Startseite Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum

  • Alexey V. Shevelkin

    Alexey V. Shevelkin received his PhD at the P.K. Anokhin Institute of Normal Physiology. His long-term research interests involve the development of a comprehensive understanding of molecular and genetic mechanisms of neuronal plasticity as well as how alterations in gene expression contribute to neural and behavioral activity in normal and disease conditions. Currently, he is a Postdoctoral Research Fellow at the Pletnikov Laboratory in the Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine. His research in the Pletnikov group is supported by the International Training in Neuroscience fellowship awarded by NIMH.

    , Chinezimuzo Ihenatu

    Chinezimuzo ‘Chinezi’ Ihenatu is an undergraduate at Brown University, where she studies Neuroscience. During her summer breaks, she serves as a research assistant in the Pletnikov Lab at Johns Hopkins University. She became involved with schizophrenia research at the Pletnikov Lab through the Summer Training and Research Programs at Johns Hopkins. She continues to work in the Lab.

    und Mikhail V. Pletnikov

    Mikhail V. Pletnikov, MD, PhD is an Associate Professor at the Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine. His laboratory is interested in the neurobiology of neurodevelopmental diseases, such as schizophrenia and autism. The major focus of the Lab is to evaluate how adverse environmental factors and vulnerable genes interact to affect brain and behavior development. The Pletnikov lab addresses these experimental questions using methods of cell and molecular biology, neuroimmunology, neurochemistry, psychopharmacology, and developmental psychobiology.

    EMAIL logo
Veröffentlicht/Copyright: 13. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Recent studies have advanced our understanding of the role of the cerebellum in non-motor behaviors. Abnormalities in the cerebellar structure have been demonstrated to produce changes in emotional, cognitive, and social behaviors resembling clinical manifestations observed in patients with autism spectrum disorders (ASD) and schizophrenia. Several animal models have been used to evaluate the effects of relevant environmental and genetic risk factors on the cerebellum development and function. However, very few models of ASD and schizophrenia selectively target the cerebellum and/or specific cell types within this structure. In this review, we critically evaluate the strength and weaknesses of these models. We will propose that the future progress in this field will require time- and cell type-specific manipulations of disease-relevant genes, not only selectively in the cerebellum, but also in frontal brain areas connected with the cerebellum. Such information can advance our knowledge of the cerebellar contribution to non-motor behaviors in mental health and disease.


Corresponding author: Mikhail V. Pletnikov, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; and Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, e-mail:

About the authors

Alexey V. Shevelkin

Alexey V. Shevelkin received his PhD at the P.K. Anokhin Institute of Normal Physiology. His long-term research interests involve the development of a comprehensive understanding of molecular and genetic mechanisms of neuronal plasticity as well as how alterations in gene expression contribute to neural and behavioral activity in normal and disease conditions. Currently, he is a Postdoctoral Research Fellow at the Pletnikov Laboratory in the Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine. His research in the Pletnikov group is supported by the International Training in Neuroscience fellowship awarded by NIMH.

Chinezimuzo Ihenatu

Chinezimuzo ‘Chinezi’ Ihenatu is an undergraduate at Brown University, where she studies Neuroscience. During her summer breaks, she serves as a research assistant in the Pletnikov Lab at Johns Hopkins University. She became involved with schizophrenia research at the Pletnikov Lab through the Summer Training and Research Programs at Johns Hopkins. She continues to work in the Lab.

Mikhail V. Pletnikov

Mikhail V. Pletnikov, MD, PhD is an Associate Professor at the Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine. His laboratory is interested in the neurobiology of neurodevelopmental diseases, such as schizophrenia and autism. The major focus of the Lab is to evaluate how adverse environmental factors and vulnerable genes interact to affect brain and behavior development. The Pletnikov lab addresses these experimental questions using methods of cell and molecular biology, neuroimmunology, neurochemistry, psychopharmacology, and developmental psychobiology.

Acknowledgments

This review was supported by the fellowship grant, 1F05MH097457-01 (AVS).

References

Akaike, M. and Kato, N. (1997). Abnormal behavior, spatia learning impairment and neuropeptides caused by temporary neonatal hypothyroidism. In: Recent Research Development in Neuroendocrinology-Thyroid Hormone and Brain Maturation. C.E. Hendrich, ed. (Trivandrum: Research Signpost), pp. 39–48.Suche in Google Scholar

Akaike, M., Kato, N., Ohno, H., and Kobayashi, T. (1991). Hyperactivity and spatial maze learning impairment of adult rats with temporary neonatal hypothyroidism. Neurotoxicol. Teratol. 13, 317–322.10.1016/0892-0362(91)90077-ASuche in Google Scholar

Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738.10.1038/35099560Suche in Google Scholar PubMed

Amaral, D.G., Schumann, C.M., and Nordahl, C.W. (2008). Neuroanatomy of autism. Trends Neurosci. 31, 137–145.10.1016/j.tins.2007.12.005Suche in Google Scholar PubMed

Andreasen, N.C. and Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biol. Psychiatry 64, 81–88.10.1016/j.biopsych.2008.01.003Suche in Google Scholar PubMed PubMed Central

Andreasen, N.C., O’Leary, D.S., Cizadlo, T., Arndt, S., Rezai, K., Ponto, L.L., Watkins, G.L., and Hichwa, R.D. (1996). Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc. Natl. Acad. Sci. USA 93, 9985–9990.10.1073/pnas.93.18.9985Suche in Google Scholar PubMed PubMed Central

Andreasen, N.C., Paradiso, S., O’Leary, D.S. (1998). ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr. Bull. 24, 203–218.10.1093/oxfordjournals.schbul.a033321Suche in Google Scholar PubMed

Arias, I., Sorlozano, A., Villegas, E., de Dios Luna, J., McKenney, K., Cervilla, J., Gutierrez, B., and Gutierrez, J. (2012). Infectious agents associated with schizophrenia: a meta-analysis. Schizophr. Res. 136, 128–136.10.1016/j.schres.2011.10.026Suche in Google Scholar PubMed

Arguello, P.A. and Gogos, J.A. (2012). Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci. 35, 3–13.10.1016/j.tins.2011.11.007Suche in Google Scholar PubMed

Austin, C.P., Ky, B., Ma, L., Morris, J.A., and Shughrue, P.J. (2003). DISC1 (Disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. Neuroreport 14, 951–954.Suche in Google Scholar

Austin, C.P., Ky, B., Ma, L., Morris, J.A., and Shughrue, P.J. (2004). Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 124, 3–10.10.1016/j.neuroscience.2003.11.010Suche in Google Scholar PubMed

Bacon, C. and Rappold, G.A. (2012). The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet. 131, 1687–1698.10.1007/s00439-012-1193-zSuche in Google Scholar PubMed PubMed Central

Bartzokis, G. (2012). Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 62, 2137–2153.10.1016/j.neuropharm.2012.01.015Suche in Google Scholar

Beraki, S., Aronsson, F., Karlsson, H., Ogren, S.O., and Kristensson, K. (2005). Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice. Mol. Psychiatry 10, 299–308.10.1038/sj.mp.4001545Suche in Google Scholar

Beri, S., Tonna, N., Menozzi, G., Bonaglia, M.C., Sala, C., and Giorda, R. (2007). DNA methylation regulates tissue-specific expression of Shank3. J. Neurochem. 101, 1380–1391.10.1111/j.1471-4159.2007.04539.xSuche in Google Scholar

Blatt, G.J. (2005). GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int. Rev. Neurobiol. 71, 167–178.10.1016/S0074-7742(05)71007-2Suche in Google Scholar

Boeckers, T.M., Bockmann, J., Kreutz, M.R., and Gundelfinger, E.D. (2002). ProSAP/Shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J. Neurochem. 81, 903–910.10.1046/j.1471-4159.2002.00931.xSuche in Google Scholar PubMed

Boksa, P. (2010). Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain. Behav. Immun. 24, 881–897.10.1016/j.bbi.2010.03.005Suche in Google Scholar PubMed

Bonaglia, M.C., Giorda,R., Mani, E., Aceti, G., Anderlid, B.M., Baroncini, A., Pramparo, T., and Zuffardi, O. (2006). Identification of a recurrent break point within the Shank3 gene in the 22p13.3 deletion syndrome. J. Med. Genet. 43, 822–828.10.1136/jmg.2005.038604Suche in Google Scholar PubMed PubMed Central

Bord, L., Wheeler, J., Paek, M., Saleh, M., Lyons-Warren, A., Ross, C.A., Sawamura, N., and Sawa, A. (2006). Primate disrupted-in-schizophrenia-1 (DISC1): high divergence of a gene for major mental illnesses in recent evolutionary history. Neurosci. Res. 56, 286–293.10.1016/j.neures.2006.07.010Suche in Google Scholar PubMed

Boukhtouche, F., Janmaat, S., Vodjdani, G., Gautheron, V., Mallet, J., Dusart, I., and Mariani, J. (2006). Retinoid-related orphan receptor α controls the early steps of purkinje cell dendritic differentiation. J. Neurosci. 26, 1531–1538.10.1523/JNEUROSCI.4636-05.2006Suche in Google Scholar PubMed PubMed Central

Boyadjieva, N. and Varadinova, M. (2012). Epigenetics of psychoactive drugs. J. Pharm. Pharmacol. 64, 1349–1358.10.1111/j.2042-7158.2012.01475.xSuche in Google Scholar PubMed

Bozdagi, O., Sakurai, T., Papapetrou, D., Wang, X., Dickstein, D.L., Takahashi, N., Kajiwara, Y., Yang, M., Katz, A.M., Scattoni, M.L., et al. (2010). Haploinsufficiency of the autism- associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Autism 1, 15.10.1186/2040-2392-1-15Suche in Google Scholar PubMed PubMed Central

Brandon, N.J. and Sawa, A. (2011). Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat. Rev. Neurosci. 12, 707–722.10.1038/nrn3120Suche in Google Scholar PubMed PubMed Central

Brielmaier, J., Matteson, P.G., Silverman, J.L., Senerth, J.M., Kelly, S., Genestine, M., Millonig, J.H., DiCicco-Bloom, E., and Crawley, J.N. (2012). Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 7, e40914.10.1371/journal.pone.0040914Suche in Google Scholar PubMed PubMed Central

Brown, A.S. and Derkits, E.J. (2010). Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry 167, 261–280.10.1176/appi.ajp.2009.09030361Suche in Google Scholar PubMed PubMed Central

Buffo, A. and Rossi, F. (2013). Origin, lineage and function of cerebellar glia. Prog. Neurobiol. 109, 42–63.10.1016/j.pneurobio.2013.08.001Suche in Google Scholar PubMed

Burnet, P.W., Eastwood, S.L., Bristow, G.C., Godlewska, B.R., Sikka, P., Walker, M., and Harrison, P.J. (2008). D-amino acid oxidase activity and expression are increased in schizophrenia. Mol. Psychiatry 13, 658–660.10.1038/mp.2008.47Suche in Google Scholar PubMed PubMed Central

Burrows, E.L, McOmish, C.E., and Hannan, A.J. (2011). Gene-environment interactions and construct validity in preclinical models of psychiatric disorders. Prog. Neuro-Psych. 35, 1376–1382.10.1016/j.pnpbp.2010.12.011Suche in Google Scholar PubMed

Buyske, S., Williams, T.A., Mars, A.E., Stenroos, E.S., Ming, S.X., Wang, R., Sreenath, M., Factura, M.F., Reddy, C., Lambert, G.H., et al. (2006). Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genet. 7, 8.10.1186/1471-2156-7-8Suche in Google Scholar PubMed PubMed Central

Camargo, L.M., Collura, V., Rain, J.C., Mizuguchi, K., Hermijakob, H., Kerrien, S., Bonnert, T.P., Whiting, P.J., and Brandon, N.J. (2007). Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 12, 74–86.10.1038/sj.mp.4001880Suche in Google Scholar PubMed

Chaste, P. and Leboyer, M. (2012). Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin. Neurosci. 14, 281–292.10.31887/DCNS.2012.14.3/pchasteSuche in Google Scholar

Cheh, M.A., Millonig, J.H., Roselli, L.M., Ming, X., Jacobsen, E., Kamdar, S., and Wagner, G.C. (2006). En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res. 1116, 166–176.10.1016/j.brainres.2006.07.086Suche in Google Scholar

Cheng, L., Hattori, E., Nakajima, A., Woehrle, N.S., Opal, M.D., Zhang, C., Grennan, K., Dulawa, S.C., Tang, Y.P., Gershon, E.S., et al. (2014). Expression of the G72/G30 gene in transgenic mice induces behavioral changes. Mol. Psychiatry 19, 175–183.10.1038/mp.2012.185Suche in Google Scholar

Chomiak, T. and Hu, B. (2013). Alterations of neocortical development and maturation in autism: insight from valproic acid exposure and animal models of autism. Neurotoxicol. Teratol. 36, 57–66.10.1016/j.ntt.2012.08.005Suche in Google Scholar

Chubb, J.E., Bradshaw, N.J., Soares, D.C., Porteous, D.J., and Millar, J.K. (2008). The DISC locus in psychiatric illness. Mol. Psychiatry 13, 36–64.10.1038/sj.mp.4002106Suche in Google Scholar

Clower, D.M., West, R.A., Lynch, J.C., and Strick, P.L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci. 21, 6283–6291.10.1523/JNEUROSCI.21-16-06283.2001Suche in Google Scholar

Clower, D.M., Dum, R.P., and Strick, P.L. (2005). Basal ganglia and cerebellar inputs to ‘AIP’. Cereb. Cortex 7, 913–920.10.1093/cercor/bhh190Suche in Google Scholar

Courchesne, E. (1991). Neuroanatomic imaging in autism. Pediatrics 87, 781–790.10.1542/peds.87.5.781Suche in Google Scholar

DeLorey, T.M., Sahbaie, P., Hashemi, E., Homanics, G.E., and Clark, J.D. (2008). Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav. Brain Res. 5, 207–220.10.1016/j.bbr.2007.09.009Suche in Google Scholar

Dietz, D., Vogel, M., Rubin, S., Moran, T., Carbone, K., and Pletnikov, M. (2004). Developmental alterations in serotoninergic neurotransmission in Borna disease virus (BDV)-infected rats: a multidisciplinary analysis. J. Neurovirol. 10, 267–277.10.1080/13550280490499506Suche in Google Scholar

Doulazmi, M., Frédéric, F., Capone, F., Becher-André, M., Delhaye-Bouchaud, N., and Mariani, J. (2001). A comparative study of Purkinje cells in two ROR α gene mutant mice: stagger and ROR α(-/-). Dev. Brain Res. 127, 165–174.10.1016/S0165-3806(01)00131-6Suche in Google Scholar

Drews, E., Otte, D.M., and Zimmer, A. (2012). Involvement of the primate specific gene G72 in schizophrenia: From genetic studies to pathomechanisms. Neurosci. Biobehav. Rev. 37, 2410–2417.10.1016/j.neubiorev.2012.10.009Suche in Google Scholar

Dufour-Rainfray, D., Vourc’h, P., Le Guisquet, A.M., Garreau, L., Ternant, D., Bodard, S., Jaumain, E., Gulhan, Z., Belzung, C., Andres, C.R., et al. (2010). Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci. Lett. 470, 55–59.10.1016/j.neulet.2009.12.054Suche in Google Scholar

Durand, C.M., Betancur, C., Boeckers, T.M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I.C., Anckarsater, H., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein Shank3 are associated autism spectrum disorders. Nat. Genet. 39, 25–27.10.1038/ng1933Suche in Google Scholar

Dusart, I., Guenet, J.L., and Sotelo, C. (2006). Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum 5, 163–173.10.1080/14734220600699373Suche in Google Scholar

Eastwood, S.L., Cotter, D., and Harrison, P.J. (2001). Cerebellar synaptic protein expression in schizophrenia. Neuroscience 105, 219–229.10.1016/S0306-4522(01)00141-5Suche in Google Scholar

Eastwood, S.L., Law, A.J., Everall, I.P., and Harrison, P.J. (2003). The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol. Psychiatry 8, 148–155.10.1038/sj.mp.4001233Suche in Google Scholar PubMed

Ellegood, J., Pacey, L.K., Hampson, D.R., Lerch, J.P., and Henkelman, R.M. (2010). Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 53, 1023–1029.10.1016/j.neuroimage.2010.03.038Suche in Google Scholar PubMed

Ellegood, J., Markx, S., Lerch, J.P., Steadman, P.E., Genç, C., Provenzano, F., Kushner, S.A., Henkelman, R.M., Karayiorgou, M., and Gogos, J.A. (2013). Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol. Psychiatry 19, 99–107.10.1038/mp.2013.112Suche in Google Scholar PubMed PubMed Central

Ertan, G., Arulrajah, S., Tekes, A., Jordan, L., and Huisman, T.A. (2010). Cerebellar abnormality in children and young adults with tuberous sclerosis complex: MR and diffusion weighted imaging findings. J. Neuroradiol. 37, 231–238.10.1016/j.neurad.2009.12.006Suche in Google Scholar PubMed

Evarts, E.V. and Thach, W.T. (1969). Motor mechanism of the CNS: cerebrocerebellar interrelations. Annu. Rev. Physiol. 31, 451–498.10.1146/annurev.ph.31.030169.002315Suche in Google Scholar PubMed

Ey, E., Leblond, C.S., Bourgeron, T., and Pletnikov, M.V. (2011). Behavioral profiles of mouse models for autism spectrum disorders. Autism Res. 4, 5–16.10.1002/aur.175Suche in Google Scholar PubMed

Fatemi, S.H., Folsom, T.D., Reutiman, T.J., and Sidwell, R.W. (2008a). Viral regulation of aquaporin 4, connexin 43, microcephalin and nucleolin. Schizophr. Res. 98, 163–177.10.1016/j.schres.2007.09.031Suche in Google Scholar PubMed PubMed Central

Fatemi, S.H., Reutiman, T.J., Folsom, T.D., Huang, H., Oishi, K., Mori, S., Smee, D.F., Pearce, D.A., Winter, C., Sohr, R., et al. (2008b). Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr. Res. 99, 56–70.10.1016/j.schres.2007.11.018Suche in Google Scholar PubMed PubMed Central

Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Abu-Odeh, D., Mori, S., Huang, H., and Oishi, K. (2009). Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr. Res. 112, 46–53.10.1016/j.schres.2009.04.014Suche in Google Scholar PubMed PubMed Central

Fatemi, S.H., Aldinger, K.A., Ashwood, P., Bauman, M.L., Blaha, C.D., Blatt, G.J., Chauhan, A., Chauhan, V., Dager, S.R., Dickson, P.E., et al. (2012). Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11, 777–807.10.1007/s12311-012-0355-9Suche in Google Scholar PubMed PubMed Central

Filiou, M.D., Teplytska, L., Otte, D.M., Zimmer, A., and Turck, C.W. (2012). Myelination and oxidative stress alterations in the cerebellum of the G72/G30 transgenic schizophrenia mouse model. J. Psychiatr. Res. 46, 1359–1365.10.1016/j.jpsychires.2012.07.004Suche in Google Scholar PubMed

Fisher, S.E. and Scharff, C (2009). FOXP2 as a molecular window into speech and language. Trends Genet. 25, 166–177.10.1016/j.tig.2009.03.002Suche in Google Scholar PubMed

Fortier, M.E., Kent, S., Ashdown, H., Poole, S., Boksa, P., and Luheshi, G.N. (2004). The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, 759–766.10.1152/ajpregu.00293.2004Suche in Google Scholar PubMed

Fujita, E., Tanabe, Y., Imhof, B.A., Momoi, M.Y., and Momoi, T. (2012a). Cadm1-expressing synapses on Purkinje cell dendrites are involved in mouse ultrasonic vocalization activity. PLoS One 7, e30151.10.1371/journal.pone.0030151Suche in Google Scholar PubMed PubMed Central

Fujita, E., Tanabe, Y., Momoi, M.Y., and Momoi, T. (2012b). Cntnap2 expression in the cerebellum of Foxp2(R552H) mice, with a mutation related to speech-language disorder. Neurosci. Lett. 506, 277–280.10.1016/j.neulet.2011.11.022Suche in Google Scholar PubMed

Fujita, E., Tanabe, Y., Imhof, B.A., Momoi, M.Y., and Momoi, T. (2012c). A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J. Neurochem. 123, 886–894.10.1111/jnc.12022Suche in Google Scholar

Gejman, P.V., Sanders, A.R., and Kendler, K.S. (2011). Genetics of schizophrenia: new findings and challenges. Annu. Rev. Genomics Hum. Genet. 12, 121–144.10.1146/annurev-genom-082410-101459Suche in Google Scholar

Giza, J., Urbanski, M.J., Prestori, F., Bandyopadhyay, B., Yam, A., Friedrich, V., Kelley, K., D’Angelo, E., and Goldfarb, M. (2010). Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2. J. Neurosci. 30, 14805–14816.10.1523/JNEUROSCI.1161-10.2010Suche in Google Scholar

Goines, P.E. and Ashwood, P. (2013). Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol. Teratol. 36, 67–81.10.1016/j.ntt.2012.07.006Suche in Google Scholar

Goldowitz, D. and Koch, J. (1986). Performance of normal and neurological mutant mice on radial arm maze and active avoidance tasks. Behav. Neural. Biol. 46, 216–226.10.1016/S0163-1047(86)90696-5Suche in Google Scholar

Gomez, L., Wigg, K., Feng, Y., Kiss, E., Kapornai, K., Tamás, Z., Mayer, L., Baji, I., Daróczi, G., Benák, I., et al. (2009). G72/G30 (DAOA) and juvenile-onset mood disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150, 1007–10012.10.1002/ajmg.b.30904Suche in Google Scholar PubMed

Goodrich-Hunsaker, N.J., Wong, L.M., McLennan, Y., Tassone, F., Harvey, D., Rivera, S.M., and Simon, T.J. (2011). Adult female fragile X permutation carriers exhibit age-and CGG repeat length-related impairments on an attentionally based enumeration task. Front. Hum. Neurosci. 5, 63.10.3389/fnhum.2011.00063Suche in Google Scholar PubMed PubMed Central

Goudarzi, S., Smith, L.J., Schütz, S., and Hafizi, S. (2013). Interaction of DISC1 with the PTB domain of Tensin2. Cell Mol. Life Sci. 70, 1663–1672.10.1007/s00018-012-1228-6Suche in Google Scholar PubMed

Hamilton, B.A., Frankel, W.N., Kerrebrock, A.W., Hawkins, T.L., Fitzhugh, W., Kusumi, K., Russell, L.B., Mueller, K.L., van Berkel, V., Birren, B.W., et al. (1996). Disruption of the nuclear hormone receptor ROR α in staggerer mice. Nature. 379, 736–739.10.1038/379736a0Suche in Google Scholar PubMed

Harkins, A.B. and Fox, A.P. (2002). Cell death in weaver mouse cerebellum. Cerebellum 1, 201–206.10.1080/14734220260418420Suche in Google Scholar PubMed

Harvey, L. and Boksa, P. (2012). Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev. Neurobiol. 72, 1335–1348.10.1002/dneu.22043Suche in Google Scholar

Herrup, K. and Mullen, R.J. (1979). Staggerer chimeras: intrinsic nature of Purkinje cell defects and implica tions for normal cerebellar development. Brain Res. 178, 443–457.10.1016/0006-8993(79)90705-4Suche in Google Scholar

Herrup, K., Shojaeian-Zanjani, H., Panzini, L., Sunter,K., and Mariani, J. (1996). The numerical matching of source and target populations in the CNS: the inferior olive to Purkinje cell projection. Dev. Brain Res. 96, 28–35.10.1016/0165-3806(96)00069-7Suche in Google Scholar

Iijima, S., Masaki, H., Wakayama, Y., Inoue, M., Jimi, T., Hara, H., Unaki, A., Oniki, H., Nakano, K., Hirayama, Y., et al. (2009). Immunohistochemical detection of dysbindin at the astroglial endfeet around the capillaries of mouse brain. J. Mol. Histol. 40, 117–1121.10.1007/s10735-009-9221-6Suche in Google Scholar

Ingram, J.L., Peckham, S.M., Tisdale, B., and Rodier, P.M. (2000). Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol. Teratol. 22, 319–324.10.1016/S0892-0362(99)00083-5Suche in Google Scholar

Jaaro-Peled, H., Ayhan, Y., Pletnikov, M.V., and Sawa, A. (2010). Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models. Schizophr. Bull. 36, 301–313.10.1093/schbul/sbp133Suche in Google Scholar PubMed PubMed Central

Jiang, Y.H. and Ehlers, M.D. (2013). Modeling autism by SHANK gene mutations in mice. Neuron 78, 8–27.10.1016/j.neuron.2013.03.016Suche in Google Scholar PubMed PubMed Central

Jolly, S., Journiac, N., Vernet-der Garabedian, B., and Mariani, J. (2012). RORα, a key to the development and functioning of the brain. Cerebellum 11, 451–452.10.1007/s12311-011-0339-1Suche in Google Scholar PubMed

Kamiya, A., Sedlak, T.W., and Pletnikov, M.V. (2012). DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders. Front Psychiatry 3, 25.10.3389/fpsyt.2012.00025Suche in Google Scholar PubMed PubMed Central

Kang, C. and Drayna, D. (2011). Genetics of speech and language disorders. Annu. Rev. Genomics Hum. Genet. 12, 145–164.10.1146/annurev-genom-090810-183119Suche in Google Scholar PubMed

Kato, N., Sundmark, V.C., Van Middlesworth, L., Havlicek, V., and Friesen, H.G. (1982). Immunoreactive somatostatin and β-endorphin content in the brain of mature rats after neonatal exposure to propylthiouracil. Endocrinology 110, 1851–1855.10.1210/endo-110-6-1851Suche in Google Scholar

Kemper, T.L. and Bauman, M. (1998). Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol. 57, 645–652.10.1097/00005072-199807000-00001Suche in Google Scholar

Kern, J.K. (2003). Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 25, 377–382.10.1016/S0387-7604(03)00056-1Suche in Google Scholar

Kim, J.E., Shin, M.S., Seo, T.B., Ji, E.S., Baek, S.S., Lee, S.J., Park, J.K., and Kim, C.J. (2013a). Treadmill exercise ameliorates motor disturbance through inhibition of apoptosis in the cerebellum of valproic acid-induced autistic rat pups. Mol. Med. Rep. 8, 327–334.10.3892/mmr.2013.1518Suche in Google Scholar

Kim, M., Yu, J.E., Lee, J.H., Chang, B.J., Song, C.S., Lee, B., Paik, D.J., and Nahm, S.S. (2013b). Comparative analyses of influenza virus receptor distribution in the human and mouse brains. J. Chem. Neuroanat. 52, 49–57.10.1016/j.jchemneu.2013.05.002Suche in Google Scholar

Kimura, M., Toth, L.A., Agostini, H., Cady, A.B., Majde, J.A., and Krueger, J.M. (1994). Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am. J. Physiol. 267, 1596–1605.10.1152/ajpregu.1994.267.6.R1596Suche in Google Scholar

Kinney, D.K., Yurgelun-Todd, D.A., and Woods, B.T. (1999). Neurologic signs of cerebellar and cortical sensory dysfunction in schizophrenics and their relatives. Schizophr. Res. 35, 99–104.10.1016/S0920-9964(98)00121-2Suche in Google Scholar

Kneeland, R.E. and Fatemi, S.H. (2013). Viral infection, inflammation and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 42, 35–48.Suche in Google Scholar

Koekkoek, S.K., Yamaguchi, K., Milojkovic, B.A., Dortland, B.R., Ruigrok, T.J., Maex, R., De Graff, W., Smit, A.E., VanderWerf, F., Backker, C.E., et al. (2005). Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47, 339–352.10.1016/j.neuron.2005.07.005Suche in Google Scholar PubMed

Konarski, J.Z., McIntyre, R.S., Grupp, L.A., and Kennedy, S.H. (2006). Is the cerebellum relevant in the circuitry of neuropsychiatric disorder? J. Psychiatry Neurosci. 30, 178–186.Suche in Google Scholar

Kuemerle, B., Zanjani, H., Joyner, A., and Herrup, K. (1997). Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J. Neurosci. 17, 7881–7889.10.1523/JNEUROSCI.17-20-07881.1997Suche in Google Scholar

Kuemerle, B., Gulden, F., Cherosky, N., Williams, E., and Herrup, K. (2007). The mouse engrailed genes: a window into autism. Brain Res. 176, 121–132.10.1016/j.bbr.2006.09.009Suche in Google Scholar PubMed PubMed Central

Kvajo, M., Dhilla, A., Swor, D.E., Karayiorgou, M., and Gogos, J.A. (2008). Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol. Psychiatry 13, 685–696.10.1038/sj.mp.4002052Suche in Google Scholar PubMed

Lalonde, R., Filali, M., Bensoula, A.N., and Lestienne, F. (1996). Sensorimotor learning in three cerebellar mutant mice. Neurobiol. Learn Mem. 65, 113–120.10.1006/nlme.1996.0013Suche in Google Scholar PubMed

Landis, D.M. and Sidman, R.L. (1978). Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J. Comp. Neurol. 179, 831–863.10.1002/cne.901790408Suche in Google Scholar PubMed

Lancaster, K., Dietz, D.M., Moran, T.H., and Pletnikov, M.V. (2007). Abnormal social behaviors in young and adult rats neonatally infected with Borna disease virus. Behav. Brain Res. 176, 141–148.10.1016/j.bbr.2006.06.013Suche in Google Scholar PubMed

Laviola, G., Hannan, A.J., Macrì, S., Solinas, M., and Jaber, M. (2008). Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol. Dis. 31, 159–168.10.1016/j.nbd.2008.05.001Suche in Google Scholar PubMed

Leiner, H.C. (2010). Solving the mystery of the human cerebellum. Neuropsychol. Rev. 20, 229–235.10.1007/s11065-010-9140-zSuche in Google Scholar PubMed

Leiner, H.C., Leiner, A.L., and Dow, R.S. (1986). Does the cerebellum contribute to mental skills? Behav. Neurosci. 100, 443–454.Suche in Google Scholar

Lipkin, W.I., Briese, T., and Hornig, M. (2011). Borna disease virus – fact and fantasy. Virus Res. 162, 162–172.10.1016/j.virusres.2011.09.036Suche in Google Scholar PubMed

Lungu, O., Barakat, M., Laventure, S., Debas, K., Proulx, S., Luck, D., and Stip, E. (2013). The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr. Bull. 39, 797–806.10.1093/schbul/sbr193Suche in Google Scholar PubMed PubMed Central

Ma, L., Liu, Y., Ky, B., Shughrue, P.J., Austin, C.P., and Morris, J.A. (2002). Cloning and characterization of Disc1, the mouse ortholog of DISC1 (Disrupted-in-Schizophrenia 1). Genomics 80, 662–672.10.1006/geno.2002.7012Suche in Google Scholar PubMed

Ma, T.M., Abazyan, S., Abazyan, B., Nomura, J., Yang, C., Seshadri, S., Sawa, A., Snyder, S.H., and Pletnkov, M.V. (2013). Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol. Psychiatry 18, 557–567.10.1038/mp.2012.97Suche in Google Scholar PubMed PubMed Central

Markram, K., Rinaldi, T., La Mendola, D., Sandi, C., and Markram, H. (2008). Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 33, 901–912.10.1038/sj.npp.1301453Suche in Google Scholar

Martin, P. and Albers, M. (1995). Cerebellum and schizophrenia: a selective review. Schizophr. Bull. 21, 241–250.10.1093/schbul/21.2.241Suche in Google Scholar

Meyer, U. and Feldon, J. (2012). To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology 62, 1308–1321.10.1016/j.neuropharm.2011.01.009Suche in Google Scholar

Meyer, U., Feldon, J., and Fatemi, S.H. (2009). In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci. Biobehav. Rev. 33, 1061–1079.10.1016/j.neubiorev.2009.05.001Suche in Google Scholar

Michel, M., Schmidt, M.J., and Mirnics, K. (2012). Immune system gene dysregulation in autism and schizophrenia. Dev. Neurobiol. 72, 1277–1287.10.1002/dneu.22044Suche in Google Scholar

Mihali, A., Subramani, S., and Kaunitz, G. (2012). Modeling resilience to schizophrenia in genetically modified mice: a novel approach to drug discovery. Expert Rev. Neurother. 12, 785–799.10.1586/ern.12.60Suche in Google Scholar

Mukaetova-Ladinska, E., Hurt, J., Honer, W.G., Harrington, C.R., and Wischik, C.M. (2002). Loss of synaptic but not cytoskseletal proteins in the cerebellum of chronic schizophrenics. Neurosci. Lett. 317, 161–165.10.1016/S0304-3940(01)02458-2Suche in Google Scholar

Millar, J.K., Christie, S., Anderson, S., Lawson, D., Hsiao-Wei, L.D., Devon, R.S., Arveiler, B., Muir, W.J., Blackwood, D.H., and Porteous, D.J. (2001). Genomic structure and localisation within a linkage hotspot of Disrupted In Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol. Psychiatry 6, 173–178.10.1038/sj.mp.4000784Suche in Google Scholar

Millen, K.J., Wurst, W., Herrup, K., and Joyner, A.L. (1994). Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed- 2 mutants. Development 120, 695–706.10.1242/dev.120.3.695Suche in Google Scholar

Misslin, R., Cigrang, M., and Guastavino, J. (1986). Responses to novelty in staggerer mutant mice. Behav. Process. 12, 51–56.10.1016/0376-6357(86)90070-7Suche in Google Scholar

Mychasiuk, R., Richards, S., Nakahashi, A., Kolb, B., and Gibb, R. (2012). Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy. Dev. Neurosci. 34, 268–276.10.1159/000341786Suche in Google Scholar PubMed

Newbury, D.F. and Monaco, A.P. (2010). Genetic advances in the study of speech and language disorders. Neuron. 68, 309–320.10.1016/j.neuron.2010.10.001Suche in Google Scholar PubMed PubMed Central

Nguyen, A., Rauch, T.A., Pfeifer, G.P., and Hu, V.W. (2010). Global methylation profiling of lymphoblastoid cell lines reveal epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 24, 3036–3051.10.1096/fj.10-154484Suche in Google Scholar PubMed PubMed Central

Olmos-Serrano, J.L., Corbin, J.G., and Burns, M.P. (2011). The GABAA receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev. Neurosci. 33, 395–403.10.1159/000332884Suche in Google Scholar PubMed PubMed Central

Otte, D.M., Bilkei-Gorzó, A., Filiou, M.D., Turck, C.W., Yilmaz, O., Holst, M.I., Schilling, K., Abou-Jamra, R., Schumacher, J., Benzel, I., et al. (2009). Behavioral changes in G72/G30 transgenic mice. Eur. Neuropsychopharmacol. 19, 339–348.10.1016/j.euroneuro.2008.12.009Suche in Google Scholar PubMed

Otte, D.M., Sommersberg, B., Kudin, A., Guerrero, C., Albayram, O., Filiou, M.D., Frisch, P., Yilmaz, O., Drews, E., Turck, C.W., et al. (2011). N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology 36, 2233–2243.10.1038/npp.2011.109Suche in Google Scholar PubMed PubMed Central

Palmen, S.J., van Engeland, H., Hof, P.R., and Schmitz, C. (2004). Neuropathological findings in autism. Brain 127, 2572–2583.10.1093/brain/awh287Suche in Google Scholar PubMed

Peça, J., Feliciano, C., Ting, J.T., Wang, W., Wells, M.F., Venkatraman, T.N., Lascola, C.D., Fu, Z., and Feng, G. (2011). Shank3 mutant mice display autistic-like behaviors and striatal dysfunction. Nature 472, 437–442.10.1038/nature09965Suche in Google Scholar PubMed PubMed Central

Penagarikano, O. and Geschwind, D.H. (2012). What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol. Med. 18, 156–163.Suche in Google Scholar

Petit, E., Hérault, J., Martineau, J., Perrot, A., Barthélémy, C., Hameury, L., Sauvage, D., Lelord, G., and Muh, J.P. (1995). Association study with two markers of a human homeogene in infantile autism. J. Med. Genet. 32, 269–274.10.1136/jmg.32.4.269Suche in Google Scholar PubMed PubMed Central

Piontkewitz, Y., Arad, M., and Weiner, I. (2012). Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 62, 1273–1289.10.1016/j.neuropharm.2011.04.019Suche in Google Scholar PubMed

Pletnikov, M.V., Moran, T.H., and Carbone, K.M. (2002). Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Front Biosci. 7, 593–607.Suche in Google Scholar

Pletnikov, M.V., Rubin, S.A., Moran, T.H., and Carbone, K.M. (2003). Exploring the cerebellum with a new tool: neonatal Borna disease virus (BDV) infection of the rat’s brain. Cerebellum 2, 62–70.10.1080/14734220309425Suche in Google Scholar

Pletnikov, M.V. (2009). Inducible and conditional transgenic mouse models of schizophrenia. Prog. Brain Res. 179, 35–47.10.1016/S0079-6123(09)17905-0Suche in Google Scholar

Pratt, J., Winchester, C., Dawson, N., and Morris, B. (2012). Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat. Rev. Drug Discov. 11, 560–579.10.1038/nrd3649Suche in Google Scholar

Prevot, V., Rio, C., Cho, G.J., Lomniczi, A., Heger, S., Neville, C.M., Rosenthal., N.A., Ojeda, S.R., and Corfas, G. (2003). Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239.10.1523/JNEUROSCI.23-01-00230.2003Suche in Google Scholar

Rapoport, J.L., Giedd, J.N., and Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: update 2012. Mol. Psychiatry 17, 1228–1238.10.1038/mp.2012.23Suche in Google Scholar

Reith, R.M., Way, S., McKenna, J. 3rd, Haines, K., and Gambello, M.J. (2011). Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol. Dis. 43, 113–122.10.1016/j.nbd.2011.02.014Suche in Google Scholar

Reith, R.M., McKenna, J., Wu, H., Hashmi, S.S., Cho, S.H., Dash, P.K., and Gambello, M.J. (2013). Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclero sis complex. Neurobiol. Dis. 51, 93–103.10.1016/j.nbd.2012.10.014Suche in Google Scholar

Rodier, P.M., Ingram, J.L., Tisdale, B., and Croog, V.J. (1997). Linking etiologies in humans and animal models: studies of autism. Reprod. Toxicol. 11, 417–422.10.1016/S0890-6238(97)80001-USuche in Google Scholar

Rodriguez-Murillo, L., Gogos, J.A., and Karayiorgou, M. (2012). The genetic architecture of schizophrenia: new mutations and emerging paradigms. Annu. Rev. Med. 63, 63–80.10.1146/annurev-med-072010-091100Suche in Google Scholar

Roffler-Tarlov, S. and Herrup, K. (1981). Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res. 215, 49–59.10.1016/0006-8993(81)90490-XSuche in Google Scholar

Rogers, S.J., Wehner, D.E., and Hagerman, R. (2001). The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. J. Dev Behav Pediatr. 22, 409–417.10.1097/00004703-200112000-00008Suche in Google Scholar PubMed

Rogers, T.D., McKimm, E., Dickson, P.E., Goldowitz, D., Blaha, C.D., and Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst. Neurosci. 7, 15.10.3389/fnsys.2013.00015Suche in Google Scholar PubMed PubMed Central

Rott, R., Herzog, S., Fleischer, B., Winokur, A., Amsterdam, J., Dyson, W., and Koprowski, H. (1985). Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders. Science 228, 755–756.10.1126/science.3922055Suche in Google Scholar PubMed

Roullet, F.I., Lai, J.K., and Foster, J.A. (2013). In utero exposure to valproic acid and autism – a current review of clinical and animal studies. Neurotoxicol. Teratol. 36, 47–56.10.1016/j.ntt.2013.01.004Suche in Google Scholar PubMed

Sadamatsu, M. and Watanabe, K. (2005). Is a neonatal hypothyroid rat useful as an animal model of autism? Neurosci. Res. 52, 28.Suche in Google Scholar

Sadamatsu, M., Kanai, H., Xu, X., Liu, Y., and Kato, N. (2006). Review of animal models for autism: implication of thyroid hormone. Congenit. Anom. 46, 1–9.10.1111/j.1741-4520.2006.00094.xSuche in Google Scholar PubMed

Sandhya, T., Sowjanya, J., and Veeresh, B. (2012). Bacopa monniera (L.) Wettest ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem. Res. 5, 1121–1131.10.1007/s11064-012-0717-1Suche in Google Scholar PubMed

Schmahmann, J.D. (1991). An emerging concept. The cerebellar contribution to higher function. Arch. Neurol. 48, 1178–1187.10.1001/archneur.1991.00530230086029Suche in Google Scholar PubMed

Schneider, T. and Przewlocki, R. (2005). Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30, 80–89.10.1038/sj.npp.1300518Suche in Google Scholar PubMed

Schneider, T., Turczak, J., and Przewlocki, R. (2006). Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31, 36–46.10.1038/sj.npp.1300767Suche in Google Scholar PubMed

Schneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K., and Przewlocki, R. (2008). Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33, 728–740.10.1016/j.psyneuen.2008.02.011Suche in Google Scholar PubMed

Schurov, I.L., Handford, E.J., Brandon, N.J., and Whiting, P.J. (2004). Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol. Psychiatry 9, 100–110.10.1038/sj.mp.4001574Suche in Google Scholar

Schwarz, J.M. and Bilbo, S.D. (2012). Sex, glia, and development: interactions in health and disease. Horm. Behav. 62, 243–253.10.1016/j.yhbeh.2012.02.018Suche in Google Scholar

Sen, B., Singh, A.S., Sinha, S., Chatterjee, A., Ahmed, S., Ghosh, S., and Usha, R. (2010). Family-based studies indicate association of Engrailed 2 gene with autism in an Indian population. Genes Brain Behav. 9, 248–255.10.1111/j.1601-183X.2009.00556.xSuche in Google Scholar

Shi, J., Badner, J.A., Gershon, E.S., and Liu, C. (2008). Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr. Res. 98, 89–97.10.1016/j.schres.2007.10.004Suche in Google Scholar

Shi, L., Smith, S.E., Malkova, N., Tse, D., Su, Y., and Patterson, P.H. (2009). Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav. Immun. 23, 116–123.10.1016/j.bbi.2008.07.012Suche in Google Scholar

Shu, W., Cho, J.Y., Jiang, Y., Zhang, M., Weisz, D., Elder, G.A., Schmeidler, J., De Gasperi, R., Sosa, M.A., Rabidou, D., et al. (2005). Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc. Natl. Acad. Sci. USA 102, 9643–9648.10.1073/pnas.0503739102Suche in Google Scholar

Sierra-Honigmann, A.M., Carbone, K.M., and Yolken, R.H. (1995). Polymerase chain reaction (PCR) search for viral nucleic acid sequences in schizophrenia. Br. J. Psychiatry 166, 55–60.10.1192/bjp.166.1.55Suche in Google Scholar

Sillitoe, R.V., Stephen, D., Lao, Z., and Joyner, A.L. (2008). Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J. Neurosci. 28, 12150–12162.10.1523/JNEUROSCI.2059-08.2008Suche in Google Scholar

Snider, S.R. (1982). Cerebellar pathology in schizophrenia – cause or consequence? Neurosci. Biobehav. Rev. 6, 47–53.10.1016/0149-7634(82)90006-9Suche in Google Scholar

Stanton, M.E., Peloso, E., Brown, K.L., and Rodier, P. (2007). Discrimination learning and reversal of the conditioned eyeblink reflex in a rodent model of autism. Behav. Brain Res. 176, 133–140.10.1016/j.bbr.2006.10.022Suche in Google Scholar PubMed PubMed Central

Stark, K.L., Xu, B., Bagchi, A., Lai, W.S., Liu, H., Hsu, R., Wan, X., Pavlidis, P., Mills, A.A., Karayiorgou, M., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet. 40, 751–760.10.1038/ng.138Suche in Google Scholar

St Clair, D., Blackwood, D., Muir, W., Carothers, A. Walker, M., Spowart, G., Gosden, C., and Evans, H.J. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336, 13–16.10.1016/0140-6736(90)91520-KSuche in Google Scholar

Sullivan, P.F., Daly, M.J., and O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551.10.1038/nrg3240Suche in Google Scholar

Sullivan, P.F. (2013). Questions about DISC1 as a genetic risk factor for schizophrenia. Mol. Psychiatry 18, 1050–1052.10.1038/mp.2012.182Suche in Google Scholar

Supprian, T., Ulmar, G., Bauer, M., Schüler, M., Püschel, K., Retz-Junginger, P., Schmitt, H.P., and Heinsen, H. (2000). Cerebellar vermis area in schizophrenic patients – a post-mortem study. Schizophr. Res. 16, 19–28.10.1016/S0920-9964(99)00103-6Suche in Google Scholar

Taieb, O., Baleyte, J.M., Mazet, P., and Fillet, A.M. (2001). Borna disease virus and psychiatry. Eur. Psychiatry 16, 3–10.10.1016/S0924-9338(00)00529-0Suche in Google Scholar

Takuma, K., Ago, Y., and Matsuda, T. (2011). Preventive effects of an enriched environment on rodent psychiatric disorder models. J. Pharmacol. Sci. 117, 71–76.10.1254/jphs.11R07CPSuche in Google Scholar

Thomson, P.A., Malavasi, E.L., Grünewald, E., Soares, D.C., Borkowska, M., and Millar, J.K. (2013). DISC1 genetics, biology and psychiatric illness. Front Biol. (Beijing). 8, 1–31.10.1007/s11515-012-1254-7Suche in Google Scholar

Triantafilou, M. and Triantafilou, K. (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23, 301–304.10.1016/S1471-4906(02)02233-0Suche in Google Scholar

Tsai, P.T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A.R., Leech, J.M., Steinberg, J, Crawley, J.N., Regehr, W.G., and Sahin, M. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651.10.1038/nature11310Suche in Google Scholar PubMed PubMed Central

Tsiouris, J.A. and Brown, W.T. (2004). Neuropsychiatric symptoms of fragile X syndrome: pathophysiology and pharmacotherapy. CNS Drugs 18, 687–703.10.2165/00023210-200418110-00001Suche in Google Scholar

Van Middlesworth, L. and Norris, C.H. (1980). Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment. Endocrinology 106, 1686–1690.10.1210/endo-106-6-1686Suche in Google Scholar

Verhoeven, J.S., De Cock, P., Lagae, L., and Sunaert, S. (2010). Neuroimaging of autism. Neuroradiology 52, 3–14.10.1007/s00234-009-0583-ySuche in Google Scholar

Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a break point cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.10.1016/0092-8674(91)90397-HSuche in Google Scholar

Villanueva, R. (2012). The cerebellum and neuropsychiatric disorders. Psychiatry Res. 198, 527–532.10.1016/j.psychres.2012.02.023Suche in Google Scholar

Vogel, M.W., Caston, J., Yuzaki, M., and Mariani, J. (2007). The Lurcher mouse: fresh insights from an old mutant. Brain Res. 1140, 4–18.10.1016/j.brainres.2005.11.086Suche in Google Scholar

Waltrip, R.W. 2nd, Buchanan, R.W., Summerfelt, A., Breier, A., Carpenter, W.T. Jr, Bryant, N.L., Rubin, S.A., and Carbone, K.M. (1995). Borna disease virus and schizophrenia. Psychiatry Res. 56, 33–44.10.1016/0165-1781(94)02600-NSuche in Google Scholar

Wu, W., Peden, D., and Diaz-Sanchez, D. (2012). Role of GSTM1 in resistance to lung inflammation. Free Radic. Biol. Med. 53, 721–729.10.1016/j.freeradbiomed.2012.05.037Suche in Google Scholar PubMed PubMed Central

Xu, M., Sajdel-Sulkowska, E.M., Iwasaki, T., and Koibuchi, N. (2013a). Aberrant cerebellar neurotrophin-3 expression induced by lipopolysaccharide exposure during brain development. Cerebellum 12, 316–318.10.1007/s12311-012-0446-7Suche in Google Scholar PubMed

Xu, M., Sulkowski, Z.L., Parekh, P., Khan, A., Chen, T., Midha, S., Iwasaki, T., Shimokawa, N., Koibuchi, N., Zavacki, A.M., et al. (2013b). Effects of perinatal lipopolysaccharide (LPS) exposure on the developing rat brain; modeling the effect of maternal infection on the developing human CNS. Cerebellum 12, 572–586.10.1007/s12311-013-0465-zSuche in Google Scholar PubMed

Yasuda, S., Ishida, N., Higashiyama, A., Morinobu, S., and Kato, N. (2000). Characterization of audiogenic-like seizures in naive rats evoked by activation of AMPA and NMDA receptors in the inferior colliculus. Exp. Neurol. 164, 396–406.10.1006/exnr.2000.7401Suche in Google Scholar PubMed

Yeganeh-Doost, P., Gruber, O., Falkai, P., and Schmitt, A. (2011). The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics (Sao Paulo). 66(Suppl 1), 71–77.10.1590/S1807-59322011001300009Suche in Google Scholar PubMed PubMed Central

Yochum, C.L., Dowling, P., Reuhl, K.R., Wagner, G.C., and Ming, X. (2008). VPA-induced apoptosis and behavioral deficits in neonatal mice. Brain Res. 1203, 126–132.10.1016/j.brainres.2008.01.055Suche in Google Scholar PubMed

Yochum, C.L., Bhattacharya, P., Patti, L., Mirochnitchenko, O., and Wagner, G.C. (2010). Animal model of autism using GSTM1 knockout mice and early postnatal sodium valproate treatment. Behav. Brain Res. 210, 202–210.10.1016/j.bbr.2010.02.032Suche in Google Scholar PubMed

Yuskaitis, C.J., Beurel, E., and Jope, R.S. (2010). Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X syndrome. Biochem. Biophys. Acta 1802, 1006–1012.10.1016/j.bbadis.2010.06.015Suche in Google Scholar PubMed PubMed Central

Zariwala, H.A., Madisen, L., Ahrens, K.F., Bernard, A., Lein, E.S., Jones, A.R., and Zeng, H. (2011). Visual tuning properties of genetically identified layer 2/3 neuronal types in the primary visual cortex of cre-transgenic mice. Front Syst. Neurosci. 4, 162.10.3389/fnsys.2010.00162Suche in Google Scholar PubMed PubMed Central

Received: 2013-11-5
Accepted: 2013-12-31
Published Online: 2014-2-13
Published in Print: 2014-4-1

©2014 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2013-0049/html
Button zum nach oben scrollen