michan, S., Dai, J., Baker, D.J., Cen, Y., Wu, L.E., Sauve, A.A., et al. (2014). SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453.10.15252/embj.201386907Suche in Google Scholar PubMed PubMed Central
Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., et al. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918.10.1016/j.cell.2008.10.025Suche in Google Scholar PubMed PubMed Central
Olshansky, S.J. (2015). Has the rate of human aging already been modified? Cold Spring Harb. Perspect. Med. 5, pii: a025965.10.1101/cshperspect.a025965Suche in Google Scholar
Ovadya, Y. and Krizhanovsky, V. (2014). Senescent cells: SASPected drivers of age-related pathologies. Biogerontology 15, 627–642.10.1007/s10522-014-9529-9Suche in Google Scholar PubMed
Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., et al. (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340–8351.10.1074/jbc.M109.088682Suche in Google Scholar PubMed PubMed Central
Pallàs, M., Pizarro, J.G., Gutierrez-Cuesta, J., Crespo-Biel, N., Alvira, D., Tajes, M., Yeste-Velasco, M., Folch, J., Canudas, A.M., Sureda, F.X., et al. (2008). Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154, 1388–1397.10.1016/j.neuroscience.2008.04.065Suche in Google Scholar PubMed
Park, S.A. (2011). A common pathogenic mechanism linking type-2 diabetes and Alzheimer’s disease: evidence from animal models. J. Clin. Neurol. 7, 10–18.10.3988/jcn.2011.7.1.10Suche in Google Scholar PubMed PubMed Central
Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433.10.1016/j.cell.2012.01.017Suche in Google Scholar PubMed PubMed Central
Park, S., Mori, R., and Shimokawa, I. (2013). Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol. Cells 35, 474–480.10.1007/s10059-013-0130-xSuche in Google Scholar PubMed PubMed Central
Parker, J.A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., and Néri, C. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat. Genet. 37, 349–350.10.1038/ng1534Suche in Google Scholar PubMed
Piedrahita, D., Castro-Alvarez, J.F., Boudreau, R.L., Villegas-Lanau, A., Kosik, K.S., Gallego-Gomez, J.C., and Cardona-Gómez, G.P. (2015). β-secretase 1’s targeting reduces hyperphosphorylated Tau, implying autophagy actors in 3xTg-AD mice. Front Cell Neurosci. 9, 498.10.3389/fncel.2015.00498Suche in Google Scholar
Porquet, D., Casadesús, G., Bayod, S., Vicente, A., Canudas, A.M., Vilaplana, J., Pelegrí, C., Sanfeliu, C., Camins, A., Pallàs, M., et al. (2013). Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr). 35, 1851–1865.10.1007/s11357-012-9489-4Suche in Google Scholar PubMed PubMed Central
Porquet, D., Griñán-Ferré, C., Ferrer, I., Camins, A., Sanfeliu, C., Del Valle, J., and Pallàs, M. (2014). Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimers Dis. 42, 1209–1220.10.3233/JAD-140444Suche in Google Scholar PubMed
Qin, W., Chachich, M., Lane, M., Roth, G., Bryant, M., de Cabo, R., Ottinger, M.A., Mattison, J., Ingram, D., Gandy, S., et al. (2006a). Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J. Alzheimers Dis. 10, 417–422.10.3233/JAD-2006-10411Suche in Google Scholar PubMed
Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., Zhao, W., Thiyagarajan, M., MacGrogan, D., Rodgers, J.T., et al. (2006b). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745–21754.10.1074/jbc.M602909200Suche in Google Scholar PubMed
Qiu, W.Q. and Folstein, M.F. (2006). Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol. Aging 27, 190–198.10.1016/j.neurobiolaging.2005.01.004Suche in Google Scholar PubMed
Quintas, A., de Solís, A.J., Díez-Guerra, F.J., Carrascosa, J.M., and Bogónez, E. (2012). Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction. Exp. Gerontol. 47, 198–201.10.1016/j.exger.2011.11.010Suche in Google Scholar PubMed
Ramadori, G., Lee, C.E., Bookout, A.L., Lee, S., Williams, K.W., Anderson, J., Elmquist, J.K., and Coppari, R. (2008). Brain SIRT1: anatomical distribution and regulation by energy availability. J. Neurosci. 28, 9989–9996.10.1523/JNEUROSCI.3257-08.2008Suche in Google Scholar PubMed PubMed Central
Ramadori, G., Fujikawa, T., Fukuda, M., Anderson, J., Morgan, D.A., Mostoslavsky, R., Stuart, R.C., Perello, M., Vianna, C.R., Nillni, E.A., et al. (2010). SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78–87.10.1016/j.cmet.2010.05.010Suche in Google Scholar PubMed PubMed Central
Ramadori, G., Fujikawa, T., Anderson, J., Berglund, E.D., Frazao, R., Michán, S., Vianna, C.R., Sinclair, D.A., Elias, C.F., and Coppari, R. (2011). SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab. 14, 301–312.10.1016/j.cmet.2011.06.014Suche in Google Scholar PubMed PubMed Central
Raval, A.P., Dave, K.R., and Pérez-Pinzón, M.A. (2006). Resveratrol mimics ischemic preconditioning in the brain. J. Cereb. Blood Flow Metab. 26, 1141–1147.10.1038/sj.jcbfm.9600262Suche in Google Scholar PubMed
Revilla, S., Suñol, C., García-Mesa, Y., Giménez-Llort, L., Sanfeliu, C., and Cristòfol, R. (2014). Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 81, 55–63.10.1016/j.neuropharm.2014.01.037Suche in Google Scholar PubMed
Rogina, B. and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998–16003.10.1073/pnas.0404184101Suche in Google Scholar PubMed PubMed Central
Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., Sabbagh, M., Honig, L.S., Porsteinsson, A.P., Ferris, S., et al. (2014). Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333.10.1056/NEJMoa1304839Suche in Google Scholar PubMed PubMed Central
Sansone, L., Reali, V., Pellegrini, L., Villanova, L., Aventaggiato, M., Marfe, G., Rosa, R., Nebbioso, M., Tafani, M., Fini, M., et al. (2013). SIRT1 silencing confers neuroprotection through IGF-1 pathway activation. J. Cell Physiol. 228, 1754–1761.10.1002/jcp.24334Suche in Google Scholar PubMed
Sasaki, T., Kikuchi, O., Shimpuku, M., Susanti, V.Y., Yokota-Hashimoto, H., Taguchi, R., Shibusawa, N., Sato, T., Tang, L., Amano, K., et al. (2014). Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia 57, 819–831.10.1007/s00125-013-3140-5Suche in Google Scholar PubMed PubMed Central
Sato, N. and Morishita, R. (2015). The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front Aging Neurosci. 7, 199.10.3389/fnagi.2015.00199Suche in Google Scholar PubMed PubMed Central
Satoh, A., Brace, C.S., Ben-Josef, G., West, T., Wozniak, D.F., Holtzman, D.M., Herzog, E.D., and Imai, S.I. (2010). SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci. 30, 10220–10232.10.1523/JNEUROSCI.1385-10.2010Suche in Google Scholar PubMed PubMed Central
Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S.I. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430.10.1016/j.cmet.2013.07.013Suche in Google Scholar PubMed PubMed Central
Schafer, M.J., Alldred, M.J., Lee, S.H., Calhoun, M.E., Petkova, E., Mathews, P.M., and Ginsberg, S.D. (2015). Reduction of β-amyloid and γ-secretase by calorie restriction in female Tg2576 mice. Neurobiol. Aging 36, 1293–1302.10.1016/j.neurobiolaging.2014.10.043Suche in Google Scholar PubMed PubMed Central
Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., and Van der Flier, W.M. (2016). Alzheimer’s disease. Lancet (in press).10.1016/S0140-6736(15)01124-1Suche in Google Scholar
Schenk, S., McCurdy, C.E., Philp, A., Chen, M.Z., Holliday, M.J., Bandyopadhyay, G.K., Osborn, O., Baar, K., and Olefsky, J.M. (2011). Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 121, 4281–4288.10.1172/JCI58554Suche in Google Scholar
Sebastián, C., Satterstrom, F.K., Haigis, M.C., and Mostoslavsky, R. (2012). From sirtuin biology to human diseases: an update. J. Biol. Chem. 287, 42444–42452.10.1074/jbc.R112.402768Suche in Google Scholar
Senechal, Y., Kelly, P.H., and Dev, K.K. (2008). Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behav. Brain Res. 186, 126–132.10.1016/j.bbr.2007.08.003Suche in Google Scholar
Seo, J.S., Moon, M.H., Jeong, J.K., Seol, J.W., Lee, Y.J., Park, B.H., and Park, S.Y. (2012). SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death. Neurobiol. Aging 33, 1110–1120.10.1016/j.neurobiolaging.2010.09.019Suche in Google Scholar
Shah, S.A., Yoon, G.H., Chung, S.S., Abid, M.N., Kim, T.H., Lee, H.Y., and Kim, M.O. (2016). Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry (in press).10.1038/mp.2016.23Suche in Google Scholar
Sinclair, D.A. and Guarente, L. (1997). Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91, 1033–1042.10.1016/S0092-8674(00)80493-6Suche in Google Scholar
Sinclair, D.A. and Guarente, L. (2014). Small-molecule allosteric activators of sirtuins. Annu. Rev. Pharmacol. Toxicol. 54, 363–380.10.1146/annurev-pharmtox-010611-134657Suche in Google Scholar PubMed PubMed Central
Smith, M.R., Syed, A., Lukacsovich, T., Purcell, J., Barbaro, B.A., Worthge, S.A., Wei, S.R., Pollio, G., Magnoni, L., Scali, C., et al. (2014). A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum. Mol. Genet. 23, 2995–3007.10.1093/hmg/ddu010Suche in Google Scholar PubMed PubMed Central
Song, L., Chen, L., Zhang, X., Li, J., and Le, W. (2014). Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Biomed. Res. Int. 2014, 483501.10.1155/2014/483501Suche in Google Scholar PubMed PubMed Central
Srivastava, S. and Haigis, M.C. (2011). Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimer’s and Parkinson’s diseases. Curr. Pharm. Des. 17, 3418–3433.10.2174/138161211798072526Suche in Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11, 1006–1012.10.1016/S1474-4422(12)70191-6Suche in Google Scholar
Sun, Q., Jia, N., Wang, W., Jin, H., Xu, J., and Hu, H. (2014). Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25–35 in rat cortical neurons. Biochem. Biophys. Res. Commun. 448, 89–94.10.1016/j.bbrc.2014.04.066Suche in Google Scholar PubMed
Takizawa, C., Thompson, P.L., van Walsem, A., Faure, C., and Maier, W.C. (2015a). Epidemiological and economic burden of Alzheimer’s disease: a systematic literature review of data across Europe and the United States of America. J. Alzheimers Dis. 43, 1271–1284.10.3233/JAD-141134Suche in Google Scholar PubMed
Takizawa, Y., Nakata, R., Fukuhara, K., Yamashita, H., Kubodera, H., and Inoue, H. (2015b). The 4′-hydroxyl group of resveratrol is functionally important for direct activation of PPARα. PLoS One 10, e0120865.10.1371/journal.pone.0120865Suche in Google Scholar PubMed PubMed Central
Tang, B.L. (2005). Alzheimer’s disease: channeling APP to non-amyloidogenic processing. Biochem. Biophys. Res. Commun. 331, 375–378.10.1016/j.bbrc.2005.03.074Suche in Google Scholar PubMed
Tang, B.L. (2009a). Neuronal protein trafficking associated with Alzheimer disease: from APP and BACE1 to glutamate receptors. Cell. Adh. Migr. 3, 118–128.10.4161/cam.3.1.7254Suche in Google Scholar PubMed PubMed Central
Tang, B.L. (2009b). Sirt1’s complex roles in neuroprotection. Cell. Mol. Neurobiol. 29, 1093–1103.10.1007/s10571-009-9414-2Suche in Google Scholar PubMed
Tang, B.L. (2011). Sirt1’s systemic protective roles and its promise as a target in antiaging medicine. Transl. Res. 157, 276–284.10.1016/j.trsl.2010.11.006Suche in Google Scholar PubMed
Tang, B.L. (2016). Sirt1 and the mitochondria. Mol. Cells 39, 87–95.10.14348/molcells.2016.2318Suche in Google Scholar PubMed PubMed Central
Tang, B.L. and Liou, Y.C. (2007). Novel modulators of amyloid-beta precursor protein processing. J. Neurochem. 100, 314–323.10.1111/j.1471-4159.2006.04215.xSuche in Google Scholar PubMed
Tanzi, R.E. (2012). The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, pii: a006296.10.1101/cshperspect.a006296Suche in Google Scholar PubMed PubMed Central
Theendakara, V., Patent, A., Peters Libeu, C.A., Philpot, B., Flores, S., Descamps, O., Poksay, K.S., Zhang, Q., Cailing, G., Hart, M., et al. (2013). Neuroprotective Sirtuin ratio reversed by ApoE4. Proc. Natl. Acad. Sci. USA 110, 18303–18308.10.1073/pnas.1314145110Suche in Google Scholar PubMed PubMed Central
Tian, Z., Jiang, H., Liu, Y., Huang, Y., Xiong, X., Wu, H., and Dai, X. (2016). MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp. Cell Res. 343, 135–147.10.1016/j.yexcr.2016.03.027Suche in Google Scholar PubMed
Timmers, S., Konings, E., Bilet, L., Houtkooper, R.H., van de Weijer, T., Goossens, G.H., Hoeks, J., van der Krieken, S., Ryu, D., Kersten, S., et al. (2011). Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622.10.1016/j.cmet.2011.10.002Suche in Google Scholar PubMed PubMed Central
Tissenbaum, H.A. and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230.10.1038/35065638Suche in Google Scholar PubMed
Toorie, A.M. and Nillni, E.A. (2014). Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Mol. Endocrinol. 28, 1423–1434.10.1210/me.2014-1115Suche in Google Scholar PubMed PubMed Central
Turner, R.S., Thomas, R.G., Craft, S., van Dyck, C.H., Mintzer, J., Reynolds, B.A., Brewer, J.B., Rissman, R.A., Raman, R., Aisen, P.S., et al. (2015). A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85, 1383–1391.10.1212/WNL.0000000000002035Suche in Google Scholar PubMed PubMed Central
Valle, C., Salvatori, I., Gerbino, V., Rossi, S., Palamiuc, L., René, F., and Carrì, M.T. (2014). Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis. 5, e1296.10.1038/cddis.2014.247Suche in Google Scholar PubMed PubMed Central
van Ham, T.J., Thijssen, K.L., Breitling, R., Hofstra, R.M.W., Plasterk, R.H.A., and Nollen, E.A.A. (2008). C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 4, e1000027.10.1371/journal.pgen.1000027Suche in Google Scholar PubMed PubMed Central
Vingtdeux, V. and Marambaud, P. (2012). Identification and biology of α-secretase. J. Neurochem. 120 (Suppl. 1), 34–45.10.1111/j.1471-4159.2011.07477.xSuche in Google Scholar PubMed
Viswanathan, M. and Guarente, L. (2011). Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477, E1–E2.10.1038/nature10440Suche in Google Scholar PubMed
Wang, J., Ho, L., Qin, W., Rocher, A.B., Seror, I., Humala, N., Maniar, K., Dolios, G., Wang, R., Hof, P.R., et al. (2005). Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J. 19, 659–661.10.1096/fj.04-3182fjeSuche in Google Scholar PubMed
Wang, J., Fivecoat, H., Ho, L., Pan, Y., Ling, E., and Pasinetti, G.M. (2010). The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochim. Biophys. Acta 1804, 1690–1694.10.1016/j.bbapap.2009.11.015Suche in Google Scholar PubMed
Weinberg, R.B., Mufson, E.J., and Counts, S.E. (2015). Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment. Front Neurosci. 9, 430.10.3389/fnins.2015.00430Suche in Google Scholar PubMed PubMed Central
Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689.10.1038/nature02789Suche in Google Scholar PubMed
Wu, A., Ying, Z., and Gomez-Pinilla, F. (2006). Oxidative stress modulates Sir2alpha in rat hippocampus and cerebral cortex. Eur. J. Neurosci. 23, 2573–2580.10.1111/j.1460-9568.2006.04807.xSuche in Google Scholar PubMed
Xiong, H., Pang, J., Yang, H., Dai, M., Liu, Y., Ou, Y., Huang, Q., Chen, S., Zhang, Z., Xu, Y., et al. (2015). Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol. Aging 36, 1692–1701.10.1016/j.neurobiolaging.2014.12.034Suche in Google Scholar PubMed
Yamakuchi, M., Ferlito, M., and Lowenstein, C.J. (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 105, 13421–13426.10.1073/pnas.0801613105Suche in Google Scholar PubMed PubMed Central
Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380.10.1038/sj.emboj.7600244Suche in Google Scholar PubMed PubMed Central
Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S.I. (2011). Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536.10.1016/j.cmet.2011.08.014Suche in Google Scholar PubMed PubMed Central
Yoshino, J., Conte, C., Fontana, L., Mittendorfer, B., Imai, S.I., Schechtman, K.B., Gu, C., Kunz, I., Rossi Fanelli, F., Patterson, B.W., et al. (2012). Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 16, 658–664.10.1016/j.cmet.2012.09.015Suche in Google Scholar PubMed PubMed Central
Zakhary, S.M., Ayubcha, D., Dileo, J.N., Jose, R., Leheste, J.R., Horowitz, J.M., and Torres, G. (2010). Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. Anat. Rec (Hoboken). 293, 1024–1032.10.1002/ar.21116Suche in Google Scholar PubMed PubMed Central
Zhang, X., Li, Y., Xu, H., and Zhang, Y.W. (2014). The γ-secretase complex: from structure to function. Front Cell Neurosci. 8, 427.10.3389/fncel.2014.00427Suche in Google Scholar PubMed PubMed Central
Zhao, W., Kruse, J.P., Tang, Y., Jung, S.Y., Qin, J., and Gu, W. (2008). Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587–590.10.1038/nature06515Suche in Google Scholar PubMed PubMed Central
Zhao, Y., Luo, P., Guo, Q., Li, S., Zhang, L., Zhao, M., Xu, H., Yang, Y., Poon, W., and Fei, Z. (2012). Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp. Neurol. 237, 489–498.10.1016/j.expneurol.2012.07.004Suche in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The cholinergic system in the cerebellum: from structure to function
- Tanshinones and mental diseases: from chemistry to medicine
- Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer’s disease
- SIRT1 as a therapeutic target for Alzheimer’s disease
- A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence
- Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
- Imaging and machine learning techniques for diagnosis of Alzheimer’s disease
- Resting state functional magnetic resonance imaging processing techniques in stroke studies
Artikel in diesem Heft
- Frontmatter
- The cholinergic system in the cerebellum: from structure to function
- Tanshinones and mental diseases: from chemistry to medicine
- Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer’s disease
- SIRT1 as a therapeutic target for Alzheimer’s disease
- A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence
- Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
- Imaging and machine learning techniques for diagnosis of Alzheimer’s disease
- Resting state functional magnetic resonance imaging processing techniques in stroke studies