Abstract
Accumulating evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) may play a key role in the pathophysiology of some neurological diseases such as epilepsy. Based on genetic studies in patients with epileptic disorders worldwide and animal models of seizure, it has been demonstrated that nAChR activity is altered in some specific types of epilepsy, including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and juvenile myoclonic epilepsy (JME). Neuronal nAChR antagonists also have antiepileptic effects in pre-clinical studies. There is some evidence that conventional antiepileptic drugs may affect neuronal nAChR function. In this review, we re-examine the evidence for the involvement of nAChRs in the pathophysiology of some epileptic disorders, especially ADNFLE and JME, and provide an overview of nAChR antagonists that have been evaluated in animal models of seizure.
References
Aceto, M.D., Bentley, H.C., and Dembinski, J.R. (1969). Effects of ganglion blocking agents on nicotine extensor convulsions and lethality in mice. Br. J. Pharmacol. 37, 104–111.10.1111/j.1476-5381.1969.tb09527.xSearch in Google Scholar
Albuquerque, E.X., Pereira, E.F., Alkondon, M., and Rogers, S.W. (2009). Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89, 73–120.10.1152/physrev.00015.2008Search in Google Scholar
Alkondon, M. and Albuquerque, E.X. (2004). The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog. Brain Res. 145, 109–120.10.1016/S0079-6123(03)45007-3Search in Google Scholar
Aracri, P., Amadeo, A., Pasini, M.E., Fascio, U., and Becchetti, A. (2013). Regulation of glutamate release by heteromeric nicotinic receptors in layer V of the secondary motor region (Fr2) in the dorsomedial shoulder of prefrontal cortex in mouse. Synapse 67, 338–357.10.1002/syn.21655Search in Google Scholar
Aridon, P., Marini, C., Di Resta, C., Brilli, E., De Fusco, M., Politi, F., Parrini, E., Manfredi, I., Pisano, T., Pruna, D., et al. (2006). Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am. J. Hum. Genet. 79, 342–350.10.1086/506459Search in Google Scholar
Bagri, A., Di Scala, G., and Sandner, G. (1999). Myoclonic and tonic seizures elicited by microinjection of cholinergic drugs into the inferior colliculus. Therapie 54, 589–594.Search in Google Scholar
Banerjee, S., Punzi, J.S., Kreilick, K., and Abood, L.G. (1990). [3H]mecamylamine binding to rat brain membranes. Studies with mecamylamine and nicotine analogues. Biochem. Pharmacol. 40, 2105–2110.10.1016/0006-2952(90)90241-CSearch in Google Scholar
Banerjee, J., Alkondon, M., Pereira, E.F., and Albuquerque, E.X. (2012). Regulation of GABAergic inputs to CA1 pyramidal neurons by nicotinic receptors and kynurenic acid. J. Pharmacol. Exp. Ther. 341, 500–509.10.1124/jpet.111.189860Search in Google Scholar
Beker, F., Weber, M., Fink, R.H., and Adams, D.J. (2003). Muscarinic and nicotinic ACh receptor activation differentially mobilize Ca2+ in rat intracardiac ganglion neurons. J. Neurophysiol. 90, 1956–1964.10.1152/jn.01079.2002Search in Google Scholar
Beleslin, D.B. and Krstic, S.K. (1986). Nicotine-induced convulsions in cats and central nicotinic receptors. Pharmacol. Biochem. Behav. 24, 1509–1511.10.1016/0091-3057(86)90476-4Search in Google Scholar
Berkovic, S.F., Howell, R.A., Hay, D.A., and Hopper, J.L. (1998). Epilepsies in twins: genetics of the major epilepsy syndromes. Ann. Neurol. 43, 435–445.10.1002/ana.410430405Search in Google Scholar PubMed
Bertrand, D., Picard, F., Le Hellard, S., Weiland, S., Favre, I., Phillips, H., Bertrand, S., Berkovic, S.F., Malafosse, A., and Mulley, J. (2002). How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia 43(Suppl 5), 112–122.10.1046/j.1528-1157.43.s.5.16.xSearch in Google Scholar
Bialer, M. and Yagen, B. (2007). Valproic acid: second generation. Neurotherapeutics 4, 130–137.10.1016/j.nurt.2006.11.007Search in Google Scholar
Bitner, R.S. and Nikkel, A.L. (2002). Alpha-7 nicotinic receptor expression by two distinct cell types in the dorsal raphe nucleus and locus coeruleus of rat. Brain Res. 938, 45–54.10.1016/S0006-8993(02)02485-XSearch in Google Scholar
Brain, K.L., Trout, S.J., Jackson, V.M., Dass, N., and Cunnane, T.C. (2001). Nicotine induces calcium spikes in single nerve terminal varicosities: a role for intracellular calcium stores. Neuroscience 106, 395–403.10.1016/S0306-4522(01)00280-9Search in Google Scholar
Brawek, B., Loffler, M., Dooley, D.J., Weyerbrock, A., and Feuerstein, T.J. (2008). Differential modulation of K(+)-evoked (3)H-neurotransmitter release from human neocortex by gabapentin and pregabalin. Naunyn Schmiedebergs Arch. Pharmacol. 376, 301–307.Search in Google Scholar
Briggs, S.W. and Galanopoulou, A.S. (2011). Altered GABA signaling in early life epilepsies. Neural Plast. 2011, 527–605.10.1155/2011/527605Search in Google Scholar
Burnashev, N., Zhou, Z., Neher, E., and Sakmann, B. (1995). Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485(Pt 2), 403–418.10.1113/jphysiol.1995.sp020738Search in Google Scholar
Caulfield, M.P. and Higgins, G.A. (1983). Mediation of nicotine-induced convulsions by central nicotinic receptors of the ‘C6’ type. Neuropharmacology 22, 347–351.10.1016/0028-3908(83)90251-4Search in Google Scholar
Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D.J., Przybylski, C., Lena, C., Clementi, F., Moretti, M., Rossi, F.M., Le Novere, N., et al. (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J. Neurosci. 23, 7820–7829.10.1523/JNEUROSCI.23-21-07820.2003Search in Google Scholar
Chaney, L.A., Rockhold, R.W., Wineman, R.W., and Hume, A.S. (1999). Anticonvulsant-resistant seizures following pyridostigmine bromide (PB) and N,N-diethyl-m-toluamide (DEET). Toxicol. Sci. 49, 306–311.10.1093/toxsci/49.2.306Search in Google Scholar PubMed
Chang, B.S. and Lowenstein, D.H. (2003). Epilepsy. N. Engl. J. Med. 349, 1257–1266.10.1056/NEJMra022308Search in Google Scholar PubMed
Chaturvedi, A.K. (1984). Effects of mecamylamine, nicotine, atropine and physostigmine on the phencyclidine-induced behavioral toxicity. Pharmacol. Biochem. Behav. 20, 559–566.10.1016/0091-3057(84)90305-8Search in Google Scholar
Chen, Y., Wu, L., Fang, Y., He, Z., Peng, B., Shen, Y., and Xu, Q. (2009). A novel mutation of the nicotinic acetylcholine receptor gene CHRNA4 in sporadic nocturnal frontal lobe epilepsy. Epilepsy Res. 83, 152–156.10.1016/j.eplepsyres.2008.10.009Search in Google Scholar
Cheng, L.Z., Han, L., Fan, J., Huang, L.T., Peng, L.C., and Wang, Y. (2011). Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559. Mol. Pain 7, 56.10.1186/1744-8069-7-56Search in Google Scholar
Chioza, B., Goodwin, H., Blower, J., McCormick, D., Nashef, L., Asherson, P., and Makoff, A.J. (2000). Failure to replicate association between the gene for the neuronal nicotinic acetylcholine receptor alpha 4 subunit (CHRNA4) and IGE. Am. J. Med. Genet. 96, 814–816.10.1002/1096-8628(20001204)96:6<814::AID-AJMG24>3.0.CO;2-MSearch in Google Scholar
Cho, Y.W., Motamedi, G.K., Laufenberg, I., Sohn, S.I., Lim, J.G., Lee, H., Yi, S.D., Lee, J.H., Kim, D.K., Reba, R., et al. (2003). A Korean kindred with autosomal dominant nocturnal frontal lobe epilepsy and mental retardation. Arch. Neurol. 60, 1625–1632.10.1001/archneur.60.11.1625Search in Google Scholar
Cho, Y.W., Yi, S.D., Lim, J.G., Kim, D.K., and Motamedi, G.K. (2008). Autosomal dominant nocturnal frontal lobe epilepsy and mild memory impairment associated with CHRNB2 mutation I312M in the neuronal nicotinic acetylcholine receptor. Epilepsy Behav. 13, 361–365.10.1016/j.yebeh.2008.04.017Search in Google Scholar
Collins, A.C., Evans, C.B., Miner, L.L., and Marks, M.J. (1986). Mecamylamine blockade of nicotine responses: evidence for two brain nicotinic receptors. Pharmacol. Biochem. Behav. 24, 1767–1773.10.1016/0091-3057(86)90518-6Search in Google Scholar
Combi, R., Dalpra, L., Tenchini, M.L., and Ferini-Strambi, L. (2004). Autosomal dominant nocturnal frontal lobe epilepsy – a critical overview. J. Neurol. 251, 923–934.10.1007/s00415-004-0541-xSearch in Google Scholar
Commons, K.G. (2008). Alpha4 containing nicotinic receptors are positioned to mediate postsynaptic effects on 5-HT neurons in the rat dorsal raphe nucleus. Neuroscience 153, 851–859.10.1016/j.neuroscience.2008.02.056Search in Google Scholar
Conroy, W.G. and Berg, D.K. (1998). Nicotinic receptor subtypes in the developing chick brain: appearance of a species containing the alpha4, beta2, and alpha5 gene products. Mol. Pharmacol. 53, 392–401.10.1124/mol.53.3.392Search in Google Scholar
Consolo, S., Bianchi, S., and Ladinsky, H. (1976). Effect of carbamazepine on cholinergic parameters in rat brain areas. Neuropharmacology 15, 653–657.10.1016/0028-3908(76)90031-9Search in Google Scholar
Cossette, P., Liu, L., Brisebois, K., Dong, H., Lortie, A., Vanasse, M., Saint-Hilaire, J.M., Carmant, L., Verner, A., Lu, W.Y., et al. (2002). Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat. Genet. 31, 184–189.10.1038/ng885Search in Google Scholar
Courtney, K.R. and Etter, E.F. (1983). Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur. J. Pharmacol. 88, 1–9.10.1016/0014-2999(83)90386-2Search in Google Scholar
Dajas-Bailador, F.A., Mogg, A.J., and Wonnacott, S. (2002). Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores. J. Neurochem. 81, 606–614.10.1046/j.1471-4159.2002.00846.xSearch in Google Scholar
Damaj, M.I., Glassco, W., Dukat, M., and Martin, B.R. (1999). Pharmacological characterization of nicotine-induced seizures in mice. J. Pharmacol. Exp. Ther. 291, 1284–1291.Search in Google Scholar
Damaj, M.I., Fonck, C., Marks, M.J., Deshpande, P., Labarca, C., Lester, H.A., Collins, A.C., and Martin, B.R. (2007). Genetic approaches identify differential roles for alpha4beta2* nicotinic receptors in acute models of antinociception in mice. J. Pharmacol. Exp. Ther. 321, 1161–1169.10.1124/jpet.106.112649Search in Google Scholar
Dani, J.A. and Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729.10.1146/annurev.pharmtox.47.120505.105214Search in Google Scholar
Danober, L., Depaulis, A., Marescaux, C., and Vergnes, M. (1993). Effects of cholinergic drugs on genetic absence seizures in rats. Eur. J. Pharmacol. 234, 263–268.10.1016/0014-2999(93)90962-HSearch in Google Scholar
de Boer, T., Stoof, J.C., and van Duijn, H. (1982). The effects of convulsant and anticonvulsant drugs on the release of radiolabeled GABA, glutamate, noradrenaline, serotonin and acetylcholine from rat cortical slices. Brain Res. 253, 153–160.10.1016/0006-8993(82)90682-5Search in Google Scholar
De Fusco, M., Becchetti, A., Patrignani, A., Annesi, G., Gambardella, A., Quattrone, A., Ballabio, A., Wanke, E., and Casari, G. (2000). The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat. Genet. 26, 275–276.10.1038/81566Search in Google Scholar
de Jong, R.H., Gamble, C.A., and Bonin, J.D. (1981). Neuromuscular blocking agents do not alter local anesthetic seizure thresholds. Exp. Neurol. 74, 628–631.10.1016/0014-4886(81)90198-9Search in Google Scholar
Delucchi, G.A. and Calabrese, J.R. (1989). Anticonvulsants for treatment of manic depression. Cleveland Clin. J. Med. 56, 756–761.10.3949/ccjm.56.8.756Search in Google Scholar
Deutsch, S.I., Rosse, R.B., Bellack, A.S., Billingslea, E.N., and Mastropaolo, J. (2003). Methyllycaconitine fails to inhibit electrically precipitated tonic hindlimb extension in mice. Clin. Neuropharmacol. 26, 62–64.10.1097/00002826-200303000-00004Search in Google Scholar
Di Resta, C., Ambrosi, P., Curia, G., and Becchetti, A. (2010). Effect of carbamazepine and oxcarbazepine on wild-type and mutant neuronal nicotinic acetylcholine receptors linked to nocturnal frontal lobe epilepsy. Eur. J. Pharmacol. 643, 13–20.10.1016/j.ejphar.2010.05.063Search in Google Scholar
Diaz-Otero, F., Quesada, M., Morales-Corraliza, J., Martinez-Parra, C., Gomez-Garre, P., and Serratosa, J.M. (2008). Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. Epilepsia 49, 516–520.10.1111/j.1528-1167.2007.01328.xSearch in Google Scholar
Dobelis, P., Hutton, S., Lu, Y., and Collins, A.C. (2003). GABAergic systems modulate nicotinic receptor-mediated seizures in mice. J. Pharmacol. Exp. Ther. 306, 1159–1166.10.1124/jpet.103.053066Search in Google Scholar
Durner, M., Shinnar, S., Resor, S.R., Moshe, S.L., Rosenbaum, D., Cohen, J., Harden, C., Kang, H., Hertz, S., Wallace, S., et al. (2000). No evidence for a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Am. J. Med. Genet. 96, 49–52.10.1002/(SICI)1096-8628(20000207)96:1<49::AID-AJMG10>3.0.CO;2-JSearch in Google Scholar
Eberhard, D.A. and Holz, R.W. (1987). Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J. Neurochem. 49, 1634–1643.10.1111/j.1471-4159.1987.tb01037.xSearch in Google Scholar
Elmslie, F.V., Rees, M., Williamson, M.P., Kerr, M., Kjeldsen, M.J., Pang, K.A., Sundqvist, A., Friis, M.L., Chadwick, D., Richens, A., et al. (1997). Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum. Mol. Genet. 6, 1329–1334.10.1093/hmg/6.8.1329Search in Google Scholar
Ferini-Strambi, L., Sansoni, V., and Combi, R. (2012). Nocturnal frontal lobe epilepsy and the acetylcholine receptor. Neurologist 18, 343–349.10.1097/NRL.0b013e31826a99b8Search in Google Scholar
Flores, C.M., Rogers, S.W., Pabreza, L.A., Wolfe, B.B., and Kellar, K.J. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol. Pharmacol. 41, 31–37.Search in Google Scholar
Fucile, S. (2004). Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35, 1–8.10.1016/j.ceca.2003.08.006Search in Google Scholar
Fucile, S., Renzi, M., Lax, P., and Eusebi, F. (2003). Fractional Ca2+ current through human neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium 34, 205–209.10.1016/S0143-4160(03)00071-XSearch in Google Scholar
Futatsugi, Y. and Riviello, J.J., Jr. (1998). Mechanisms of generalized absence epilepsy. Brain Dev. 20, 75–79.10.1016/S0387-7604(97)00107-1Search in Google Scholar
Gambardella, A., Annesi, G., De Fusco, M., Patrignani, A., Aguglia, U., Annesi, F., Pasqua, A.A., Spadafora, P., Oliveri, R.L., Valentino, P., et al. (2000). A new locus for autosomal dominant nocturnal frontal lobe epilepsy maps to chromosome 1. Neurology 55, 1467–1471.10.1212/WNL.55.10.1467Search in Google Scholar
Gao, Z.G., Cui, W.Y., Liu, B.Y., Liu, C.G., and Wang, L. (1997). Anticholinergic activity in mice and receptor-binding properties in rats of a series of synthetic tropane derivatives. J. Pharm. Pharmacol. 49, 315–318.Search in Google Scholar
Gardner, C.R. and Webster, R.A. (1977). Convulsant-anticonvulsant interactions on seizure activity and cortical acetylcholine release. Eur. J. Pharmacol. 42, 247–256.10.1016/0014-2999(77)90291-6Search in Google Scholar
Gerzanich, V., Wang, F., Kuryatov, A., and Lindstrom, J. (1998). Alpha 5 subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J. Pharmacol. Exp. Ther. 286, 311–320.Search in Google Scholar
Ghasemi, M. and Schachter, S.C. (2011). The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav. 22, 617–640.10.1016/j.yebeh.2011.07.024Search in Google Scholar PubMed
Gil, Z., Sack, R.A., Kedmi, M., Harmelin, A., and Orr-Urtreger, A. (2002). Increased sensitivity to nicotine-induced seizures in mice heterozygous for the L250T mutation in the alpha7 nicotinic acetylcholine receptor. Neuroreport 13, 191–196.10.1097/00001756-200202110-00004Search in Google Scholar PubMed
Gmiro, V.E., Serdyuk, S.E., and Efremov, O.M. (2008). Peripheral and central routes of administration of quaternary ammonium compound IEM-1460 are equally potent in reducing the severity of nicotine-induced seizures in mice. Bull. Exp. Biol. Med. 146, 18–21.10.1007/s10517-008-0229-9Search in Google Scholar PubMed
Gotti, C. and Clementi, F. (2004). Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396.10.1016/j.pneurobio.2004.09.006Search in Google Scholar PubMed
Gotti, C., Moretti, M., Zanardi, A., Gaimarri, A., Champtiaux, N., Changeux, J.P., Whiteaker, P., Marks, M.J., Clementi, F., and Zoli, M. (2005). Heterogeneity and selective targeting of neuronal nicotinic acetylcholine receptor (nAChR) subtypes expressed on retinal afferents of the superior colliculus and lateral geniculate nucleus: identification of a new native nAChR subtype alpha3beta2(alpha5 or beta3) enriched in retinocollicular afferents. Mol. Pharmacol. 68, 1162–1171.10.1124/mol.105.015925Search in Google Scholar PubMed
Gotti, C., Moretti, M., Bohr, I., Ziabreva, I., Vailati, S., Longhi, R., Riganti, L., Gaimarri, A., McKeith, I.G., Perry, R.H., et al. (2006a). Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol. Dis. 23, 481–489.10.1016/j.nbd.2006.04.005Search in Google Scholar PubMed
Gotti, C., Zoli, M., and Clementi, F. (2006b). Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482–491.10.1016/j.tips.2006.07.004Search in Google Scholar PubMed
Gotti, C., Moretti, M., Meinerz, N.M., Clementi, F., Gaimarri, A., Collins, A.C., and Marks, M.J. (2008). Partial deletion of the nicotinic cholinergic receptor alpha 4 or beta 2 subunit genes changes the acetylcholine sensitivity of receptor-mediated 86Rb+ efflux in cortex and thalamus and alters relative expression of alpha 4 and beta 2 subunits. Mol. Pharmacol. 73, 1796–1807.10.1124/mol.108.045203Search in Google Scholar PubMed
Gozzi, A., Schwarz, A., Reese, T., Bertani, S., Crestan, V., and Bifone, A. (2006). Region-specific effects of nicotine on brain activity: a pharmacological MRI study in the drug-naive rat. Neuropsychopharmacology 31, 1690–1703.10.1038/sj.npp.1300955Search in Google Scholar PubMed
Grady, S.R., Moretti, M., Zoli, M., Marks, M.J., Zanardi, A., Pucci, L., Clementi, F., and Gotti, C. (2009). Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the alpha3beta4* and alpha3beta3beta4* subtypes mediate acetylcholine release. J. Neurosci. 29, 2272–2282.10.1523/JNEUROSCI.5121-08.2009Search in Google Scholar PubMed PubMed Central
Granger, P., Biton, B., Faure, C., Vige, X., Depoortere, H., Graham, D., Langer, S.Z., Scatton, B., and Avenet, P. (1995). Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol. Pharmacol. 47, 1189–1196.Search in Google Scholar
Gray, R., Rajan, A.S., Radcliffe, K.A., Yakehiro, M., and Dani, J.A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383, 713–716.10.1038/383713a0Search in Google Scholar PubMed
Grinevich, V.P., Letchworth, S.R., Lindenberger, K.A., Menager, J., Mary, V., Sadieva, K.A., Buhlman, L.M., Bohme, G.A., Pradier, L., Benavides, J., et al. (2005). Heterologous expression of human {alpha}6{beta}4{beta}3{alpha}5 nicotinic acetylcholine receptors: binding properties consistent with their natural expression require quaternary subunit assembly including the {alpha}5 subunit. J. Pharmacol. Exp. Ther. 312, 619–626.10.1124/jpet.104.075069Search in Google Scholar PubMed
Gueorguiev, V.D., Zeman, R.J., Meyer, E.M., and Sabban, E.L. (2000). Involvement of alpha7 nicotinic acetylcholine receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J. Neurochem. 75, 1997–2005.10.1046/j.1471-4159.2000.0751997.xSearch in Google Scholar PubMed
Haider, M.Z., Habeeb, Y., Al-Nakkas, E., Al-Anzi, H., Zaki, M., Al-Tawari, A., and Al-Bloushi, M. (2005). Lack of an association between candidate gene loci and idiopathic generalized epilepsy in Kuwaiti Arab children. J. Biomed. Sci. 12, 815–818.10.1007/s11373-005-9009-ySearch in Google Scholar PubMed
Han, Z.Y., Le Novere, N., Zoli, M., Hill, J.A., Jr., Champtiaux, N., and Changeux, J.P. (2000). Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur. J. Neurosci. 12, 3664–3674.10.1046/j.1460-9568.2000.00262.xSearch in Google Scholar PubMed
Harrison, P.K., Sheridan, R.D., Green, A.C., Scott, I.R., and Tattersall, J.E. (2004). A guinea pig hippocampal slice model of organophosphate-induced seizure activity. J. Pharmacol. Exp. Ther. 310, 678–686.10.1124/jpet.104.065433Search in Google Scholar PubMed
Hayman, M., Scheffer, I.E., Chinvarun, Y., Berlangieri, S.U., and Berkovic, S.F. (1997). Autosomal dominant nocturnal frontal lobe epilepsy: demonstration of focal frontal onset and intrafamilial variation. Neurology 49, 969–975.10.1212/WNL.49.4.969Search in Google Scholar PubMed
Helbig, I. and Lowenstein, D.H. (2013). Genetics of the epilepsies: where are we and where are we going? Curr. Opin. Neurol. 26, 179–185.10.1097/WCO.0b013e32835ee6ffSearch in Google Scholar PubMed PubMed Central
Hernandez, S.C., Vicini, S., Xiao, Y., Davila-Garcia, M.I., Yasuda, R.P., Wolfe, B.B., and Kellar, K.J. (2004). The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype. Mol. Pharmacol. 66, 978–987.10.1124/mol.104.002345Search in Google Scholar PubMed
Hill, J.A., Jr., Zoli, M., Bourgeois, J.P., and Changeux, J.P. (1993). Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J. Neurosci. 13, 1551–1568.10.1523/JNEUROSCI.13-04-01551.1993Search in Google Scholar
Hillmer, A.T., Wooten, D.W., Moirano, J.M., Slesarev, M., Barnhart, T.E., Engle, J.W., Nickles, R.J., Murali, D., Schneider, M.L., Mukherjee, J., et al. (2011). Specific alpha4beta2 nicotinic acetylcholine receptor binding of [F-18]nifene in the rhesus monkey. Synapse 65, 1309–1318.10.1002/syn.20965Search in Google Scholar PubMed PubMed Central
Hirose, S., Iwata, H., Akiyoshi, H., Kobayashi, K., Ito, M., Wada, K., Kaneko, S., and Mitsudome, A. (1999). A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 53, 1749–1753.10.1212/WNL.53.8.1749Search in Google Scholar
Hoda, J.C., Gu, W., Friedli, M., Phillips, H.A., Bertrand, S., Antonarakis, S.E., Goudie, D., Roberts, R., Scheffer, I.E., Marini, C., et al. (2008). Human nocturnal frontal lobe epilepsy: pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. Mol. Pharmacol. 74, 379–391.10.1124/mol.107.044545Search in Google Scholar PubMed
Holder, J.L. Jr. and Wilfong, A.A. (2011). Zonisamide in the treatment of epilepsy. Expert Opin. Pharmacother. 12, 2573–2581.10.1517/14656566.2011.622268Search in Google Scholar PubMed
Huang, M., Li, Z., Ichikawa, J., Dai, J., and Meltzer, H.Y. (2006). Effects of divalproex and atypical antipsychotic drugs on dopamine and acetylcholine efflux in rat hippocampus and prefrontal cortex. Brain Res. 1099, 44–55.10.1016/j.brainres.2006.04.081Search in Google Scholar PubMed
Huguenard, J.R. and McCormick, D.A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci. 30, 350–356.10.1016/j.tins.2007.05.007Search in Google Scholar PubMed
Hunter, B.E., de Fiebre, C.M., Papke, R.L., Kem, W.R., and Meyer, E.M. (1994). A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci. Lett. 168, 130–134.10.1016/0304-3940(94)90433-2Search in Google Scholar
Ishii, K., Wong, J.K., and Sumikawa, K. (2005). Comparison of alpha2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice. J. Comp. Neurol. 493, 241–260.10.1002/cne.20762Search in Google Scholar
Itier, V. and Bertrand, D. (2001). Neuronal nicotinic receptors: from protein structure to function. FEBS Lett. 504, 118–125.10.1016/S0014-5793(01)02702-8Search in Google Scholar
Itier, V. and Bertrand, D. (2002). Mutations of the neuronal nicotinic acetylcholine receptors and their association with ADNFLE. Neurophysiol. Clin. 32, 99–107.10.1016/S0987-7053(02)00294-0Search in Google Scholar
Ito, M., Kobayashi, K., Fujii, T., Okuno, T., Hirose, S., Iwata, H., Mitsudome, A., and Kaneko, S. (2000). Electroclinical picture of autosomal dominant nocturnal frontal lobe epilepsy in a Japanese family. Epilepsia 41, 52–58.10.1111/j.1528-1157.2000.tb01505.xSearch in Google Scholar PubMed
Ivy Carroll, F., Ma, W., Navarro, H.A., Abraham, P., Wolckenhauer, S.A., Damaj, M.I., and Martin, B.R. (2007). Synthesis, nicotinic acetylcholine receptor binding, antinociceptive and seizure properties of methyllycaconitine analogs. Bioorg. Med. Chem. 15, 678–685.10.1016/j.bmc.2006.10.061Search in Google Scholar PubMed PubMed Central
Jones, E.G. (2010). Chapter 7: The Thalamus. Handbook of Brain Microcircuits. G.M. Shepherd and S. Grillner, eds. (New York: Oxford University Press), pp. 59–75.10.1093/med/9780195389883.003.0007Search in Google Scholar
Kendziorra, K., Wolf, H., Meyer, P.M., Barthel, H., Hesse, S., Becker, G.A., Luthardt, J., Schildan, A., Patt, M., Sorger, D., et al. (2011). Decreased cerebral alpha4beta2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 38, 515–525.10.1007/s00259-010-1644-5Search in Google Scholar PubMed
Klink, R., de Kerchove d’Exaerde, A., Zoli, M., and Changeux, J.P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J. Neurosci. 21, 1452–1463.10.1523/JNEUROSCI.21-05-01452.2001Search in Google Scholar
Kulak, J.M. and Schneider, J.S. (2004). Differences in alpha7 nicotinic acetylcholine receptor binding in motor symptomatic and asymptomatic MPTP-treated monkeys. Brain Res. 999, 193–202.10.1016/j.brainres.2003.10.062Search in Google Scholar PubMed
Kurahashi, H. and Hirose, S. (1993). Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. In GeneReviews(R). Pagon, R.A., Adam, M.P., Ardinger, H.H., Bird, T.D., Dolan, C.R., Fong, C.T., Smith, R.J.H., Stephens, K., eds. (Seattle, WA: University of Washington).Search in Google Scholar
Kuryatov, A., Gerzanich, V., Nelson, M., Olale, F., and Lindstrom, J. (1997). Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human alpha4beta2 nicotinic acetylcholine receptors. J. Neurosci. 17, 9035–9047.10.1523/JNEUROSCI.17-23-09035.1997Search in Google Scholar
Kwan, P., Schachter, S.C., and Brodie, M.J. (2011). Drug-resistant epilepsy. N. Engl. J. Med. 365, 919–926.10.1056/NEJMra1004418Search in Google Scholar PubMed
Labate, A., Mumoli, L., Fratto, A., Quattrone, A., and Gambardella, A. (2013). Hippocampal sclerosis worsens autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) phenotype related to CHRNB2 mutation. Eur. J. Neurol. 20, 591–593.10.1111/j.1468-1331.2012.03839.xSearch in Google Scholar PubMed
Lambe, E.K., Picciotto, M.R., and Aghajanian, G.K. (2003). Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28, 216–225.10.1038/sj.npp.1300032Search in Google Scholar PubMed
Leach, M.J., Baxter, M.G., and Critchley, M.A.E. (1991). Neurochemical and behavioral aspects of lamotrigine. Epilepsia 32, S4–S8.10.1111/j.1528-1157.1991.tb05882.xSearch in Google Scholar PubMed
Lee, C.C., Chou, I.C., Tsai, C.H., Wan, L., Shu, Y.A., Tsai, Y., Li, T.C., and Tsai, F.J. (2007). Association of idiopathic generalized epilepsy with polymorphisms in the neuronal nicotinic acetylcholine receptor subunits. J. Clin. Lab. Anal. 21, 67–70.10.1002/jcla.20155Search in Google Scholar PubMed PubMed Central
Lena, C., Changeux, J.P., and Mulle, C. (1993). Evidence for ‘preterminal’ nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J. Neurosci. 13, 2680–2688.10.1523/JNEUROSCI.13-06-02680.1993Search in Google Scholar
Lena, C., de Kerchove D’Exaerde, A., Cordero-Erausquin, M., Le Novere, N., del Mar Arroyo-Jimenez, M., and Changeux, J.P. (1999). Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc. Natl. Acad. Sci. USA 96, 12126–12131.10.1073/pnas.96.21.12126Search in Google Scholar PubMed PubMed Central
Leniger, T., Kananura, C., Hufnagel, A., Bertrand, S., Bertrand, D., and Steinlein, O.K. (2003). A new Chrna4 mutation with low penetrance in nocturnal frontal lobe epilepsy. Epilepsia 44, 981–985.10.1046/j.1528-1157.2003.61102.xSearch in Google Scholar PubMed
Lindstrom, J. (2000). The Structures of Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology. F. Clementi, et al., eds. (New York: Springer), pp. 101–162.10.1007/978-3-642-57079-7_6Search in Google Scholar
Liu, H., Lu, C., Li, Z., Zhou, S., Li, X., Ji, L., Lu, Q., Lv, R., Wu, L., and Ma, X. (2011). The identification of a novel mutation of nicotinic acetylcholine receptor gene CHRNB2 in a Chinese patient: its possible implication in non-familial nocturnal frontal lobe epilepsy. Epilepsy Res. 95, 94–99.10.1016/j.eplepsyres.2011.03.002Search in Google Scholar
Lizasoain, I., Knowles, R.G., and Moncada, S. (1995). Inhibition by lamotrigine of the generation of nitric oxide in rat forebrain slices. J. Neurochem. 64, 636–642.10.1046/j.1471-4159.1995.64020636.xSearch in Google Scholar
Magnusson, A., Stordal, E., Brodtkorb, E., and Steinlein, O. (2003). Schizophrenia, psychotic illness and other psychiatric symptoms in families with autosomal dominant nocturnal frontal lobe epilepsy caused by different mutations. Psychiatr. Genet. 13, 91–95.10.1097/01.ypg.0000056173.32550.b0Search in Google Scholar
Mann, E.O. and Mody, I. (2008). The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy. Curr. Opin. Neurol. 21, 155–160.10.1097/WCO.0b013e3282f52f5fSearch in Google Scholar
Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D.S., and Avoli, M. (2010). Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol. 9, 413–424.10.1016/S1474-4422(10)70059-4Search in Google Scholar
Maton, B., Vergnes, M., Hirsch, E., and Marescaux, C. (1997). Involvement of proprioceptive feedback in brainstem-triggered convulsions. Epilepsia 38, 509–515.10.1111/j.1528-1157.1997.tb01133.xSearch in Google Scholar
McCormick, D.A. and Contreras, D. (2001). On the cellular and network bases of epileptic seizures. Ann. Rev. Physiol. 63, 815–846.10.1146/annurev.physiol.63.1.815Search in Google Scholar
McCown, T.J. and Breese, G.R. (1990). Effects of apamin and nicotinic acetylcholine receptor antagonists on inferior collicular seizures. Eur. J. Pharmacol. 187, 49–58.10.1016/0014-2999(90)90339-8Search in Google Scholar
McIntosh, J.M., Yoshikami, D., Mahe, E., Nielsen, D.B., Rivier, J.E., Gray, W.R., and Olivera, B.M. (1994). A nicotinic acetylcholine receptor ligand of unique specificity, alpha-conotoxin ImI. J. Biol. Chem. 269, 16733–16739.10.1016/S0021-9258(19)89452-8Search in Google Scholar
McLean, M.J. and Macdonald, R.L. (1986). Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J. Pharmacol. Exp. Ther. 238, 727–738.Search in Google Scholar
McLellan, A., Phillips, H.A., Rittey, C., Kirkpatrick, M., Mulley, J.C., Goudie, D., Stephenson, J.B., Tolmie, J., Scheffer, I.E., Berkovic, S.F., et al. (2003). Phenotypic comparison of two Scottish families with mutations in different genes causing autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia 44, 613–617.10.1046/j.1528-1157.2003.20102.xSearch in Google Scholar PubMed
Meyer, P.M., Strecker, K., Kendziorra, K., Becker, G., Hesse, S., Woelpl, D., Hensel, A., Patt, M., Sorger, D., Wegner, F., et al. (2009). Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch. Gen. Psychiatr. 66, 866–877.10.1001/archgenpsychiatry.2009.106Search in Google Scholar
Meyerhoff, J.L. and Bates, V.E. (1985). Combined treatment with muscarinic and nicotinic cholinergic antagonists slows development of kindled seizures. Brain Res. 339, 386–389.10.1016/0006-8993(85)90111-8Search in Google Scholar
Miller, J.W., Gray, B.C., and Bardgett, M.E. (1992). Characterization of cholinergic regulation of seizures by the midline thalamus. Neuropharmacology 31, 349–356.10.1016/0028-3908(92)90067-YSearch in Google Scholar
Mizuno, K. (1997). Effects of carbamazepine and zonisamide on acetylcholine levels in rat striatum. Nihon Shinkei Seishin Yakurigaku Zasshi 17, 17–23.Search in Google Scholar
Mizuno, K., Okada, M., Murakami, T., Kamata, A., Zhu, G., Kawata, Y., Wada, K., and Kaneko, S. (2000). Effects of carbamazepine on acetylcholine release and metabolism. Epilepsy Res. 40, 187–195.10.1016/S0920-1211(00)00129-7Search in Google Scholar
Monti, B., Polazzi, E., and Contestabile, A. (2009). Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr. Mol. Pharmacol. 2, 95–109.10.2174/1874467210902010095Search in Google Scholar
Moretti, M., Vailati, S., Zoli, M., Lippi, G., Riganti, L., Longhi, R., Viegi, A., Clementi, F., and Gotti, C. (2004). Nicotinic acetylcholine receptor subtypes expression during rat retina development and their regulation by visual experience. Mol. Pharmacol. 66, 85–96.10.1124/mol.66.1.85Search in Google Scholar
Mugnaini, M., Tessari, M., Tarter, G., Merlo Pich, E., Chiamulera, C., and Bunnemann, B. (2002). Upregulation of [3H]methyllycaconitine binding sites following continuous infusion of nicotine, without changes of alpha7 or alpha6 subunit mRNA: an autoradiography and in situ hybridization study in rat brain. Eur. J. Neurosci. 16, 1633–1646.10.1046/j.1460-9568.2002.02220.xSearch in Google Scholar
Mulle, C., Vidal, C., Benoit, P., and Changeux, J.P. (1991). Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J. Neurosci. 11, 2588–2597.10.1523/JNEUROSCI.11-08-02588.1991Search in Google Scholar
Myhrer, T., Enger, S., Jonassen, M., and Aas, P. (2011). Enhanced efficacy of anticonvulsants when combined with levetiracetam in soman-exposed rats. Neurotoxicology 32, 923–930.10.1016/j.neuro.2011.04.008Search in Google Scholar
Nashmi, R. and Lester, H.A. (2006). CNS localization of neuronal nicotinic receptors. J. Mol. Neurosci. 30, 181–184.10.1385/JMN:30:1:181Search in Google Scholar
Nelson, M.E., Kuryatov, A., Choi, C.H., Zhou, Y., and Lindstrom, J. (2003). Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol. Pharmacol. 63, 332–341.10.1124/mol.63.2.332Search in Google Scholar
Newman, M.B., Manresa, J.J., Sanberg, P.R., and Shytle, R.D. (2001). Nicotine induced seizures blocked by mecamylamine and its stereoisomers. Life Sci. 69, 2583–2591.10.1016/S0024-3205(01)01338-8Search in Google Scholar
Okamoto, M., Kita, T., Okuda, H., and Nakashima, T. (1992). Tolerance to the convulsions induced by daily nicotine treatment in rats. Jpn J. Pharmacol. 59, 449–455.10.1254/jjp.59.449Search in Google Scholar
Oldani, A., Zucconi, M., Asselta, R., Modugno, M., Bonati, M.T., Dalpra, L., Malcovati, M., Tenchini, M.L., Smirne, S., and Ferini-Strambi, L. (1998). Autosomal dominant nocturnal frontal lobe epilepsy. A video-polysomnographic and genetic appraisal of 40 patients and delineation of the epileptic syndrome. Brain 121(Pt 2), 205–223.Search in Google Scholar
Parikh, V., Ji, J., Decker, M.W., and Sarter, M. (2010). Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J. Neurosci. 30, 3518–3530.10.1523/JNEUROSCI.5712-09.2010Search in Google Scholar
Pauly, J.R., Stitzel, J.A., Marks, M.J., and Collins, A.C. (1989). An autoradiographic analysis of cholinergic receptors in mouse brain. Brain Res. Bull. 22, 453–459.10.1016/0361-9230(89)90072-5Search in Google Scholar
Perry, D.C., Xiao, Y., Nguyen, H.N., Musachio, J.L., Davila-Garcia, M.I., and Kellar, K.J. (2002). Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J. Neurochem. 82, 468–481.10.1046/j.1471-4159.2002.00951.xSearch in Google Scholar
Phillips, H.A., Scheffer, I.E., Berkovic, S.F., Hollway, G.E., Sutherland, G.R., and Mulley, J.C. (1995). Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q 13.2. Nat. Genet. 10, 117–118.10.1038/ng0595-117Search in Google Scholar
Phillips, H.A., Marini, C., Scheffer, I.E., Sutherland, G.R., Mulley, J.C., and Berkovic, S.F. (2000). A de novo mutation in sporadic nocturnal frontal lobe epilepsy. Ann. Neurol. 48, 264–267.10.1002/1531-8249(200008)48:2<264::AID-ANA20>3.0.CO;2-BSearch in Google Scholar
Phillips, H.A., Favre, I., Kirkpatrick, M., Zuberi, S.M., Goudie, D., Heron, S.E., Scheffer, I.E., Sutherland, G.R., Berkovic, S.F., Bertrand, D., et al. (2001). CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am. J. Hum. Genet. 68, 225–231.10.1086/316946Search in Google Scholar
Picard, F., Bertrand, S., Steinlein, O.K., and Bertrand, D. (1999). Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 40, 1198–1209.10.1111/j.1528-1157.1999.tb00848.xSearch in Google Scholar
Picciotto, M.R., Higley, M.J., and Mineur, Y.S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129.10.1016/j.neuron.2012.08.036Search in Google Scholar
Pichika, R., Easwaramoorthy, B., Christian, B.T., Shi, B., Narayanan, T.K., Collins, D., and Mukherjee, J. (2011). Nicotinic alpha4beta2 receptor imaging agents. Part III. Synthesis and biological evaluation of 3-(2-(S)-azetidinylmethoxy)-5-(3′-(18)F-fluoropropyl)pyridine ((18)F-nifzetidine). Nucl. Med. Biol. 38, 1183–1192.10.1016/j.nucmedbio.2011.05.005Search in Google Scholar
Pincus, J.H. and Kiss, A. (1986a). Phenytoin reduces early acetylcholine release after depolarization. Brain Res. 397, 103–107.10.1016/0006-8993(86)91373-9Search in Google Scholar
Pincus, J.H. and Kiss, A. (1986b). Phenytoin, tetrodotoxin, and acetylcholine release. Exp. Neurol. 94, 777–781.10.1016/0014-4886(86)90255-4Search in Google Scholar
Pincus, J.H. and Weinfeld, H.M. (1984). Acetylcholine release from synaptosomes and phenytoin action. Brain Res. 296, 313–317.10.1016/0006-8993(84)90067-2Search in Google Scholar
Provini, F., Plazzi, G., Tinuper, P., Vandi, S., Lugaresi, E., and Montagna, P. (1999). Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain 122(Pt 6), 1017–1031.Search in Google Scholar
Psarropoulou, C., Boivin, M., and Laudadio, M.A. (2003). Nicotinic effects on excitatory field potentials recorded from the immature CA3 area of rat hippocampal slices. Exp. Brain Res. 152, 353–360.10.1007/s00221-003-1546-xSearch in Google Scholar PubMed
Quik, M., Vailati, S., Bordia, T., Kulak, J.M., Fan, H., McIntosh, J.M., Clementi, F., and Gotti, C. (2005). Subunit composition of nicotinic receptors in monkey striatum: effect of treatments with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or L-DOPA. Mol. Pharmacol. 67, 32–41.10.1124/mol.104.006015Search in Google Scholar PubMed
Quik, M., Campos, C., Parameswaran, N., Langston, J.W., McIntosh, J.M., and Yeluashvili, M. (2010). Chronic nicotine treatment increases nAChRs and microglial expression in monkey substantia nigra after nigrostriatal damage. J. Mol. Neurosci. 40, 105–113.10.1007/s12031-009-9265-9Search in Google Scholar PubMed PubMed Central
Raju, G.P., Sarco, D.P., Poduri, A., Riviello, J.J., Bergin, A.M., and Takeoka, M. (2007). Oxcarbazepine in children with nocturnal frontal-lobe epilepsy. Pediatr. Neurol. 37, 345–349.10.1016/j.pediatrneurol.2007.06.013Search in Google Scholar PubMed
Rashid, M.H., Furue, H., Yoshimura, M., and Ueda, H. (2006). Tonic inhibitory role of alpha4beta2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain 125, 125–135.10.1016/j.pain.2006.05.011Search in Google Scholar PubMed
Rathouz, M.M. and Berg, D.K. (1994). Synaptic-type acetylcholine receptors raise intracellular calcium levels in neurons by two mechanisms. J. Neurosci. 14, 6935–6945.10.1523/JNEUROSCI.14-11-06935.1994Search in Google Scholar
Ribeiro-DaSilva, G., Pires-Barbosa, R., Prado, J.F., and Carlini, C.R. (1989). Convulsions induced by canatoxin in rats are probably a consequence of hypoxia. Braz. J. Med. Biol. Res. 22, 877–880.Search in Google Scholar
Role, L.W. and Berg, D.K. (1996). Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16, 1077–1085.10.1016/S0896-6273(00)80134-8Search in Google Scholar
Romigi, A., Marciani, M.G., Placidi, F., Pisani, L.R., Izzi, F., Torelli, F., and Prosperetti, C. (2008). Oxcarbazepine in nocturnal frontal-lobe epilepsy: a further interesting report. Pediatr. Neurol. 39, 298.10.1016/j.pediatrneurol.2008.07.015Search in Google Scholar
Rozycka, A., Skorupska, E., Kostyrko, A., and Trzeciak, W.H. (2003). Evidence for S284L mutation of the CHRNA4 in a white family with autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia 44, 1113–1117.10.1046/j.1528-1157.2003.07603.xSearch in Google Scholar
Rozycka, A., Steinborn, B., and Trzeciak, W.H. (2009). The 1674+11C>T polymorphism of CHRNA4 is associated with juvenile myoclonic epilepsy. Seizure 18, 601–603.10.1016/j.seizure.2009.06.007Search in Google Scholar
Saenz, A., Galan, J., Caloustian, C., Lorenzo, F., Marquez, C., Rodriguez, N., Jimenez, M.D., Poza, J.J., Cobo, A.M., Grid, D., et al. (1999). Autosomal dominant nocturnal frontal lobe epilepsy in a Spanish family with a Ser252Phe mutation in the CHRNA4 gene. Arch. Neurol. 56, 1004–1009.10.1001/archneur.56.8.1004Search in Google Scholar
Saghazadeh, A., Mastrangelo, M., and Rezaei, N. (2014). Genetic background of febrile seizures. Rev. Neurosci. 25, 129–161.10.1515/revneuro-2013-0053Search in Google Scholar
Sander, T., Toliat, M.R., Heils, A., Leschik, G., Becker, C., Ruschendorf, F., Rohde, K., Mundlos, S., and Nurnberg, P. (2002). Association of the 867Asp variant of the human anion exchanger 3 gene with common subtypes of idiopathic generalized epilepsy. Epilepsy Res. 51, 249–255.10.1016/S0920-1211(02)00152-3Search in Google Scholar
Schachter, S.C. (2009). Seizure disorders. Med. Clin. North Am. 93, 343–351, viii.Search in Google Scholar
Scheffer, I.E., Bhatia, K.P., Lopes-Cendes, I., Fish, D.R., Marsden, C.D., Andermann, E., Andermann, F., Desbiens, R., Keene, D., Cendes, F., et al. (1995). Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder. Brain 118(Pt 1), 61–73.10.1093/brain/118.1.61Search in Google Scholar PubMed
Schlicker, E., Reimann, W., and Gothert, M. (1985). Gabapentin decreases monoamine release without affecting acetylcholine release in the brain. Arzneimittelforschung 35, 1347–1349.Search in Google Scholar
Schwarz, J.R. and Grigat, G. (1989). Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia 30, 286–294.10.1111/j.1528-1157.1989.tb05300.xSearch in Google Scholar PubMed
Sethy, V.H. and Sage, G.P. (1992). Modulation of release of acetylcholine from the striatum by a proposed excitatory amino acid antagonist U-54494A: comparison with known antagonists, diazepam and phenytoin. Neuropharmacology 31, 111–114.10.1016/0028-3908(92)90019-LSearch in Google Scholar
Sgard, F., Charpantier, E., Barneoud, P., and Besnard, F. (1999). Nicotinic receptor subunit mRNA expression in dopaminergic neurons of the rat brain. Ann. NY Acad. Sci. 868, 633–635.10.1111/j.1749-6632.1999.tb11338.xSearch in Google Scholar
Sharma, G. and Vijayaraghavan, S. (2001). Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl. Acad. Sci. USA 98, 4148–4153.10.1073/pnas.071540198Search in Google Scholar
Sharma, G. and Vijayaraghavan, S. (2003). Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38, 929–939.10.1016/S0896-6273(03)00322-2Search in Google Scholar
Sher, E., Chen, Y., Sharples, T.J., Broad, L.M., Benedetti, G., Zwart, R., McPhie, G.I., Pearson, K.H., Baldwinson, T., and De Filippi, G. (2004). Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr. Top. Med. Chem. 4, 283–297.10.2174/1568026043451393Search in Google Scholar
Sherman, S.M. (2012). Thalamocortical interactions. Curr. Opin. Neurobiol. 22, 575–579.10.1016/j.conb.2012.03.005Search in Google Scholar
Shih, T.M., Koviak, T.A., and Capacio, B.R. (1991). Anticonvulsants for poisoning by the organophosphorus compound soman: pharmacological mechanisms. Neurosci. Biobehav. Rev. 15, 349–362.10.1016/S0149-7634(05)80028-4Search in Google Scholar
Shih, T., McDonough, J.H., Jr., and Koplovitz, I. (1999). Anticonvulsants for soman-induced seizure activity. J. Biomed. Sci. 6, 86–96.10.1007/BF02256439Search in Google Scholar PubMed
Shoop, R.D., Chang, K.T., Ellisman, M.H., and Berg, D.K. (2001). Synaptically driven calcium transients via nicotinic receptors on somatic spines. J. Neurosci. 21, 771–781.10.1523/JNEUROSCI.21-03-00771.2001Search in Google Scholar
Silva-Barrat, C., Velluti, J., Szente, M., Batini, C., and Champagnat, J. (2005). Exaggeration of epileptic-like patterns by nicotine receptor activation during the GABA withdrawal syndrome. Brain Res. 1042, 133–143.10.1016/j.brainres.2005.02.008Search in Google Scholar PubMed
Sone, D., Sugawara, T., Sakakibara, E., Tomioka, Y., Taniguchi, G., Murata, Y., Watanabe, M., and Kaneko, S. (2012). A case of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) coexisting with pervasive developmental disorder harboring SCN1A mutation in addition to CHRNB2 mutation. Epilepsy Behav. 25, 192–195.10.1016/j.yebeh.2012.07.027Search in Google Scholar
Sparks, D.L., Beach, T.G., and Lukas, R.J. (1998). Immunohistochemical localization of nicotinic beta2 and alpha4 receptor subunits in normal human brain and individuals with Lewy body and Alzheimer’s disease: preliminary observations. Neurosci. Lett. 256, 151–154.10.1016/S0304-3940(98)00794-0Search in Google Scholar
Steinlein, O.K. (2004). Genetic mechanisms that underlie epilepsy. Nat. Rev. Neurosci. 5, 400–408.10.1038/nrn1388Search in Google Scholar
Steinlein, O.K., Mulley, J.C., Propping, P., Wallace, R.H., Phillips, H.A., Sutherland, G.R., Scheffer, I.E., and Berkovic, S.F. (1995). A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 11, 201–203.10.1038/ng1095-201Search in Google Scholar
Steinlein, O., Sander, T., Stoodt, J., Kretz, R., Janz, D., and Propping, P. (1997a). Possible association of a silent polymorphism in the neuronal nicotinic acetylcholine receptor subunit alpha4 with common idiopathic generalized epilepsies. Am. J. Med. Genet. 74, 445–449.10.1002/(SICI)1096-8628(19970725)74:4<445::AID-AJMG18>3.0.CO;2-ISearch in Google Scholar
Steinlein, O.K., Magnusson, A., Stoodt, J., Bertrand, S., Weiland, S., Berkovic, S.F., Nakken, K.O., Propping, P., and Bertrand, D. (1997b). An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum. Mol. Genet. 6, 943–947.10.1093/hmg/6.6.943Search in Google Scholar
Steinlein, O.K., Stoodt, J., Mulley, J., Berkovic, S., Scheffer, I.E., and Brodtkorb, E. (2000). Independent occurrence of the CHRNA4 Ser248Phe mutation in a Norwegian family with nocturnal frontal lobe epilepsy. Epilepsia 41, 529–535.10.1111/j.1528-1157.2000.tb00205.xSearch in Google Scholar
Steinlein, O.K., Hoda, J.C., Bertrand, S., and Bertrand, D. (2012). Mutations in familial nocturnal frontal lobe epilepsy might be associated with distinct neurological phenotypes. Seizure 21, 118–123.10.1016/j.seizure.2011.10.003Search in Google Scholar
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience 137, 1087–1106.10.1016/j.neuroscience.2005.10.029Search in Google Scholar
Tammimaki, A., Horton, W.J., and Stitzel, J.A. (2011). Recent advances in gene manipulation and nicotinic acetylcholine receptor biology. Biochem. Pharmacol. 82, 808–819.10.1016/j.bcp.2011.06.014Search in Google Scholar
Taske, N.L., Williamson, M.P., Makoff, A., Bate, L., Curtis, D., Kerr, M., Kjeldsen, M.J., Pang, K.A., Sundqvist, A., Friis, M.L., et al. (2002). Evaluation of the positional candidate gene CHRNA7 at the juvenile myoclonic epilepsy locus (EJM2) on chromosome 15q13-14. Epilepsy Res. 49, 157–172.10.1016/S0920-1211(02)00027-XSearch in Google Scholar
Tella, S.R., Korupolu, G.R., Schindler, C.W., and Goldberg, S.R. (1992). Pathophysiological and pharmacological mechanisms of acute cocaine toxicity in conscious rats. J. Pharmacol. Exp. Ther. 262, 936–946.Search in Google Scholar
Teper, Y., Whyte, D., Cahir, E., Lester, H.A., Grady, S.R., Marks, M.J., Cohen, B.N., Fonck, C., McClure-Begley, T., McIntosh, J.M., et al. (2007). Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutation. J. Neurosci. 27, 10128–10142.10.1523/JNEUROSCI.3042-07.2007Search in Google Scholar
Toyohara, J., Ishiwata, K., Sakata, M., Wu, J., Nishiyama, S., Tsukada, H., and Hashimoto, K. (2010). In vivo evaluation of alpha7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS One 5, e8961.10.1371/journal.pone.0008961Search in Google Scholar
Tsai, M.C., Chen, Y.H., and Huang, S.S. (2000). Amphetamine elicited potential changes in vertebrate and invertebrate central neurons. Acta Biol. Hung. 51, 275–286.10.1007/BF03543226Search in Google Scholar
Tsoucaris-Kupfer, D., Liblau, L., Legrand, M., and Schmitt, H. (1983). Central cardiovascular action of penicillin in anaesthetized dogs and rats. Neuropharmacology 22, 903–906.10.1016/0028-3908(83)90138-7Search in Google Scholar
Tsunashima, K., Wolkersdorfer, M., Schwarzer, C., Sperk, G., and Fischer-Colbrie, R. (1997). Limbic seizures induce neuropeptide and chromogranin mRNA expression in rat adrenal medulla. Mol. Brain Res. 51, 42–48.10.1016/S0169-328X(97)00214-3Search in Google Scholar
Tsuneki, H., Klink, R., Lena, C., Korn, H., and Changeux, J.P. (2000). Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur. J. Neurosci. 12, 2475–2485.10.1046/j.1460-9568.2000.00138.xSearch in Google Scholar PubMed
Turner, J.R. and Kellar, K.J. (2005). Nicotinic cholinergic receptors in the rat cerebellum: multiple heteromeric subtypes. J. Neurosci. 25, 9258–9265.10.1523/JNEUROSCI.2112-05.2005Search in Google Scholar PubMed PubMed Central
Uzum, G., Bahcekapili, N., Diler, A.S., and Ziylan, Y.Z. (2004). Tolerance to pentylentetrazol-induced convulsions and protection of cerebrovascular integrity by chronic nicotine. Int. J. Neurosci. 114, 735–748.10.1080/00207450490440975Search in Google Scholar PubMed
Vallés, A.S., Garbus, I., and Barrantes, F.J. (2007). Lamotrigine is an open-channel blocker of the nicotinic acetylcholine receptor. Neuroreport 18, 45–50.10.1097/01.wnr.0000246323.66438.94Search in Google Scholar PubMed
Vallés, A.S., Garbus, I., Antollini, S.S., and Barrantes, F.J. (2008). A novel agonist effect on the nicotinic acetylcholine receptor exerted by the anticonvulsive drug Lamotrigine. Biochim. Biophys. Acta 1778, 2395–2404.10.1016/j.bbamem.2008.06.012Search in Google Scholar
Vizi, E.S. and Pasztor, E. (1981). Release of acetylcholine from isolated human cortical slices: inhibitory effect of norepinephrine and phenytoin. Exp. Neurol. 73, 144–153.10.1016/0014-4886(81)90051-0Search in Google Scholar
Wada, E., McKinnon, D., Heinemann, S., Patrick, J., and Swanson, L.W. (1990). The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system. Brain Res. 526, 45–53.10.1016/0006-8993(90)90248-ASearch in Google Scholar
Waldmeier, P.C., Baumann, P.A., Wicki, P., Feldtrauer, J.J., Stierlin, C., and Schmutz, M. (1995). Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45, 1907–1913.10.1212/WNL.45.10.1907Search in Google Scholar
Wallace, T.L. and Porter, R.H. (2011). Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem. Pharmacol. 82, 891–903.10.1016/j.bcp.2011.06.034Search in Google Scholar
Wang, M.Y., Liu, X.Z., Wang, J., Luan, G.M., and Wu, L.W. (2014). A novel mutation of the nicotinic acetylcholine receptor gene CHRNA4 in a Chinese patient with non-familial nocturnal frontal lobe epilepsy. Epilepsy Res. Sep 16.10.1016/j.eplepsyres.2014.08.024Search in Google Scholar
Willow, M., Kuenzel, E.A., and Catterall, W.A. (1984). Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol. Pharmacol. 25, 228–234.Search in Google Scholar
Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends Neurosci. 20, 92–98.10.1016/S0166-2236(96)10073-4Search in Google Scholar
Yakel, J.L. (2012). Nicotinic ACh receptors in the hippocampus: role in excitability and plasticity. Nicotine Tob. Res. 14, 1249–1257.10.1093/ntr/nts091Search in Google Scholar PubMed PubMed Central
Yamamoto, R., Yanagita, T., Kobayashi, H., Yokoo, H., and Wada, A. (1997). Up-regulation of sodium channel subunit mRNAs and their cell surface expression by antiepileptic valproic acid: activation of calcium channel and catecholamine secretion in adrenal chromaffin cells. J. Neurochem. 68, 1655–1662.10.1046/j.1471-4159.1997.68041655.xSearch in Google Scholar PubMed
Yang, J., McBride, S., Mak, D.O., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J.K. (2002). Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc. Natl. Acad. Sci. USA 99, 7711–7716.10.1073/pnas.102006299Search in Google Scholar PubMed PubMed Central
Young, T., Wittenauer, S., McIntosh, J.M., and Vincler, M. (2008). Spinal alpha3beta2* nicotinic acetylcholine receptors tonically inhibit the transmission of nociceptive mechanical stimuli. Brain Res. 1229, 118–124.10.1016/j.brainres.2008.06.086Search in Google Scholar
Zarei, M.M., Radcliffe, K.A., Chen, D., Patrick, J.W., and Dani, J.A. (1999). Distributions of nicotinic acetylcholine receptor alpha7 and beta2 subunits on cultured hippocampal neurons. Neuroscience 88, 755–764.10.1016/S0306-4522(98)00246-2Search in Google Scholar
Zheng, C., Yang, K., Liu, Q., Wang, M.Y., Shen, J., Vallés, A.S., Lukas, R.J., Barrantes, F.J., and Wu, J. (2010). The anticonvulsive drug lamotrigine blocks neuronal {alpha}4{beta}2 nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 335, 401–408.10.1124/jpet.110.171108Search in Google Scholar
Zhu, G., Okada, M., Murakami, T., Kawata, Y., Kamata, A., and Kaneko, S. (2002). Interaction between carbamazepine, zonisamide and voltage-sensitive Ca2+ channel on acetylcholine release in rat frontal cortex. Epilepsy Res. 49, 49–60.10.1016/S0920-1211(02)00015-3Search in Google Scholar
Zimmerman, G., Njunting, M., Ivens, S., Tolner, E.A., Behrens, C.J., Gross, M., Soreq, H., Heinemann, U., and Friedman, A. (2008). Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats. Eur. J. Neurosci. 27, 965–975.10.1111/j.1460-9568.2008.06070.xSearch in Google Scholar PubMed
Zoli, M., Moretti, M., Zanardi, A., McIntosh, J.M., Clementi, F., and Gotti, C. (2002). Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J. Neurosci. 22, 8785–8789.10.1523/JNEUROSCI.22-20-08785.2002Search in Google Scholar
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus
- Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways
- Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus
- Roots to start research in amyotrophic lateral sclerosis: molecular pathways and novel therapeutics for future
- How does spreading depression spread? Physiology and modeling
- Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions
- An evaluation of the links between microRNA, autophagy, and epilepsy
- Peripheral nerve hyperexcitability syndromes
Articles in the same Issue
- Frontmatter
- Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus
- Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways
- Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus
- Roots to start research in amyotrophic lateral sclerosis: molecular pathways and novel therapeutics for future
- How does spreading depression spread? Physiology and modeling
- Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions
- An evaluation of the links between microRNA, autophagy, and epilepsy
- Peripheral nerve hyperexcitability syndromes