Startseite Visual callosal connections: role in visual processing in health and disease
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Visual callosal connections: role in visual processing in health and disease

  • Tommaso Bocci , Marta Pietrasanta , Chiara Cerri , Laura Restani , Matteo Caleo EMAIL logo und Ferdinando Sartucci
Veröffentlicht/Copyright: 14. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Visual cortical areas in the two sides of the brain are interconnected by interhemispheric fibers passing through the splenium of the corpus callosum. In this review, we summarize data concerning the anatomical features of visual callosal connections, their roles in basic visual processing, and how their alterations contribute to visual deficits in different human neuropathologies. Splenial fibers represent a population of excitatory axons with varying diameters, which interconnect cortical columns with similar functional properties (i.e., same orientation selectivity) in the two hemispheres. Their branches activate simultaneously distinct iso-oriented columns in the contralateral hemisphere, thus mediating forms of stimulus-dependent interhemispheric synchronization. Callosal branches also make synapses onto GABAergic cells, resulting in an inhibitory modulation of visual processing that involves both iso-oriented and cross-oriented cortical networks. Interhemispheric inhibition appears to predominate at short latencies following callosal activation, whereas excitation becomes more robust with increasing delays. These callosal effects are dynamically adapted to the incoming visual activity, so that stimuli providing only weak afferent input are facilitated by callosal pathways, whereas strong visual input via the retinogeniculate pathway tends to be offset by transcallosal inhibition. We also review data highlighting the contribution of callosal input activity to maturation of visual function during early ‘critical periods’ in brain development and describe how interhemispheric transfer of visual information is rerouted in cases of callosal agenesis or following splenial damage. Finally, we provide an overview of alterations in splenium anatomy or function that may be at the basis of visual defects in several pathologic conditions.


Corresponding author: Matteo Caleo, CNR Neuroscience Institute, Via G. Moruzzi 1, I-56124 Pisa, Italy, e-mail:

References

Aboitiz, F. (1992). Brain connections: Interhemispheric fiber systems and anatomical brain asymmetries in humans. Biol. Res. 25, 51–61.Suche in Google Scholar

Aboitiz, F. and Montiel, J. (2003). One hundred million years of interhemispheric communication: The history of the corpus callosum. Braz. J. Med. Biol. Res. 36, 409–420.10.1590/S0100-879X2003000400002Suche in Google Scholar

Afraz, S.R., Montaser-Kouhsari, L., Vaziri-Pashkam, M., and Moradi, F. (2003). Interhemispheric visual interaction in a patient with posterior callosectomy. Neuropsychologia 41, 597–604.10.1016/S0028-3932(02)00201-4Suche in Google Scholar

Agartz, I., Andersson, J.L., and Skare, S. (2001). Abnormal brain white matter in schizophrenia: A diffusion tensor imaging study. Neuroreport 12, 2251–2254.10.1097/00001756-200107200-00041Suche in Google Scholar

Aglioti, S., Berlucchi, G., Pallini, R., Rossi, G.F., and Tassinari, G. (1993). Hemispheric control of unilateral and bilateral responses to lateralized light stimuli after callosotomy and in callosal agenesis. Exp. Brain Res. 95, 151–165.10.1007/BF00229664Suche in Google Scholar

Allen, L.S., Richey, M.F., Chai, Y.M., and Gorski, R.A. (1991). Sex differences in the corpus callosum of the living human being. J. Neurosci. 11, 933–942.10.1523/JNEUROSCI.11-04-00933.1991Suche in Google Scholar

Berardi, N., Bisti, S., and Maffei, L. (1987). The transfer of visual information across the corpus callosum: Spatial and temporal properties in the cat. J. Physiol. 384, 619–632.10.1113/jphysiol.1987.sp016473Suche in Google Scholar

Berardi, N., Bisti, S., Fiorentini, A., and Maffei, L. (1988). The transfer of visual information across the corpus callosum in cats, monkeys and humans: Spatial and temporal properties. Prog. Brain Res. 75, 181–185.10.1016/S0079-6123(08)60477-XSuche in Google Scholar

Berbel, P. and Innocenti, G.M. (1988). The development of the corpus callosum in cats: A light- and electron-microscopic study. J. Comp. Neurol. 276, 132–156.10.1002/cne.902760109Suche in Google Scholar

Berlucchi, G. and Rizzolatti, G. (1968). Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159, 308–310.10.1126/science.159.3812.308Suche in Google Scholar

Berlucchi, G., Aglioti, S., Marzi, C.A., and Tassinari, G. (1995). Corpus callosum and simple visuomotor integration. Neuropsychologia 33, 923–936.10.1016/0028-3932(95)00031-WSuche in Google Scholar

Berman, N.E. and Payne, B.R. (1983). Alterations in connections of the corpus callosum following convergent and divergent strabismus. Brain Res. 274, 201–212.10.1016/0006-8993(83)90697-2Suche in Google Scholar

Bishop, K.M. and Wahlsten, D. (1997). Sex differences in the human corpus callosum: Myth or reality? Neurosci. Biobehav. Rev. 21, 581–601.10.1016/S0149-7634(96)00049-8Suche in Google Scholar

Bisiacchi, P., Marzi, C.A., Nicoletti, R., Carena, G., Mucignat, C., and Tomaiuolo, F. (1994). Left-right asymmetry of callosal transfer in normal human subjects. Behav. Brain Res. 64, 173–178.10.1016/0166-4328(94)90129-5Suche in Google Scholar

Bisiach, E., Vallar, G., Perani, D., Papagno, C., and Berti, A. (1986). Unawareness of disease following lesions of the right hemisphere: Anosognosia for hemiplegia and anosognosia for hemianopia. Neuropsychologia 24, 471–482.10.1016/0028-3932(86)90092-8Suche in Google Scholar

Blakemore, C., Diao, Y.C., Pu, M.L., Wang, Y.K., and Xiao, Y.M. (1983). Possible functions of the interhemispheric connexions between visual cortical areas in the cat. J. Physiol. 337, 331–349.10.1113/jphysiol.1983.sp014627Suche in Google Scholar

Bocci, T., Caleo, M., Giorli, E., Barloscio, D., Maffei, L., Rossi, S., and Sartucci, F. (2011). Transcallosal inhibition dampens neural responses to high contrast stimuli in human visual cortex. Neuroscience 187, 43–51.10.1016/j.neuroscience.2011.04.050Suche in Google Scholar

Brown, W.S., Jeeves, M.A., Dietrich, R., and Burnison, D.S. (1999). Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis. Neuropsychologia 37, 1165–1180.10.1016/S0028-3932(99)00011-1Suche in Google Scholar

Buhl, E.H. and Singer, W. (1989). The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection. Exp. Brain Res. 75, 470–476.10.1007/BF00249898Suche in Google Scholar PubMed

Caleo, M., Restani, L., Gianfranceschi, L., Costantin, L., Rossi, C., Rossetto, O., Montecucco, C., and Maffei, L. (2007). Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity. J. Neurosci. 27, 4530–4540.10.1523/JNEUROSCI.0772-07.2007Suche in Google Scholar PubMed PubMed Central

Caminiti, R., Ghaziri, H., Galuske, R., Hof, P.R., and Innocenti, G.M. (2009). Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc. Natl. Acad. Sci. USA 106, 19551–19556.10.1073/pnas.0907655106Suche in Google Scholar PubMed PubMed Central

Carmeli, C., Lopez-Aguado, L., Schmidt, K.E., De Feo, O., and Innocenti, G.M. (2007). A novel interhemispheric interaction: Modulation of neuronal cooperativity in the visual areas. PLoS One 2, e1287.10.1371/journal.pone.0001287Suche in Google Scholar

Cavus, I., Reinhart, R.M., Roach, B.J., Gueorguieva, R., Teyler, T.J., Clapp, W.C., Ford, J.M., Krystal, J.H., and Mathalon, D.H. (2012). Impaired visual cortical plasticity in schizophrenia. Biol. Psychiatry 71, 512–520.10.1016/j.biopsych.2012.01.013Suche in Google Scholar

Cerghet, M., Skoff, R.P., Swamydas, M., and Bessert, D. (2009). Sexual dimorphism in the white matter of rodents. J. Neurol. Sci. 286, 76–80.10.1016/j.jns.2009.06.039Suche in Google Scholar

Cerri, C., Restani, L., and Caleo, M. (2010). Callosal contribution to ocular dominance in rat primary visual cortex. Eur. J. Neurosci. 32, 1163–1169.10.1111/j.1460-9568.2010.07363.xSuche in Google Scholar

Clarke, S. and Miklossy, J. (1990). Occipital cortex in man: Organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J. Comp. Neurol. 298, 188–214.10.1002/cne.902980205Suche in Google Scholar

Crow, T.J. (1998). Schizophrenia as a transcallosal misconnection syndrome. Schizophr. Res. 30, 111–114.10.1016/S0920-9964(97)00139-4Suche in Google Scholar

Cusick, C.G. and Lund, R.D. (1981). The distribution of the callosal projection to the occipital visual cortex in rats and mice. Brain Res. 214, 239–259.10.1016/0006-8993(81)91192-6Suche in Google Scholar

de Lacoste, M.C., Kirkpatrick, J.B., and Ross, E.D. (1985). Topography of the human corpus callosum. J. Neuropathol. Exp. Neurol. 44, 578–591.10.1097/00005072-198511000-00004Suche in Google Scholar PubMed

DeLacoste-Utamsing, C., and Holloway, R.L. (1982). Sexual dimorphism in the human corpus callosum. Science 216, 1431–1432.10.1126/science.7089533Suche in Google Scholar PubMed

Diao, Y.C., Wang, Y.K., and Pu, M.L. (1983). Binocular responses of cortical cells and the callosal projection in the albino rat. Exp. Brain Res. 49, 410–418.10.1007/BF00238782Suche in Google Scholar PubMed

Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F., and Bartolomeo, P. (2008). White matter (dis)connections and gray matter (dys)functions in visual neglect: Gaining insights into the brain networks of spatial awareness. Cortex 44, 983–995.10.1016/j.cortex.2008.03.006Suche in Google Scholar

Dougherty, R.F., Ben-Shachar, M., Bammer, R., Brewer, A.A., and Wandell, B.A. (2005). Functional organization of human occipital-callosal fiber tracts. Proc. Natl. Acad. Sci. USA 102, 7350–7355.10.1073/pnas.0500003102Suche in Google Scholar

Downhill, J.E., Jr., Buchsbaum, M.S., Wei, T., Spiegel-Cohen, J., Hazlett, E.A., Haznedar, M.M., Silverman, J., and Siever, L.J. (2000). Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr. Res. 42, 193–208.10.1016/S0920-9964(99)00123-1Suche in Google Scholar

Elberger, A.J. (1984). The existence of a separate, brief critical period for the corpus callosum to affect visual development. Behav. Brain Res. 11, 223–231.10.1016/0166-4328(84)90214-6Suche in Google Scholar

Elberger, A.J. (1989). Selective labeling of visual corpus callosum connections with aspartate in cat and rat. Vis. Neurosci. 2, 81–85.10.1017/S0952523800004351Suche in Google Scholar PubMed

Elberger, A.J. and Smith, E.L., 3rd (1985). The critical period for corpus callosum section to affect cortical binocularity. Exp. Brain Res. 57, 213–223.10.1007/BF00236526Suche in Google Scholar PubMed

Engel, A.K., Konig, P., Kreiter, A.K., and Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252, 1177–1179.10.1126/science.252.5009.1177Suche in Google Scholar PubMed

Foong, J., Maier, M., Clark, C.A., Barker, G.J., Miller, D.H., and Ron, M.A. (2000). Neuropathological abnormalities of the corpus callosum in schizophrenia: A diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatry 68, 242–244.10.1136/jnnp.68.2.242Suche in Google Scholar PubMed PubMed Central

Fornari, E., Knyazeva, M.G., Meuli, R., and Maeder, P. (2007). Myelination shapes functional activity in the developing brain. Neuroimage 38, 511–518.10.1016/j.neuroimage.2007.07.010Suche in Google Scholar PubMed

Frost, D.O. and Moy, Y.P. (1989). Effects of dark rearing on the development of visual callosal connections. Exp. Brain Res. 78, 203–213.10.1007/BF00230700Suche in Google Scholar PubMed

Frost, D.O., Moy, Y.P., and Smith, D.C. (1990). Effects of alternating monocular occlusion on the development of visual callosal connections. Exp. Brain Res. 83, 200–209.10.1007/BF00232209Suche in Google Scholar PubMed

Funnell, M.G., Corballis, P.M., and Gazzaniga, M.S. (2000). Insights into the functional specificity of the human corpus callosum. Brain 123, 920–926.10.1093/brain/123.5.920Suche in Google Scholar PubMed

Gaffan, D. and Hornak, J. (1997). Visual neglect in the monkey. Representation and disconnection. Brain 120, 1647–1657.10.1093/brain/120.9.1647Suche in Google Scholar PubMed

Gazzaniga, M.S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 123, 1293–1326.10.1093/brain/123.7.1293Suche in Google Scholar PubMed

Gazzaniga, M.S. (2005). Forty-five years of split-brain research and still going strong. Nat. Rev. Neurosci. 6, 653–659.10.1038/nrn1723Suche in Google Scholar PubMed

Gerloff, C., Cohen, L.G., Floeter, M.K., Chen, R., Corwell, B., and Hallett, M. (1998). Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J. Physiol. 510, 249–259.10.1111/j.1469-7793.1998.249bz.xSuche in Google Scholar PubMed PubMed Central

Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., Evans, A.C., and Rapoport, J.L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nat. Neurosci. 2, 861–863.10.1038/13158Suche in Google Scholar PubMed

Gott, P.S. and Saul, R.E. (1978). Agenesis of the corpus callosum: Limits of functional compensation. Neurology 28, 1272–1279.10.1212/WNL.28.12.1272Suche in Google Scholar

Grigonis, A.M., Rayos del Sol-Padua, R.B., and Murphy, E.H. (1992). Visual callosal projections in the adult ferret. Vis. Neurosci. 9, 99–103.10.1017/S0952523800006398Suche in Google Scholar PubMed

He, B.J., Snyder, A.Z., Vincent, J.L., Epstein, A., Shulman, G.L., and Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918.10.1016/j.neuron.2007.02.013Suche in Google Scholar PubMed

Hess, R.F. and Pointer, J.S. (1989). Spatial and temporal contrast sensitivity in hemianopia. A comparative study of the sighted and blind hemifields. Brain 112, 871–894.10.1093/brain/112.4.871Suche in Google Scholar

Hilgetag, C.C., Kotter, R., and Young, M.P. (1999). Inter-hemispheric competition of sub-cortical structures is a crucial mechanism in paradoxical lesion effects and spatial neglect. Prog. Brain Res. 121, 121–141.10.1016/S0079-6123(08)63071-XSuche in Google Scholar

Hilgetag, C.C., Theoret, H., and Pascual-Leone, A. (2001). Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat. Neurosci. 4, 953–957.10.1038/nn0901-953Suche in Google Scholar

Hines, R.J., Paul, L.K., and Brown, W.S. (2002). Spatial attention in agenesis of the corpus callosum: Shifting attention between visual fields. Neuropsychologia 40, 1804–1814.10.1016/S0028-3932(02)00032-5Suche in Google Scholar

Houzel, J.C., Milleret, C., and Innocenti, G. (1994). Morphology of callosal axons interconnecting areas 17 and 18 of the cat. Eur. J. Neurosci. 6, 898–917.10.1111/j.1460-9568.1994.tb00585.xSuche in Google Scholar PubMed

Huang, Z.J., Di Cristo, G., and Ango, F. (2007). Development of GABA innervation in the cerebral and cerebellar cortices. Nat. Rev. Neurosci. 8, 673–686.10.1038/nrn2188Suche in Google Scholar PubMed

Innocenti, G.M. (1981). Growth and reshaping of axons in the establishment of visual callosal connections. Science 212, 824–827.10.1126/science.7221566Suche in Google Scholar PubMed

Innocenti, G.M. (2009). Dynamic interactions between the cerebral hemispheres. Exp. Brain Res. 192, 417–423.10.1007/s00221-008-1484-8Suche in Google Scholar PubMed

Innocenti, G.M. and Caminiti, R. (1980). Postnatal shaping of callosal connections from sensory areas. Exp. Brain Res. 38, 381–394.10.1007/BF00237518Suche in Google Scholar PubMed

Innocenti, G.M. and Frost, D.O. (1979). Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280, 231–234.10.1038/280231a0Suche in Google Scholar PubMed

Innocenti, G.M., Frost, D.O., and Illes, J. (1985). Maturation of visual callosal connections in visually deprived kittens: A challenging critical period. J. Neurosci. 5, 255–267.10.1523/JNEUROSCI.05-02-00255.1985Suche in Google Scholar

Innocenti, G.M., Clarke, S., and Kraftsik, R. (1986). Interchange of callosal and association projections in the developing visual cortex. J. Neurosci. 6, 1384–1409.10.1523/JNEUROSCI.06-05-01384.1986Suche in Google Scholar

Innocenti, G.M., Lehmann, P., and Houzel, J.C. (1994). Computational structure of visual callosal axons. Eur. J. Neurosci. 6, 918–935.10.1111/j.1460-9568.1994.tb00586.xSuche in Google Scholar

Innocenti, G.M., Manger, P.R., Masiello, I., Colin, I., and Tettoni, L. (2002). Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius). Cereb. Cortex 12, 411–422.10.1093/cercor/12.4.411Suche in Google Scholar

Innocenti, G.M., Ansermet, F., and Parnas, J. (2003). Schizophrenia, neurodevelopment and corpus callosum. Mol. Psychiatry 8, 261–274.10.1038/sj.mp.4001205Suche in Google Scholar

Jacobson, S. (1970). Distribution of commissural axon terminals in the rat neocortex. Exp. Neurol. 28, 193–205.10.1016/0014-4886(70)90229-3Suche in Google Scholar

Jacobson, S. and Trojanowski, J.Q. (1974). The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Res. 74, 149–155.10.1016/0006-8993(74)90118-8Suche in Google Scholar

Jalili, M., Lavoie, S., Deppen, P., Meuli, R., Do, K.Q., Cuenod, M., Hasler, M., De Feo, O., and Knyazeva, M.G. (2007). Dysconnection topography in schizophrenia revealed with state-space analysis of EEG. PLoS One 2, e1059.10.1371/journal.pone.0001059Suche in Google Scholar

Juraska, J.M. and Kopcik, J.R. (1988). Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Res. 450, 1–8.10.1016/0006-8993(88)91538-7Suche in Google Scholar

Karnath, H.O., Schumacher, M., and Wallesch, C.W. (1991). Limitations of interhemispheric extracallosal transfer of visual information in callosal agenesis. Cortex 27, 345–350.10.1016/S0010-9452(13)80141-4Suche in Google Scholar

Kimura, F. and Baughman, R.W. (1997). GABAergic transcallosal neurons in developing rat neocortex. Eur. J. Neurosci. 9, 1137–1143.10.1111/j.1460-9568.1997.tb01467.xSuche in Google Scholar

Kinsbourne, M. (1977). Hemi-neglect and hemisphere rivalry. Adv. Neurol. 18, 41–49.Suche in Google Scholar

Kiper, D.C., Knyazeva, M.G., Tettoni, L., and Innocenti, G.M. (1999). Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets. J. Neurophysiol. 82, 3082–3094.10.1152/jn.1999.82.6.3082Suche in Google Scholar

Knyazeva, M.G. and Innocenti, G.M. (2001). EEG coherence studies in the normal brain and after early-onset cortical pathologies. Brain Res. Brain Res. Rev. 36, 119–128.10.1016/S0165-0173(01)00087-XSuche in Google Scholar

Knyazeva, M.G., Kiper, D.C., Vildavski, V.Y., Despland, P.A., Maeder-Ingvar, M., and Innocenti, G.M. (1999). Visual stimulus-dependent changes in interhemispheric EEG coherence in humans. J. Neurophysiol. 82, 3095–3107.10.1152/jn.1999.82.6.3095Suche in Google Scholar

Knyazeva, M.G., Fornari, E., Meuli, R., Innocenti, G., and Maeder, P. (2006). Imaging of a synchronous neuronal assembly in the human visual brain. Neuroimage 29, 593–604.10.1016/j.neuroimage.2005.07.045Suche in Google Scholar

Koch, G., Cercignani, M., Bonni, S., Giacobbe, V., Bucchi, G., Versace, V., Caltagirone, C., and Bozzali, M. (2011). Asymmetry of parietal interhemispheric connections in humans. J. Neurosci. 31, 8967–8975.10.1523/JNEUROSCI.6567-10.2011Suche in Google Scholar

Koeda, T., Knyazeva, M., Njiokiktjien, C., Jonkman, E.J., De Sonneville, L., and Vildavsky, V. (1995). The EEG in acallosal children. Coherence values in the resting state: Left hemisphere compensatory mechanism? Electroencephalogr. Clin. Neurophysiol. 95, 397–407.10.1016/0013-4694(95)00171-9Suche in Google Scholar

Kubicki, M., Park, H., Westin, C.F., Nestor, P.G., Mulkern, R.V., Maier, S.E., Niznikiewicz, M., Connor, E.E., Levitt, J.J., Frumin, M., et al. (2005). DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity. Neuroimage 26, 1109–1118.10.1016/j.neuroimage.2005.03.026Suche in Google Scholar PubMed PubMed Central

Lassonde, M., Sauerwein, H., Geoffroy, G., and Decarie, M. (1986). Effects of early and late transection of the corpus callosum in children. A study of tactile and tactuomotor transfer and integration. Brain 109, 953–967.10.1093/brain/109.5.953Suche in Google Scholar PubMed

Lepore, F. and Guillemot, J.P. (1982). Visual receptive field properties of cells innervated through the corpus callosum in the cat. Exp. Brain Res. 46, 413–424.10.1007/BF00238636Suche in Google Scholar PubMed

Lindqvist, S., Skranes, J., Eikenes, L., Haraldseth, O., Vik, T., Brubakk, A.M., and Vangberg, T.R. (2011). Visual function and white matter microstructure in very-low-birth-weight (VLBW) adolescents – a DTI study. Vision Res. 51, 2063–2070.10.1016/j.visres.2011.08.002Suche in Google Scholar

Lund, R.D. and Mitchell, D.E. (1979). The effects of dark-rearing on visual callosal connections of cats. Brain Res. 167, 172–175.10.1016/0006-8993(79)90273-7Suche in Google Scholar

Makarov, V.A., Schmidt, K.E., Castellanos, N.P., Lopez-Aguado, L., and Innocenti, G.M. (2008). Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). Cereb. Cortex 18, 1951–1960.10.1093/cercor/bhm222Suche in Google Scholar

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807.10.1038/nrn1519Suche in Google Scholar

Markham, J.A., Herting, M.M., Luszpak, A.E., Juraska, J.M., and Greenough, W.T. (2009). Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood. Brain Res. 1288, 9–17.10.1016/j.brainres.2009.06.087Suche in Google Scholar

Martin, K.A., Somogyi, P., and Whitteridge, D. (1983). Physiological and morphological properties of identified basket cells in the cat’s visual cortex. Exp. Brain Res. 50, 193–200.10.1007/BF00239183Suche in Google Scholar

Milleret, C. (1994). Visual callosal connections and strabismus. Behav. Brain Res. 64, 85–95.10.1016/0166-4328(94)90121-XSuche in Google Scholar

Minciacchi, D. and Antonini, A. (1984). Binocularity in the visual cortex of the adult cat does not depend on the integrity of the corpus callosum. Behav. Brain Res. 13, 183–192.10.1016/0166-4328(84)90148-7Suche in Google Scholar

Mizuno, H., Hirano, T., and Tagawa, Y. (2007). Evidence for activity-dependent cortical wiring: Formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. J. Neurosci. 27, 6760–6770.10.1523/JNEUROSCI.1215-07.2007Suche in Google Scholar PubMed PubMed Central

Nakamura, H., Chaumon, M., Klijn, F., and Innocenti, G.M. (2008). Dynamic properties of the representation of the visual field midline in the visual areas 17 and 18 of the ferret (Mustela putorius). Cereb. Cortex 18, 1941–1950.10.1093/cercor/bhm221Suche in Google Scholar PubMed

O’Leary, D.D., Stanfield, B.B., and Cowan, W.M. (1981). Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Brain Res. 227, 607–617.10.1016/0165-3806(81)90012-2Suche in Google Scholar

Olavarria, J.F. and Abel, P.L. (1996). The distribution of callosal connections correlates with the pattern of cytochrome oxidase stripes in visual area V2 of macaque monkeys. Cereb. Cortex 6, 631–639.10.1093/cercor/6.4.631Suche in Google Scholar

Olavarria, J.F. and Van Sluyters, R.C. (1995). Overall pattern of callosal connections in visual cortex of normal and enucleated cats. J. Comp. Neurol. 363, 161–176.10.1002/cne.903630202Suche in Google Scholar

Oliveri, M., Rossini, P.M., Traversa, R., Cicinelli, P., Filippi, M.M., Pasqualetti, P., Tomaiuolo, F., and Caltagirone, C. (1999). Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. Brain 122, 1731–1739.10.1093/brain/122.9.1731Suche in Google Scholar

Oliveri, M., Rossini, P.M., Filippi, M.M., Traversa, R., Cicinelli, P., Palmieri, M.G., Pasqualetti, P., and Caltagirone, C. (2000). Time-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-brain-damaged patients with extinction. Brain 123, 1939–1947.10.1093/brain/123.9.1939Suche in Google Scholar

Oliveri, M., Bisiach, E., Brighina, F., Piazza, A., La Bua, V., Buffa, D., and Fierro, B. (2001). rTMS of the unaffected hemisphere transiently reduces contralesional visuospatial hemineglect. Neurology 57, 1338–1340.10.1212/WNL.57.7.1338Suche in Google Scholar

Palaniyappan, L., Al-Radaideh, A., Mougin, O., Gowland, P., and Liddle, P.F. (2013). Combined white matter imaging suggests myelination defects in visual processing regions in schizophrenia. Neuropsychopharmacology 38, 1808–1815.10.1038/npp.2013.80Suche in Google Scholar

Palmer, L.M., Schulz, J.M., Murphy, S.C., Ledergerber, D., Murayama, M., and Larkum, M.E. (2012). The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335, 989–993.10.1126/science.1217276Suche in Google Scholar

Pandya, D.N., Karol, E.A., and Heilbronn, D. (1971). The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res. 32, 31–43.10.1016/0006-8993(71)90153-3Suche in Google Scholar

Paramei, G.V. and Sabel, B.A. (2008). Contour-integration deficits on the intact side of the visual field in hemianopia patients. Behav. Brain Res. 188, 109–124.10.1016/j.bbr.2007.10.025Suche in Google Scholar PubMed

Park, K.C., Lee, B.H., Kim, E.J., Shin, M.H., Choi, K.M., Yoon, S.S., Kwon, S.U., Chung, C.S., Lee, K.H., Heilman, K.M., et al. (2006). Deafferentation-disconnection neglect induced by posterior cerebral artery infarction. Neurology 66, 56–61.10.1212/01.wnl.0000191306.67582.7aSuche in Google Scholar PubMed

Paul, L.K. (2011). Developmental malformation of the corpus callosum: A review of typical callosal development and examples of developmental disorders with callosal involvement. J. Neurodev. Disord. 3, 3–27.10.1007/s11689-010-9059-ySuche in Google Scholar PubMed PubMed Central

Paul, L.K., Brown, W.S., Adolphs, R., Tyszka, J.M., Richards, L.J., Mukherjee, P., and Sherr, E.H. (2007). Agenesis of the corpus callosum: Genetic, developmental and functional aspects of connectivity. Nat. Rev. Neurosci. 8, 287–299.10.1038/nrn2107Suche in Google Scholar PubMed

Payne, B.R. and Siwek, D.F. (1991). The visual map in the corpus callosum of the cat. Cereb. Cortex 1, 173–188.10.1093/cercor/1.2.173Suche in Google Scholar PubMed

Payne, B.R., Elberger, A.J., Berman, N., and Murphy, E.H. (1980). Binocularity in the cat visual cortex is reduced by sectioning the corpus callosum. Science 207, 1097–1099.10.1126/science.7355278Suche in Google Scholar PubMed

Payne, B.R., Lomber, S.G., Rushmore, R.J., and Pascual-Leone, A. (2003). Cancellation of visuoparietal lesion-induced spatial neglect. Exp. Brain Res. 150, 395–398.10.1007/s00221-003-1473-xSuche in Google Scholar PubMed

Peters, A., Payne, B.R., and Josephson, K. (1990). Transcallosal non-pyramidal cell projections from visual cortex in the cat. J. Comp. Neurol. 302, 124–142.10.1002/cne.903020110Suche in Google Scholar PubMed

Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M., and Raichle, M.E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589.10.1038/331585a0Suche in Google Scholar PubMed

Porciatti, V., Bonanni, P., Fiorentini, A., and Guerrini, R. (2000). Lack of cortical contrast gain control in human photosensitive epilepsy. Nat. Neurosci. 3, 259–263.10.1038/72972Suche in Google Scholar PubMed

Ptito, M. and Lepore, F. (1983). Interocular transfer in cats with early callosal transection. Nature 301, 513–515.10.1038/301513a0Suche in Google Scholar PubMed

Putnam, M.C., Steven, M.S., Doron, K.W., Riggall, A.C., and Gazzaniga, M.S. (2010). Cortical projection topography of the human splenium: Hemispheric asymmetry and individual differences. J. Cogn. Neurosci. 22, 1662–1669.10.1162/jocn.2009.21290Suche in Google Scholar

Rauch, R.A. and Jinkins, J.R. (1994). Analysis of cross-sectional area measurements of the corpus callosum adjusted for brain size in male and female subjects from childhood to adulthood. Behav. Brain Res. 64, 65–78.10.1016/0166-4328(94)90119-8Suche in Google Scholar

Ren, T., Anderson, A., Shen, W.B., Huang, H., Plachez, C., Zhang, J., Mori, S., Kinsman, S.L., and Richards, L.J. (2006). Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 191–204.10.1002/ar.a.20282Suche in Google Scholar PubMed

Restani, L., Cerri, C., Pietrasanta, M., Gianfranceschi, L., Maffei, L., and Caleo, M. (2009). Functional masking of deprived eye responses by callosal input during ocular dominance plasticity. Neuron 64, 707–718.10.1016/j.neuron.2009.10.019Suche in Google Scholar PubMed

Reuter-Lorenz, P.A., Nozawa, G., Gazzaniga, M.S., and Hughes, H.C. (1995). Fate of neglected targets: A chronometric analysis of redundant target effects in the bisected brain. J. Exp. Psychol. Hum. Percept. Perform. 21, 211–230.10.1037/0096-1523.21.2.211Suche in Google Scholar

Rizzo, M. and Robin, D.A. (1996). Bilateral effects of unilateral visual cortex lesions in human. Brain 119, 951–963.10.1093/brain/119.3.951Suche in Google Scholar PubMed

Rochefort, N.L., Buzas, P., Kisvarday, Z.F., Eysel, U.T., and Milleret, C. (2007). Layout of transcallosal activity in cat visual cortex revealed by optical imaging. Neuroimage 36, 804–821.10.1016/j.neuroimage.2007.03.006Suche in Google Scholar PubMed

Rochefort, N.L., Buzas, P., Quenech’du, N., Koza, A., Eysel, U.T., Milleret, C., and Kisvarday, Z.F. (2009). Functional selectivity of interhemispheric connections in cat visual cortex. Cereb. Cortex 19, 2451–2465.10.1093/cercor/bhp001Suche in Google Scholar PubMed

Rokem, A., Yoon, J.H., Ooms, R.E., Maddock, R.J., Minzenberg, M.J., and Silver, M.A. (2011). Broader visual orientation tuning in patients with schizophrenia. Front. Hum. Neurosci. 5, 127.10.3389/fnhum.2011.00127Suche in Google Scholar PubMed PubMed Central

Rotarska-Jagiela, A., Schonmeyer, R., Oertel, V., Haenschel, C., Vogeley, K., and Linden, D.E. (2008). The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage 39, 1522–1532.10.1016/j.neuroimage.2007.10.063Suche in Google Scholar PubMed

Saenz, M. and Fine, I. (2010). Topographic organization of V1 projections through the corpus callosum in humans. Neuroimage 52, 1224–1229.10.1016/j.neuroimage.2010.05.060Suche in Google Scholar

Schadow, J., Dettler, N., Paramei, G.V., Lenz, D., Frund, I., Sabel, B.A., and Herrmann, C.S. (2009). Impairments of Gestalt perception in the intact hemifield of hemianopic patients are reflected in g-band EEG activity. Neuropsychologia 47, 556–568.10.1016/j.neuropsychologia.2008.10.012Suche in Google Scholar

Schafer, K., Blankenburg, F., Kupers, R., Gruner, J.M., Law, I., Lauritzen, M., and Larsson, H.B. (2012). Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition. Neuroimage 59, 3119–3127.10.1016/j.neuroimage.2011.11.085Suche in Google Scholar

Schmidt, K.E., Lomber, S.G., and Innocenti, G.M. (2010). Specificity of neuronal responses in primary visual cortex is modulated by interhemispheric corticocortical input. Cereb. Cortex 20, 2776–2786.10.1093/cercor/bhq024Suche in Google Scholar

Sorensen, S.A., Jones, T.A., and Olavarria, J.F. (2003). Neonatal enucleation reduces the proportion of callosal boutons forming multiple synaptic contacts in rat striate cortex. Neurosci. Lett. 351, 17–20.10.1016/S0304-3940(03)00938-8Suche in Google Scholar

Sun, J.S., Li, B., Ma, M.H., and Diao, Y.C. (1994). Transcallosal circuitry revealed by blocking and disinhibiting callosal input in the cat. Vis. Neurosci. 11, 189–197.10.1017/S0952523800001553Suche in Google Scholar

Tettoni, L., Gheorghita-Baechler, F., Bressoud, R., Welker, E., and Innocenti, G.M. (1998). Constant and variable aspects of axonal phenotype in cerebral cortex. Cereb. Cortex 8, 543–552.10.1093/cercor/8.6.543Suche in Google Scholar PubMed

Tomaiuolo, F., Voci, L., Bresci, M., Cozza, S., Posteraro, F., Oliva, M., and Doricchi, F. (2010). Selective visual neglect in right brain damaged patients with splenial interhemispheric disconnection. Exp. Brain Res. 206, 209–217.10.1007/s00221-010-2230-6Suche in Google Scholar PubMed

Tomasch, J. (1954). Size, distribution, and number of fibres in the human corpus callosum. Anat. Rec. 119, 119–135.10.1002/ar.1091190109Suche in Google Scholar PubMed

Toyama, K., Matsunami, K., Ono, T., and Tokashiki, S. (1974). An intracellular study of neuronal organization in the visual cortex. Exp. Brain Res. 21, 45–66.10.1007/BF00234257Suche in Google Scholar PubMed

Van Essen, D.C., Newsome, W.T., and Bixby, J.L. (1982). The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J. Neurosci. 2, 265–283.10.1523/JNEUROSCI.02-03-00265.1982Suche in Google Scholar

Vuilleumier, P. (2013). Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: Progress and challenges. Ann. N. Y. Acad. Sci. 1296, 50–74.10.1111/nyas.12161Suche in Google Scholar PubMed

Watroba, L., Buser, P., and Milleret, C. (2001). Impairment of binocular vision in the adult cat induces plastic changes in the callosal cortical map. Eur. J. Neurosci. 14, 1021–1029.10.1046/j.0953-816x.2001.01720.xSuche in Google Scholar PubMed

White, L.E., Bosking, W.H., Williams, S.M., and Fitzpatrick, D. (1999). Maps of central visual space in ferret V1 and V2 lack matching inputs from the two eyes. J. Neurosci. 19, 7089–7099.10.1523/JNEUROSCI.19-16-07089.1999Suche in Google Scholar

Wunderle, T., Eriksson, D., and Schmidt, K.E. (2013). Multiplicative mechanism of lateral interactions revealed by controlling interhemispheric input. Cereb. Cortex 23, 900–912.10.1093/cercor/bhs081Suche in Google Scholar PubMed

Yates, M.A. and Juraska, J.M. (2007). Increases in size and myelination of the rat corpus callosum during adulthood are maintained into old age. Brain Res. 1142, 13–18.10.1016/j.brainres.2007.01.043Suche in Google Scholar PubMed PubMed Central

Yoon, J.H., Maddock, R.J., Rokem, A., Silver, M.A., Minzenberg, M.J., Ragland, J.D., and Carter, C.S. (2010). GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J. Neurosci. 30, 3777–3781.10.1523/JNEUROSCI.6158-09.2010Suche in Google Scholar PubMed PubMed Central

Received: 2013-7-12
Accepted: 2013-9-7
Published Online: 2013-10-14
Published in Print: 2014-02-01

©2014 by Walter de Gruyter Berlin Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2013-0025/html
Button zum nach oben scrollen