Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways
-
Wen-Lin Chen
Abstract
Hydrogen sulfide (H2S) is an endogenously produced gas that represents a novel third gaseous signaling molecule, neurotransmitter and cytoprotectant. Cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfur transferase with cysteine aminotransferase (3-MST/CAT) and 3-mercaptopyruvate sulfur transferase with d-amino acid oxidase (3-MST/DAO) pathways are involved in the generation of endogenous H2S despite the ubiquitous or restricted distribution of those enzymes. CBS, 3-MST/CAT and 3-MST/DAO can be found in the brain, while CSE is widely located in other organs. There also exist up-taking or recycling and scavenging mechanisms in H2S metabolism to maintain its persistence for physiological function. In recent years, investigating the role that H2S plays in the central nervous system and cardiovascular system has always been a hotspot. To date, effects of H2S are at least partially verified in multiple animal models or neuron cell lines of Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, major depression disorders and febrile seizure, although subsequent studies are still badly needed. This article presents an overview of current knowledge of H2S focusing on its neuroprotective effects and corresponding signaling pathways, together with connections to potential therapeutic strategies in the clinic.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (81371485 and 81200985), Natural Science Foundation of Hunan Province, China (11JJ3117 and 12JJ9032), Project of Research-based Learning and Innovative Experiment for Undergraduate Student in Hunan Province (2011-199) and the construct program of the key discipline in Hunan province.
References
Abe, K. and Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071.10.1523/JNEUROSCI.16-03-01066.1996Suche in Google Scholar
Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiol. Aging. 21, 383–421.10.1016/S0197-4580(00)00124-XSuche in Google Scholar
Andrikopoulos, P., Fraser, S.P., Patterson, L., Ahmad, Z., Burcu, H., Ottaviani, D., Diss, J.K., Box, C., Eccles, S.A., and Djamgoz, M.B. (2011). Angiogenic functions of voltage-gated Na+ channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. J. Biol. Chem. 286, 16846–16860.10.1074/jbc.M110.187559Suche in Google Scholar
Ang, S.F., Moochhala, S.M., MacAry, P.A., and Bhatia, M. (2011a). Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: involvement of substance P and ERK-NF-kappaB signaling. PLoS One 6, e24535.10.1371/journal.pone.0024535Suche in Google Scholar
Ang, S.F., Sio, S.W., Moochhala, S.M., MacAry, P.A., and Bhatia, M. (2011b). Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation. J. Immunol. 187, 4778–4787.10.4049/jimmunol.1101559Suche in Google Scholar
Braunstein, A.E., Goryachenkova, E.V., Tolosa, E.A., Willhardt, I.H., and Yefremova, L.L. (1971). Specificity and some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine-synthase. Biochim. Biophys. Acta. 242, 247–260.10.1016/0005-2744(71)90105-7Suche in Google Scholar
Cai, W.J., Wang, M.J., Moore, P.K., Jin, H.M., Yao, T., and Zhu, Y.C. (2007). The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 76, 29–40.10.1016/j.cardiores.2007.05.026Suche in Google Scholar PubMed
Calvert, J.W., Jha, S., Gundewar, S., Elrod, J.W., Ramachandran, A., Pattillo, C.B., Kevil, C.G., and Lefer, D.J. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res. 105, 365–374.10.1161/CIRCRESAHA.109.199919Suche in Google Scholar PubMed PubMed Central
Castren, E. and Rantamaki, T. (2010). The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev. Neurobiol. 70, 289–297.10.1002/dneu.20758Suche in Google Scholar PubMed
Cavallini, D., Mondovi, B., de Marco, C., and Scioscia-Santoro, A. (1962). The mechanism of desulphhydration of cysteine. Enzymologia 24, 253–266.Suche in Google Scholar
Cazorla, M., Jouvenceau, A., Rose, C., Guilloux, J.-P., Pilon, C., Dranovsky, A., and Prémont, J. (2010). Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 5, e9777.10.1371/journal.pone.0009777Suche in Google Scholar PubMed PubMed Central
Chen, X., Jhee, K.H., and Kruger, W.D. (2004). Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J. Biol. Chem. 279, 52082–52086.10.1074/jbc.C400481200Suche in Google Scholar
Chen, C.Q., Xin, H., and Zhu, Y.Z. (2007). Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol. Sin. 28, 1709–1716.10.1111/j.1745-7254.2007.00629.xSuche in Google Scholar
Chen, P.C., Vargas, M.R., Pani, A.K., Smeyne, R.J., Johnson, D.A., Kan, Y.W., and Johnson, J.A. (2009). Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc. Natl. Acad. Sci. USA 106, 2933–2938.10.1073/pnas.0813361106Suche in Google Scholar
Chen, W.L., Xie, B., Zhang, C., Xu, K.L., Niu, Y.Y., Tang, X.Q., Zhang, P., Zou, W., Hu, B., and Tian, Y. (2013). Antidepressant-like and anxiolytic-like effects of hydrogen sulfide in behavioral models of depression and anxiety. Behav. Pharmacol. 24, 590–597.10.1097/FBP.0b013e3283654258Suche in Google Scholar
Chiku, T., Padovani, D., Zhu, W., Singh, S., Vitvitsky, V., and Banerjee, R. (2009). H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem. 284, 11601–11612.10.1074/jbc.M808026200Suche in Google Scholar
Dawe, G.S., Han, S.P., Bian, J.S., and Moore, P.K. (2008). Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 152, 169–177.10.1016/j.neuroscience.2007.12.008Suche in Google Scholar
Denollet, J., Maas, K., Knottnerus, A., Keyzer, J.J., and Pop, V.J. (2009). Anxiety predicted premature all-cause and cardiovascular death in a 10-year follow-up of middle-aged women. J. Clin. Epidemiol. 62, 452–456.10.1016/j.jclinepi.2008.08.006Suche in Google Scholar
Eisch, A.J. and Petrik, D. (2012). Depression and hippocampal neurogenesis: a road to remission? Science 338, 72–75.10.1126/science.1222941Suche in Google Scholar
Enokido, Y., Suzuki, E., Iwasawa, K., Namekata, K., Okazawa, H., and Kimura, H. (2005). Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. 19, 1854–1856.10.1096/fj.05-3724fjeSuche in Google Scholar
Eto, K., Asada, T., Arima, K., Makifuchi, T., and Kimura, H. (2002). Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 293, 1485–1488.10.1016/S0006-291X(02)00422-9Suche in Google Scholar
Fan, H., Guo, Y., Liang, X., Yuan, Y., Qi, X., Wang, M., Ma, J., and Zhou, H. (2013). Hydrogen sulfide protects against amyloid beta-peptide induced neuronal injury via attenuating inflammatory responses in a rat model. J. Biomed. Res. 27, 296–304.10.7555/JBR.27.20120100Suche in Google Scholar
Florian, B., Vintilescu, R., Balseanu, A.T., Buga, A.M., Grisk, O., Walker, L.C., Kessler, C., and Popa-Wagner, A. (2008). Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci. Lett. 438, 180–185.10.1016/j.neulet.2008.04.020Suche in Google Scholar
Gadalla, M.M. and Snyder, S.H. (2010). Hydrogen sulfide as a gasotransmitter. J. Neurochem 113, 14–26.10.1111/j.1471-4159.2010.06580.xSuche in Google Scholar
Geng, B., Yang, J., Qi, Y., Zhao, J., Pang, Y., Du, J., and Tang, C. (2004). H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun. 313, 362–368.10.1016/j.bbrc.2003.11.130Suche in Google Scholar
Goldberg-Stern, H., Aharoni, S., Afawi, Z., Bennett, O., Appenzeller, S., Pendziwiat, M., Kuhlenbäumer, G., Basel-Vanagaite, L., Shuper, A., Korczyn, A.D., et al. (2014). Broad phenotypic heterogeneity due to a novel SCN1A mutation in a family with genetic epilepsy with febrile seizures plus. J. Child Neurol. 29, 221–226.10.1177/0883073813509016Suche in Google Scholar
Gordon, W.A. and Hibbard, M.R. (1997). Poststroke depression: an examination of the literature. Arch. Phys. Med. Rehabil. 78, 658–663.10.1016/S0003-9993(97)90433-0Suche in Google Scholar
Gouret, C.J., Porsolt, R., Wettstein, J.G., Puech, A., Soulard, C., Pascaud, X., and Junien, J.L. (1990). Biochemical and pharmacological evaluation of the novel antidepressant and serotonin uptake inhibitor 2-(3,4-dichlorobenzyl)-2-dimethylamino-1-propanol hydrochloride. Arzneimittelforschung 40, 633–640.Suche in Google Scholar
Guo, W., Kan, J.T., Cheng, Z.Y., Chen, J.F., Shen, Y.Q., Xu, J., Wu, D., and Zhu, Y.Z. (2012). Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxid. Med. Cell Longev. 2012, 878052.10.1155/2012/878052Suche in Google Scholar PubMed PubMed Central
Han, Y., Qin, J., Chang, X., Yang, Z., Bu, D., and Du, J. (2005a). Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci. Res. 53, 216–219.10.1016/j.neures.2005.07.002Suche in Google Scholar PubMed
Han, Y., Qin, J., Chang, X., Yang, Z., Tang, X., and Du, J. (2005b). Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem. Biophys. Res. Commun. 327, 431–436.10.1016/j.bbrc.2004.12.028Suche in Google Scholar PubMed
Han, Y., Qin, J., Chang, X., Yang, Z., and Du, J. (2006). Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell. Mol. Neurobiol. 26, 101–107.10.1007/s10571-006-8848-zSuche in Google Scholar PubMed
Hanson, N.D., Owens, M.J., and Nemeroff, C.B. (2011). Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36, 2589–2602.10.1038/npp.2011.220Suche in Google Scholar PubMed PubMed Central
Hirsch, E.C. and Hunot, S. (2009). Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397.Suche in Google Scholar
Hirsch, E., Graybiel, A.M., and Agid, Y.A. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348.10.1038/334345a0Suche in Google Scholar PubMed
Hoozemans, J.J., Veerhuis, R., Van Haastert, E.S., Rozemuller, J.M., Baas, F., Eikelenboom, P., and Scheper, W. (2005). The unfolded protein response is activated in Alzheimer’s disease. Acta. Neuropathol. 110, 165–172.10.1007/s00401-005-1038-0Suche in Google Scholar PubMed
Hoozemans, J.J., van Haastert, E.S., Nijholt, D.A., Rozemuller, A.J., Eikelenboom, P., and Scheper, W. (2009). The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am. J. Pathol. 174, 1241–1251.10.2353/ajpath.2009.080814Suche in Google Scholar PubMed PubMed Central
Hosoki, R., Matsuki, N., and Kimura, H. (1997). The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 237, 527–531.10.1006/bbrc.1997.6878Suche in Google Scholar PubMed
Hsu, C.C., Lin, R.L., Lee, L.Y., and Lin, Y.S. (2013). Hydrogen sulfide induces hypersensitivity of rat capsaicin-sensitive lung vagal neurons: role of TRPA1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R769–779.10.1152/ajpregu.00202.2013Suche in Google Scholar PubMed PubMed Central
Hu, L.F., Lu, M., Tiong, C.X., Dawe, G.S., Hu, G., and Bian, J.S. (2010). Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9, 135–146.10.1111/j.1474-9726.2009.00543.xSuche in Google Scholar PubMed
Ichinohe, A., Kanaumi, T., Takashima, S., Enokido, Y., Nagai, Y., and Kimura, H. (2005). Cystathionine beta-synthase is enriched in the brains of Down’s patients. Biochem. Biophys. Res. Commun. 338, 1547–1550.10.1016/j.bbrc.2005.10.118Suche in Google Scholar PubMed
Ishigami, M., Hiraki, K., Umemura, K., Ogasawara, Y., Ishii, K., and Kimura, H. (2009). A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal. 11, 205–214.10.1089/ars.2008.2132Suche in Google Scholar PubMed
Ishii, I., Akahoshi, N., Yamada, H., Nakano, S., Izumi, T., and Suematsu, M. (2010). Cystathionine gamma-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J. Biol. Chem. 285, 26358–26368.10.1074/jbc.M110.147439Suche in Google Scholar PubMed PubMed Central
Jang, H., Oh, M.Y., Kim, Y.J., Choi, I.Y., Yang, H.S., Ryu, W.S., Lee, S.H., and Yoon, B.W. (2014). Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J. Neurosci. Res. 92, 1520–1528.10.1002/jnr.23427Suche in Google Scholar PubMed
Johansen, D., Ytrehus, K., and Baxter, G.F. (2006). Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury – evidence for a role of K ATP channels. Basic Res. Cardiol. 101, 53–60.10.1007/s00395-005-0569-9Suche in Google Scholar PubMed
Kawabata, A., Ishiki, T., Nagasawa, K., Yoshida, S., Maeda, Y., Takahashi, T., Sekiguchi, F., Wada, T., Ichida, S., and Nishikawa, H. (2007). Hydrogen sulfide as a novel nociceptive messenger. Pain 132, 74–81.10.1016/j.pain.2007.01.026Suche in Google Scholar PubMed
Kida, K., Yamada, M., Tokuda, K., Marutani, E., Kakinohana, M., Kaneki, M., and Ichinose, F. (2011). Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid. Redox Signal. 15, 343–352.10.1089/ars.2010.3671Suche in Google Scholar PubMed PubMed Central
Kimura, H. (2010). Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal. 12, 1111–1123.10.1089/ars.2009.2919Suche in Google Scholar PubMed
Kimura, H. (2012). [Hydrogen sulfide: production, release, and functions]. Nihon Yakurigaku Zasshi. 139, 6–8.10.1254/fpj.139.6Suche in Google Scholar PubMed
Kimura, H. (2014). Signaling molecules: hydrogen sulfide and polysulfide. Antioxid. Redox Signal. Available at: http://www.ncbi.nlm.nih.gov/pubmed/?term=Signaling+molecules%3A+hydrogen+sulfide+and+polysulfide.+Antioxid.Suche in Google Scholar
Kimura, Y., Dargusch, R., Schubert, D., and Kimura, H. (2006). Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal. 8, 661–670.10.1089/ars.2006.8.661Suche in Google Scholar PubMed
Kimura, Y., Goto, Y., and Kimura, H. (2010). Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12, 1–13.10.1089/ars.2008.2282Suche in Google Scholar PubMed
Kimura, H., Shibuya, N., and Kimura, Y. (2012). Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid. Redox Signal. 17, 45–57.10.1089/ars.2011.4345Suche in Google Scholar PubMed PubMed Central
Lee, M., Schwab, C., Yu, S., McGeer, E., and McGeer, P.L. (2009). Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol. Aging 30, 1523–1534.10.1016/j.neurobiolaging.2009.06.001Suche in Google Scholar PubMed
Lee, M., Tazzari, V., Giustarini, D., Rossi, R., Sparatore, A., Del Soldato, P., McGeer, E., and McGeer, P.L. (2010). Effects of hydrogen sulfide-releasing l-DOPA derivatives on glial activation: potential for treating Parkinson disease. J. Biol. Chem. 285, 17318–17328.10.1074/jbc.M110.115261Suche in Google Scholar PubMed PubMed Central
Lee, Z.W., Low, Y.L., Huang, S., Wang, T., and Deng, L.W. (2014). The cystathionine gamma-lyase/hydrogen sulfide system maintains cellular glutathione status. Biochem. J. 460, 425–435.10.1042/BJ20131434Suche in Google Scholar
Li, Z., Wang, Y., Xie, Y., Yang, Z., and Zhang, T. (2011). Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem. Res. 36, 1840–1849.10.1007/s11064-011-0502-6Suche in Google Scholar
Li, G.F., Luo, H.K., Li, L.F., Zhang, Q.Z., Xie, L.J., Jiang, H., Li, L.P., Hao, N., Wang, W.W., and Zhang, J.X. (2012). Dual effects of hydrogen sulphide on focal cerebral ischaemic injury via modulation of oxidative stress-induced apoptosis. Clin. Exp. Pharmacol. Physiol. 39, 765–771.10.1111/j.1440-1681.2012.05731.xSuche in Google Scholar
Lipscombe, D., Helton, T.D., and Xu, W. (2004). l-type calcium channels: the low down. J. Neurophysiol. 92, 2633–2641.10.1152/jn.00486.2004Suche in Google Scholar
Lowicka, E. and Beltowski, J. (2007). Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol. Rep. 59, 4–24.Suche in Google Scholar
Lu, M., Zhao, F.F., Tang, J.J., Su, C.J., Fan, Y., Ding, J.H., Bian, J.S., and Hu, G. (2012). The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid. Redox Signal. 17, 849–859.10.1089/ars.2011.4507Suche in Google Scholar
Maeda, Y., Aoki, Y., Sekiguchi, F., Matsunami, M., Takahashi, T., Nishikawa, H., and Kawabata, A. (2009). Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain 142, 127–132.10.1016/j.pain.2008.12.021Suche in Google Scholar
Malekova, L., Krizanova, O., and Ondrias, K. (2009). H(2)S and HS(-) donor NaHS inhibits intracellular chloride channels. Gen. Physiol. Biophys. 28, 190–194.10.4149/gpb_2009_02_190Suche in Google Scholar
Martinos, M.M., Yoong, M., Patil, S., Chin, R.F., Neville, B.G., Scott, R.C., and de Haan, M. (2012). Recognition memory is impaired in children after prolonged febrile seizures. Brain 135, 3153–3164.10.1093/brain/aws213Suche in Google Scholar
Meister, A., Fraser, P.E., and Tice, S.V. (1954). Enzymatic desulfuration of beta-mercaptopyruvate to pyruvate. J. Biol. Chem. 206, 561–575.10.1016/S0021-9258(19)50824-9Suche in Google Scholar
Mikami, Y., Shibuya, N., Kimura, Y., Nagahara, N., Ogasawara, Y., and Kimura, H. (2011a). Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem. J. 439, 479–485.10.1042/BJ20110841Suche in Google Scholar PubMed
Mikami, Y., Shibuya, N., Kimura, Y., Nagahara, N., Yamada, M., and Kimura, H. (2011b). Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J. Biol. Chem. 286, 39379–39386.10.1074/jbc.M111.298208Suche in Google Scholar PubMed PubMed Central
Miller, C. (2006). ClC chloride channels viewed through a transporter lens. Nature 440, 484–489.10.1038/nature04713Suche in Google Scholar PubMed
Mustafa, A.K., Sikka, G., Gazi, S.K., Steppan, J., Jung, S.M., Bhunia, A.K., Barodka, V.M., Gazi, F.K., Barrow, R.K., Wang, R., et al. (2011). Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 109, 1259–1268.10.1161/CIRCRESAHA.111.240242Suche in Google Scholar PubMed PubMed Central
Nagahara, N., Ito, T., Kitamura, H., and Nishino, T. (1998). Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem. Cell Biol. 110, 243–250.10.1007/s004180050286Suche in Google Scholar PubMed
Nagasawa, K., Tarui, T., Yoshida, S., Sekiguchi, F., Matsunami, M., Ohi, A., Fukami, K., Ichida, S., Nishikawa, H., and Kawabata, A. (2009). Hydrogen sulfide evokes neurite outgrowth and expression of high-voltage-activated Ca2+ currents in NG108-15 cells: involvement of T-type Ca2+ channels. J. Neurochem. 108, 676–684.10.1111/j.1471-4159.2008.05808.xSuche in Google Scholar PubMed
Nilius, B. and Droogmans, G. (2003). Amazing chloride channels: an overview. Acta. Physiol. Scand. 177, 119–147.10.1046/j.1365-201X.2003.01060.xSuche in Google Scholar PubMed
Osborne, N.N., Ji, D., Majid, A.S., Del Soldata, P., and Sparatore, A. (2012). Glutamate oxidative injury to RGC-5 cells in culture is necrostatin sensitive and blunted by a hydrogen sulfide (H2S)-releasing derivative of aspirin (ACS14). Neurochem. Int. 60, 365–378.10.1016/j.neuint.2012.01.015Suche in Google Scholar PubMed
Peers, C., Bauer, C.C., Boyle, J.P., Scragg, J.L., and Dallas, M.L. (2012). Modulation of ion channels by hydrogen sulfide. Antioxid. Redox Signal. 17, 95–105.10.1089/ars.2011.4359Suche in Google Scholar PubMed
Puljak, L. and Kilic, G. (2006). Emerging roles of chloride channels in human diseases. Biochim. Biophys. Acta. 1762, 404–413.10.1016/j.bbadis.2005.12.008Suche in Google Scholar PubMed
Qu, K., Chen, C.P., Halliwell, B., Moore, P.K., and Wong, P.T. (2006). Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37, 889–893.10.1161/01.STR.0000204184.34946.41Suche in Google Scholar PubMed
Ren, C., Du, A., Li, D., Sui, J., Mayhan, W.G., and Zhao, H. (2010). Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats. Brain Res. 1345, 197–205.10.1016/j.brainres.2010.05.017Suche in Google Scholar PubMed
Schechter, L.E., Ring, R.H., Beyer, C.E., Hughes, Z.A., Khawaja, X., Malberg, J.E., and Rosenzweig-Lipson, S. (2005). Innovative approaches for the development of antidepressant drugs: current and future strategies. NeuroRx 2, 590–611.10.1602/neurorx.2.4.590Suche in Google Scholar PubMed PubMed Central
Schicho, R., Krueger, D., Zeller, F., Von Weyhern, C.W., Frieling, T., Kimura, H., Ishii, I., De Giorgio, R., Campi, B., and Schemann, M. (2006). Hydrogen sulfide is a novel prosecretory neuromodulator in the guinea-pig and human colon. Gastroenterology 131, 1542–1552.10.1053/j.gastro.2006.08.035Suche in Google Scholar PubMed
Shao, J.L., Wan, X.H., Chen, Y., Bi, C., Chen, H.M., Zhong, Y., Heng, X.H., and Qian, J.Q. (2011). H2S protects hippocampal neurons from anoxia-reoxygenation through cAMP-mediated PI3K/Akt/p70S6K cell-survival signaling pathways. J. Mol. Neurosci. 43, 453–460.10.1007/s12031-010-9464-4Suche in Google Scholar PubMed
Shibuya, N. and Kimura, H. (2013). Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Front. Endocrinol. (Lausanne). 4, 87.10.3389/fendo.2013.00087Suche in Google Scholar PubMed PubMed Central
Shibuya, N., Mikami, Y., Kimura, Y., Nagahara, N., and Kimura, H. (2009a). Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem. 146, 623–626.10.1093/jb/mvp111Suche in Google Scholar PubMed
Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii, K., and Kimura, H. (2009b). 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11, 703–714.10.1089/ars.2008.2253Suche in Google Scholar PubMed
Shibuya, N., Koike, S., Tanaka, M., Ishigami-Yuasa, M., Kimura, Y., Ogasawara, Y., Fukui, K., Nagahara, N., and Kimura, H. (2013). A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat. Commun. 4, 1366.10.1038/ncomms2371Suche in Google Scholar PubMed
Shinnar, S. and Glauser, T.A. (2002). Febrile seizures. J. Child Neurol. 17 Suppl 1, S44–52.10.1177/08830738020170010601Suche in Google Scholar PubMed
Spencer, K.A., Tompkins, C.A., and Schulz, R. (1997). Assessment of depression in patients with brain pathology: the case of stroke. Psychol. Bull. 122, 132–152.10.1037/0033-2909.122.2.132Suche in Google Scholar PubMed
Strege, P.R., Bernard, C.E., Kraichely, R.E., Mazzone, A., Sha, L., Beyder, A., Gibbons, S.J., Linden, D.R., Kendrick, M.L., Sarr, M.G., et al. (2011). Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1105–1114.Suche in Google Scholar
Stutzbach, L.D., Xie, S.X., Naj, A.C., Albin, R., Gilman S; PSP Genetics Study Group, Lee, V.M., Trojanowski, J.Q., Devlin, B., and Schellenberg, G.D. (2013). The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta. Neuropathol. Commun. 1, 31.10.1186/2051-5960-1-31Suche in Google Scholar PubMed PubMed Central
Sun, Y.G., Cao, Y.X., Wang, W.W., Ma, S.F., Yao, T., and Zhu, Y.C. (2008). Hydrogen sulphide is an inhibitor of l-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc. Res. 79, 632–641.10.1093/cvr/cvn140Suche in Google Scholar PubMed
Sutherland, B.A., Harrison, J.C., Nair, S.M., and Sammut, I.A. (2013). Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia. Curr. Drug Targets 14, 56–73.10.2174/138945013804806433Suche in Google Scholar PubMed
Szabo, C. (2007). Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935.10.1038/nrd2425Suche in Google Scholar PubMed
Taliaz, D., Stall, N., Dar, D.E., and Zangen, A. (2010). Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol. Psychiatry 15, 80–92.10.1038/mp.2009.67Suche in Google Scholar PubMed PubMed Central
Tang, X.Q., Yang, C.T., Chen, J., Yin, W.L., Tian, S.W., Hu, B., Feng, J.Q., and Li, Y.J. (2008). Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin. Exp. Pharmacol. Physiol. 35, 180–186.Suche in Google Scholar
Tang, G., Wu, L., and Wang, R. (2010a). Interaction of hydrogen sulfide with ion channels. Clin. Exp. Pharmacol. Physiol. 37, 753–763.10.1111/j.1440-1681.2010.05351.xSuche in Google Scholar PubMed
Tang, X.Q., Shen, X.T., Huang, Y.E., Ren, Y.K., Chen, R.Q., Hu, B., He, J.Q., Yin, W.L., Xu, J.H., and Jiang, Z.S. (2010b). Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci. Res. 68, 241–249.10.1016/j.neures.2010.07.2039Suche in Google Scholar PubMed
Tang, X.Q., Fan, L.L., Li, Y.J., Shen, X.T., Zhuan, Y.Y., He, J.Q., Xu, J.H., Hu, B., and Li, Y.J. (2011). Inhibition of hydrogen sulfide generation contributes to 1-methy-4-phenylpyridinium ion-induced neurotoxicity. Neurotox. Res. 19, 403–411.10.1007/s12640-010-9180-4Suche in Google Scholar PubMed
Tang, X.Q., Zhuang, Y.Y., Fan, L.L., Fang, H.R., Zhou, C.F., Zhang, P., and Hu, B. (2012). Involvement of K(ATP)/PI (3)K/AKT/Bcl-2 pathway in hydrogen sulfide-induced neuroprotection against the toxicity of 1-methy-4-phenylpyridinium ion. J. Mol. Neurosci. 46, 442–449.10.1007/s12031-011-9608-1Suche in Google Scholar PubMed
Tay, A.S., Hu, L.F., Lu, M., Wong, P.T., and Bian, J.S. (2010). Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience 167, 277–286.10.1016/j.neuroscience.2010.02.006Suche in Google Scholar PubMed
Telezhkin, V., Brazier, S.P., Cayzac, S.H., Wilkinson, W.J., Riccardi, D., and Kemp, P.J. (2010). Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir. Physiol. Neurobiol. 172, 169–178.10.1016/j.resp.2010.05.016Suche in Google Scholar PubMed
Ubuka, T., Umemura, S., Yuasa, S., Kinuta, M., and Watanabe, K. (1978). Purification and characterization of mitochondrial cysteine aminotransferase from rat liver. Physiol. Chem. Phys. 10, 483–500.Suche in Google Scholar
Vandiver, M.S., Paul, B.D., Xu, R., Karuppagounder, S., Rao, F., Snowman, A.M., Ko, H.S., Lee, Y.I., Dawson, V.L., Dawson, T.M., et al. (2013). Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 4, 1626.10.1038/ncomms2623Suche in Google Scholar PubMed PubMed Central
Wang, R. (2009). Hydrogen sulfide: a new EDRF. Kidney Int. 76, 700–704.10.1038/ki.2009.221Suche in Google Scholar PubMed
Wang, R. (2010). Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid. Redox Signal. 12, 1061–1064.10.1089/ars.2009.2938Suche in Google Scholar PubMed
Wang, R. (2012). Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92, 791–896.10.1152/physrev.00017.2011Suche in Google Scholar PubMed
Wei, H.J., Xu, J.H., Li, M.H., Tang, J.P., Zou, W., Zhang, P., Wang, L., Wang, C.Y., and Tang, X.Q. (2014). Hydrogen sulfide inhibits homocysteine-induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway. Acta. Pharmacol. Sin. 35, 707–715.10.1038/aps.2013.197Suche in Google Scholar PubMed PubMed Central
Wen, X., Qi, D., Sun, Y., Huang, X., Zhang, F., Wu, J., Fu, Y., Ma, K., Du, Y., Dong, H., et al. (2014). H(2)S attenuates cognitive deficits through Akt1/JNK3 signaling pathway in ischemic stroke. Behav. Brain Res. 269, 6–14.10.1016/j.bbr.2014.04.027Suche in Google Scholar PubMed
Whitfield, N.L., Kreimier, E.L., Verdial, F.C., Skovgaard, N., and Olson, K.R. (2008). Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1930–1937.10.1152/ajpregu.00025.2008Suche in Google Scholar PubMed
Wisniewski, K.E., Wisniewski, H.M., and Wen, G.Y. (1985). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.10.1002/ana.410170310Suche in Google Scholar PubMed
Xu, M., Wu, Y.M., Li, Q., Liu, S., Li, Q., and He, R.R. (2011). Electrophysiological effects of hydrogen sulfide on human atrial fibers. Chin. Med. J. (Engl) 124, 3455–3459.Suche in Google Scholar
Yang, G.D. and Wang, R. (2007). H(2)S and cellular proliferation and apoptosis. Sheng Li Xue Bao 59, 133–140.Suche in Google Scholar
Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Mustafa, A.K., Mu, W., Zhang, S., et al. (2008). H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322, 587–590.10.1126/science.1162667Suche in Google Scholar PubMed PubMed Central
Yin, W.L., He, J.Q., Hu, B., Jiang, Z.S., and Tang, X.Q. (2009). Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci. 85, 269–275.10.1016/j.lfs.2009.05.023Suche in Google Scholar PubMed
Yin, J., Tu, C., Zhao, J., Ou, D., Chen, G., Liu, Y., and Xiao, X. (2013). Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res. 1491, 188–196.10.1016/j.brainres.2012.10.046Suche in Google Scholar PubMed
Zanardo, R.C., Brancaleone, V., Distrutti, E., Fiorucci, S., Cirino, G., and Wallace, J.L. (2006). Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20, 2118–2120.10.1096/fj.06-6270fjeSuche in Google Scholar PubMed
Zhao, H., Chan, S.J., Ng, Y.-K., and Wong, P.T.-H. (2013). Brain 3-mercaptopyruvate sulfurtransferase (3MST): cellular localization and downregulation after acute stroke. PLoS One 8, e67322.10.1371/journal.pone.0067322Suche in Google Scholar PubMed PubMed Central
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus
- Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways
- Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus
- Roots to start research in amyotrophic lateral sclerosis: molecular pathways and novel therapeutics for future
- How does spreading depression spread? Physiology and modeling
- Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions
- An evaluation of the links between microRNA, autophagy, and epilepsy
- Peripheral nerve hyperexcitability syndromes
Artikel in diesem Heft
- Frontmatter
- Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus
- Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways
- Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus
- Roots to start research in amyotrophic lateral sclerosis: molecular pathways and novel therapeutics for future
- How does spreading depression spread? Physiology and modeling
- Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions
- An evaluation of the links between microRNA, autophagy, and epilepsy
- Peripheral nerve hyperexcitability syndromes