Startseite Hippocampus and consciousness
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hippocampus and consciousness

  • Ralf-Peter Behrendt

    Ralf-Peter Behrendt studied Medicine and Biophysics/Medical Cybernetics at the Russian Medical State University in Moscow, Russia. He trained in Psychiatry in Sheffield, UK and has been working as a consultant in Old Age Psychiatry since 2005. He has published several review articles and book chapters on the pathophysiology of hallucinations in schizophrenia and other conditions. He also concerns himself with the application of psychoanalytic insights to the challenge of relating human social behavior, personality, and psychopathology to neural mechanisms and to the task of understanding how the brain has evolved for, and subserves, complex motivational-emotional processes that underpin interpersonal and social phenomena and manifest, under extreme conditions, as psychopathological phenomena.

    EMAIL logo
Veröffentlicht/Copyright: 26. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An important assumption concerning the physiology of consciousness is that all varieties of conscious experience are closely related to each other and, hence, are subserved by the same neural mechanism. There are several considerations that lead us to implicate the hippocampus in the generation of conscious perception and, ultimately, of conscious experiences of all kinds. Firstly, conscious perception of external events is intricately linked with the formation of episodic (declarative) memories, a key function attributed to the hippocampus. Secondly, conscious experience is allocentric and contextualized. Consciousness creates or simulates an image of the world that appears to surround us and to be independent of our observation of it. What is characteristic of wakeful consciousness and dreaming alike is that objects or events are experienced as being embedded in an external, that is, allocentric, frame of space and time. The hippocampus has been implicated in the rapid formation and memorization of allocentric representations that embed objects or events in a world context. Thirdly, the hippocampus is ideally positioned to bind information processed in different sensory association cortices. It is argued that rapidly forming patterns of neuronal ensemble firing in the hippocampus, particularly in region CA3, which encode arbitrary associations between objects and their spatiotemporal and emotional context, that is, associations between information derived from different neocortical processing streams, define the informational content of consciousness. Evidence suggestive of an important contribution of the hippocampus to conscious observation, mental imagery, dreaming, conscious anticipation of outcomes, and hallucinations will be reviewed.


Corresponding author: Ralf-Peter Behrendt, Elderly Mental Health Team, Princess Elizabeth Hospital, St Martin, Guernsey, GY4 6UU, UK

About the author

Ralf-Peter Behrendt

Ralf-Peter Behrendt studied Medicine and Biophysics/Medical Cybernetics at the Russian Medical State University in Moscow, Russia. He trained in Psychiatry in Sheffield, UK and has been working as a consultant in Old Age Psychiatry since 2005. He has published several review articles and book chapters on the pathophysiology of hallucinations in schizophrenia and other conditions. He also concerns himself with the application of psychoanalytic insights to the challenge of relating human social behavior, personality, and psychopathology to neural mechanisms and to the task of understanding how the brain has evolved for, and subserves, complex motivational-emotional processes that underpin interpersonal and social phenomena and manifest, under extreme conditions, as psychopathological phenomena.

References

Addis, D.R., Wong, A.T., and Schacter, D.L. (2007). Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377.10.1016/j.neuropsychologia.2006.10.016Suche in Google Scholar

Amaral, G. (2002). The primate amygdala and the neurobiology of social behaviour: implications for understanding social anxiety. Biol. Psychiatry 52, 11–17.10.1016/S0006-3223(01)01307-5Suche in Google Scholar

Andersen, R.A. and Buneo, C.A. (2002). Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220.10.1146/annurev.neuro.25.112701.142922Suche in Google Scholar

Anderson, M.I. and Jeffery, K.J. (2003). Heterogeneous modulation of place cell firing by changes in context. J. Neurosci. 23, 8827–8835.10.1523/JNEUROSCI.23-26-08827.2003Suche in Google Scholar

Atkinson, A.P., Thomas, M.S., and Cleeremans, A. (2000). Consciousness: mapping the theoretical landscape. Trends Cogn. Sci. 4, 372–382.10.1016/S1364-6613(00)01533-3Suche in Google Scholar

Bakshi, V.P. and Geyer, M.A. (1998). Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizocilpine. J. Neurosci. 18, 8394–8401.10.1523/JNEUROSCI.18-20-08394.1998Suche in Google Scholar

Bannerman, D.M., Rawlins, J.N., McHugh, S.B., Deacon, R.M., Yee, B.K., Bast, T., Zhang, W.N., Pothuizen, H.H., and Feldon, J. (2004). Regional dissociations within the hippocampus–memory and anxiety. Neurosci. Biobehav. Rev. 28, 273–283.10.1016/j.neubiorev.2004.03.004Suche in Google Scholar

Bauer, E.P., Paz, R., and Paré, D. (2007). Gamma oscillations coordinate amygdalo-rhinal interactions during learning. J. Neurosci. 27, 9369–9379.10.1523/JNEUROSCI.2153-07.2007Suche in Google Scholar

Behrendt, R.P. (2003). Hallucinations: synchronisation of thalamocortical gamma oscillations underconstrained by sensory input. Conscious. Cogn. 12, 413–451.10.1016/S1053-8100(03)00017-5Suche in Google Scholar

Behrendt, R.P. (2006). Dysregulation of thalamic sensory transmission in schizophrenia: neurochemical vulnerability to hallucinations. J. Psychopharmacol. 20, 356–372.10.1177/0269881105057696Suche in Google Scholar PubMed

Behrendt, R.P. (2007). The Subjectivity of the perceived world: psychopathology and the mind-body problem from a perspective of idealism. In: New developments in consciousness research, V.W. Fallio, ed. (Hauppauge, NY: Nova Science Publishers).Suche in Google Scholar

Behrendt, R.P. and Young, C. (2004). Hallucinations in schizophrenia, sensory impairment, and brain disease: a unifying model. Behav. Brain Sci. 27, 771–787.10.1017/S0140525X04000184Suche in Google Scholar

Bell, C.J., Malizia, A.L., and Nutt, D.J. (1999). The neurobiology of social phobia. Eur. Arch. Psychiatry Clin. Neurosci. 249, S11–S18.10.1007/PL00014162Suche in Google Scholar

Benes, F.M. (2007). Searching for unique endophenotypes for schizophrenia and bipolar disorder within neural circuits and their molecular regulatory mechanisms. Schizophr. Bull. 33, 932–936.10.1093/schbul/sbm064Suche in Google Scholar

Benes, F.M., Lim, B., Matzilevich, D., Walsh, J.P., Subburaju, S., and Minns, M. (2007). Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc. Natl. Acad. Sci. U. S. A. 104, 10164–10169.10.1073/pnas.0703806104Suche in Google Scholar

Benes, F.M., Lim, B., Matzilevich, D., Subburaju, S., and Walsh, J.P. (2008). Circuitry-based gene expression profiles in GABA cells of the trisynaptic pathway in schizophrenics versus bipolars. Proc. Natl. Acad. Sci. USA 105, 20935–20940.10.1073/pnas.0810153105Suche in Google Scholar

Berretta, S., Lange, N., Bhattacharyya, S., Sebro, R., Garces, J., and Benes, F.M. (2004). Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Hippocampus 14, 876–894.10.1002/hipo.20002Suche in Google Scholar

Birchwood, M., Meaden, A., Trower, P., Gilbert, P., and Plaistow, J. (2000). The power and omnipotence of voices: subordination and entrapment by voices and significant others. Psychol. Med. 30, 337–344.10.1017/S0033291799001828Suche in Google Scholar

Boly, M., Balteau, E., Schnakers, C., Degueldre, C., Moonen, G., Luxen, A., Phillips, C., Peigneux, P., Maquet, P., and Laureys, S. (2007). Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. USA 104, 12187–12192.10.1073/pnas.0611404104Suche in Google Scholar

Boroditsky, L. (2000). Metaphoric structuring: understanding time through spatial metaphors. Cognition 75, 1–28.10.1016/S0010-0277(99)00073-6Suche in Google Scholar

Brown, M.W. and Aggleton, J.P. (2001). Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2, 51–61.10.1038/35049064Suche in Google Scholar PubMed

Brun, V.H., Otnass, M.K., Molden, S., Steffenach, H.A., Witter, M.P., Moser, M.B., and Moser, E.I. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246.10.1126/science.1071089Suche in Google Scholar PubMed

Brunson, K.L., Eghbal-Ahmadi, M., Bender, R., Chen, Y., and Baram, T.Z. (2001). Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc. Natl. Acad. Sci. USA 98, 8856–8861.10.1073/pnas.151224898Suche in Google Scholar PubMed PubMed Central

Buckner, R.L., Andrews-Hanna, J.R., and Schacter, D.L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38.10.1196/annals.1440.011Suche in Google Scholar PubMed

Burgess, N., Becker, S., King, J.A., and O’Keefe, J. (2001). Memory for events and their spatial context: models and experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1493–1503.10.1098/rstb.2001.0948Suche in Google Scholar PubMed PubMed Central

Buzsáki, G. (1996). The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81–92.10.1093/cercor/6.2.81Suche in Google Scholar PubMed

Buzsáki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840.10.1002/hipo.20113Suche in Google Scholar PubMed

Buzsáki, G. and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926–1929.10.1126/science.1099745Suche in Google Scholar PubMed

Byrne, P., Becker, S., and Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375.10.1037/0033-295X.114.2.340Suche in Google Scholar PubMed PubMed Central

Caplan, J.B., Madsen, J.R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E.L., and Kahana, M.J. (2003). Human theta oscillations related to sensorimotor integration and spatial learning. J. Neurosci. 23, 4726–4736.10.1523/JNEUROSCI.23-11-04726.2003Suche in Google Scholar

Cavanna, A.E. and Trimble, M.R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583.10.1093/brain/awl004Suche in Google Scholar PubMed

Chalmers, D.J. (1996). The conscious mind. (Oxford: Oxford University Press).Suche in Google Scholar

Chrobak, J.J. and Buzsáki, G. (1998). Gamma oscillations in the entorhinal cortex of the freely behaving rat. J. Neurosci. 18, 388–398.10.1523/JNEUROSCI.18-01-00388.1998Suche in Google Scholar

Colby, C.L. and Goldberg, M.E. (1999). Space and attention in parietal cortex. Ann. Rev. Neurosci. 22, 319–349.10.1146/annurev.neuro.22.1.319Suche in Google Scholar

Compton, R.J. (2003). The interface between emotion and attention: a review of evidence from psychology and neuroscience. Behav. Cogn. Neurosci. Rev. 2, 115–129.10.1177/1534582303002002003Suche in Google Scholar

Contreras, M., Ceric, F., and Torrealba, F. (2007). Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 318, 655–658.10.1126/science.1145590Suche in Google Scholar

Coyle, J.T. (2006). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 26, 365–384.10.1007/s10571-006-9062-8Suche in Google Scholar

Critchley, H.D., Mathias, C.J., and Dolan, R.J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 29, 537–545.10.1016/S0896-6273(01)00225-2Suche in Google Scholar

Damasio, A.R. (1997). Neuropsychology: towards a neuropathology of emotion and mood. Nature 386, 769–770.10.1038/386769a0Suche in Google Scholar PubMed

Damasio, A.R. (2001). Fundamental feelings. Nature 413, 781.10.1038/35101669Suche in Google Scholar PubMed

Damasio, A.R., Grabowski, T.J., Bechara, A., Damasio, H., Ponto, L.L., Parvizi, J., and Hichwa, R.D. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat. Neurosci. 3, 1049–1056.10.1038/79871Suche in Google Scholar PubMed

Dean, H.L. and Platt, M.L. (2006). Allocentric spatial referencing of neuronal activity in macaque posterior cingulate cortex. J. Neurosci. 26, 1117–1127.10.1523/JNEUROSCI.2497-05.2006Suche in Google Scholar PubMed PubMed Central

Eichenbaum, H. and Fortin, N.J. (2005). Bridging the gap between brain and behavior: cognitive and neural mechanisms of episodic memory. J. Exp. Anal. Behav. 84, 619–629.10.1901/jeab.2005.80-04Suche in Google Scholar PubMed PubMed Central

Eichenbaum, H., Yonelinas, A.P., and Ranganath, C. (2007). The medial temporal lobe and recognition memory. Ann. Rev. Neurosci. 30, 123–152.10.1146/annurev.neuro.30.051606.094328Suche in Google Scholar PubMed PubMed Central

Eldridge, L.L., Engel, S.A., Zeineh, M.M., Bookheimer, S.Y., and Knowlton, B.J. (2005). A dissociation of encoding and retrieval processes in the human hippocampus. J. Neurosci. 25, 3280–3286.10.1523/JNEUROSCI.3420-04.2005Suche in Google Scholar PubMed PubMed Central

Elsner, B. and Hommel, B. (2001). Effect anticipation and action control. J. Exp. Psychol. Hum. Percept. Perform. 27, 229–240.10.1037/0096-1523.27.1.229Suche in Google Scholar

Ergorul, C. and Eichenbaum, H. (2004). The hippocampus and memory for “what,” “where,” and “when”. Learn. Mem. 11, 397–405.10.1101/lm.73304Suche in Google Scholar PubMed PubMed Central

Fell, J., Fernández, G., Lutz, M.T., Kockelmann, E., Burr, W., Schaller, C., Elger, C.E., and Helmstaedter, C. (2006). Rhinal-hippocampal connectivity determines memory formation during sleep. Brain 129, 108–114.10.1093/brain/awh647Suche in Google Scholar PubMed

Fortin, N.J., Wright, S.P., and Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431, 188–191.10.1038/nature02853Suche in Google Scholar PubMed PubMed Central

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., and Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678.10.1073/pnas.0504136102Suche in Google Scholar PubMed PubMed Central

Frankland, P.W. and Bontempi, B. (2006). Fast track to the medial prefrontal cortex. Proc. Natl. Acad. Sci. USA 103, 509–510.10.1073/pnas.0510133103Suche in Google Scholar PubMed PubMed Central

Fudge, J.L. and Emiliano, A.B. (2003). The extended amygdala and the dopamine system: another piece of the dopamine puzzle. J. Neuropsychiatry Clin. Neurosci. 15, 306–316.10.1176/jnp.15.3.306Suche in Google Scholar PubMed PubMed Central

Garrity, A.G., Pearlson, G.D., McKiernan, K., Lloyd, D., Kiehl, K.A., and Calhoun, V.D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. Am. J. Psychiatry 164, 450–457.10.1176/ajp.2007.164.3.450Suche in Google Scholar

Gilboa, A., Winocur, G., Grady, C.L., Hevenor, S.J., and Moscovitch, M. (2004). Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb. Cortex 14, 1214–1225.10.1093/cercor/bhh082Suche in Google Scholar

Gisabella, B., Bolshakov, V.Y., and Benes, F.M. (2005). Regulation of synaptic plasticity in a schizophrenia model. Proc. Natl. Acad. Sci. USA 102, 13301–13306.10.1073/pnas.0506034102Suche in Google Scholar

Green, M.F., Nuechterlein, K.H., Breitmeyer, B., and Mintz, J. (1999). Backward masking in unmedicated schizophrenic patients in psychotic remission: possible reflection of aberrant cortical oscillation. Am. J. Psychiatry 156, 1367–1373.10.1176/ajp.156.9.1367Suche in Google Scholar

Greicius, M.D., Krasnow, B., Reiss, A.L., and Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100, 253–258.10.1073/pnas.0135058100Suche in Google Scholar

Greicius, M.D., Srivastava, G., Reiss, A.L., and Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA 101, 4637–4642.10.1073/pnas.0308627101Suche in Google Scholar

Gusnard, D.A., Akbudak, E., Shulman, G.L., and Raichle, M.E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 4259–4264.10.1073/pnas.071043098Suche in Google Scholar

Haddock, G., Slade, P.D., and Bentall, R.P. (1995). Auditory hallucinations and the verbal transformation effect: the role of suggestions. Pers. Indiv. Differ. 19, 301–306.10.1016/0191-8869(95)00063-CSuche in Google Scholar

Halligan, P.W., Fink, G.R., Marshall, J.C., and Vallar, G. (2003). Spatial cognition: evidence from visual neglect. Trends Cogn. Sci. 7, 125–133.10.1016/S1364-6613(03)00032-9Suche in Google Scholar

Harrison, B.J., Yücel, M., Pujol, J., and Pantelis, C. (2007). Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91, 82–86.10.1016/j.schres.2006.12.027Suche in Google Scholar PubMed

Harte, M.K., Powell, S.B., Swerdlow, N.R., Geyer, M.A., and Reynolds, G.P. (2007). Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. J. Neural Transm. 114, 893–898.10.1007/s00702-007-0627-6Suche in Google Scholar PubMed

Hasselmo, M.E. (2006). The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715.10.1016/j.conb.2006.09.002Suche in Google Scholar PubMed PubMed Central

Heckers, S. (2001). Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11, 520–528.10.1002/hipo.1068Suche in Google Scholar PubMed

Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P., and Benes, F.M. (2002). Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch. Gen. Psychiatry 59, 521–529.10.1001/archpsyc.59.6.521Suche in Google Scholar PubMed

Hoffman, K.L., and McNaughton, B.L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science 297, 2070–2073.10.1126/science.1073538Suche in Google Scholar PubMed

Isaacson, R.L. (2002). Unsolved mysteries: the hippocampus. Behav. Cogn. Neurosci. Rev. 1, 87–107.10.1177/1534582302001002001Suche in Google Scholar PubMed

Ishikawa, A. and Nakamura, S. (2006). Ventral hippocampal neurons project axons simultaneously to the medial prefrontal cortex and amygdala in the rat. J. Neurophysiol. 96, 2134–2138.10.1152/jn.00069.2006Suche in Google Scholar PubMed

Johansen, J.P., Fields, H.L., and Manning, B.H. (2001). The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 98, 8077–8082.10.1073/pnas.141218998Suche in Google Scholar PubMed PubMed Central

Johnson, A. and Redish, A.D. (2007). Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189.10.1523/JNEUROSCI.3761-07.2007Suche in Google Scholar PubMed PubMed Central

Kahana, M.J. (2006). The cognitive correlates of human brain oscillations. J. Neurosci. 26, 1669–1672.10.1523/JNEUROSCI.3737-05c.2006Suche in Google Scholar PubMed PubMed Central

Kahn, I., Andrews-Hanna, J.R., Vincent, J.L., Snyder, A.Z., and Buckner, R.L. (2008). Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 129–139.10.1152/jn.00077.2008Suche in Google Scholar PubMed PubMed Central

Kesner, R.P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learn. Mem. 14, 771–781.10.1101/lm.688207Suche in Google Scholar PubMed

Kesner, R.P. and Gilbert, P.E. (2007). The role of the agranular insular cortex in anticipation of reward contrast. Neurobiol. Learn. Mem. 88, 82–86.10.1016/j.nlm.2007.02.002Suche in Google Scholar PubMed PubMed Central

Kravitz, D.J., Saleem, K.S., Baker, C.I., and Mishkin, M. (2011). A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217–230.10.1038/nrn3008Suche in Google Scholar PubMed PubMed Central

Krieghoff, V., Brass, M., Prinz, W., and Waszak, F. (2009). Dissociating what and when of intentional actions. Front. Hum. Neurosci. 3, 3.10.3389/neuro.09.003.2009Suche in Google Scholar PubMed PubMed Central

Kubik, S., Miyashita, T., and Guzowski, J.F. (2007). Using immediate-early genes to map hippocampal subregional functions. Learn. Mem. 14, 758–770.10.1101/lm.698107Suche in Google Scholar PubMed

Kumaran, D. and Maguire, E.A. (2006). An unexpected sequence of events: mismatch detection in the human hippocampus. PLoS Biol. 4, e424.10.1371/journal.pbio.0040424Suche in Google Scholar PubMed PubMed Central

Kumaran, D. and Maguire, E.A. (2007). Match mismatch processes underlie human hippocampal responses to associative novelty. J. Neurosci. 27, 8517–8524.10.1523/JNEUROSCI.1677-07.2007Suche in Google Scholar PubMed PubMed Central

Kwon, J.S., O’Donnell, B.F., Wallenstein, G.V., Greene, R.W., Hirayasu, Y., Nestor, P.G., Hasselmo, M.E., Potts, G.F., Shenton, M.E., and McCarley, R.W. (1999). Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch. Gen. Psychiatry 56, 1001–1005.10.1001/archpsyc.56.11.1001Suche in Google Scholar PubMed PubMed Central

Lathe, R. (2001). Hormones and the hippocampus. J. Endocrinol. 169, 205–231.10.1677/joe.0.1690205Suche in Google Scholar PubMed

Liddle, P.F. (1987). Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychol. Med. 17, 49–57.10.1017/S0033291700012976Suche in Google Scholar PubMed

Liddle, P.F., Lane, C.J., and Ngan, E.T. (2000). Immediate effects of risperidone on cortico-striato-thalamic loops and the hippocampus. Br. J. Psychiatry 177, 402–407.10.1192/bjp.177.5.402Suche in Google Scholar

Linn, E.L. (1977). Verbal auditory hallucinations: mind, self, and society. J. Nerv. Ment. Dis. 164, 8–17.10.1097/00005053-197701000-00003Suche in Google Scholar

Llinás, R.R. and Paré, D. (1991). Of dreaming and wakefulness. Neuroscience 44, 521–535.10.1016/0306-4522(91)90075-YSuche in Google Scholar

Lisman, J.E. and Grace, A.A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713.10.1016/j.neuron.2005.05.002Suche in Google Scholar

Lisman, J.E., Talamini, L.M., and Raffone, A. (2005). Recall of memory sequences by interaction of the dentate and CA3: a revised model of the phase precession. Neural Netw. 18, 1191–1201.10.1016/j.neunet.2005.08.008Suche in Google Scholar

Lisman, J.E., Coyle, J.T., Green, R.W., Javitt, D.C., Benes, F.M., Heckers, S., and Grace, A.A. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31, 234–242.10.1016/j.tins.2008.02.005Suche in Google Scholar

Lodge, D.J. and Grace, A.A. (2007). Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J. Neurosci. 27, 11424–11430.10.1523/JNEUROSCI.2847-07.2007Suche in Google Scholar

London, E.D., Ernst, M., Grant, S., Bonson, K., and Weinstein, A. (2000). Oribitofrontal cortex and human drug abuse: Functional imaging. Cereb. Cortex 10, 334–342.10.1093/cercor/10.3.334Suche in Google Scholar

Louie, K. and Wilson, M.A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145–156.10.1016/S0896-6273(01)00186-6Suche in Google Scholar

Luhmann, C.C. (2009). Temporal decision-making: insights from cognitive neuroscience. Front. Behav. Neurosci. 3, 39.10.3389/neuro.08.039.2009Suche in Google Scholar PubMed PubMed Central

Luhmann, C.C., Chun, M.M., Yi, D.J., Lee, D., and Wang, X.J. (2008). Neural dissociation of delay and uncertainty in intertemporal choice. J. Neurosci. 28, 14459–14466.10.1523/JNEUROSCI.5058-08.2008Suche in Google Scholar

Mason, M.F., Norton, M.I., Van Horn, J.D., Wegner, D.M., Grafton, S.T., and Macrae, C.N. (2007). Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395.10.1126/science.1131295Suche in Google Scholar

McGaugh, J.L., Cahill, L., and Roozendaal, B. (1996). Involvement of the amygdala in memory storage: interaction with other brain systems. Proc. Natl. Acad. Sci. USA 93, 13508–13514.10.1073/pnas.93.24.13508Suche in Google Scholar

McNaughton, N. (2006). The role of the subiculum within the behavioural inhibition system. Behav. Brain Res. 174, 232–250.10.1016/j.bbr.2006.05.037Suche in Google Scholar

McNaughton, N. and Corr, P.J. (2004). A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 28, 285–305.10.1016/j.neubiorev.2004.03.005Suche in Google Scholar

McNaughton, N. and Wickens, J. (2003). Hebb, pandemonium and catastrophic hypermnesia: the hippocampus as a suppressor of inappropriate associations. Cortex 39, 1139–1163.10.1016/S0010-9452(08)70882-7Suche in Google Scholar

Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., and Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865.10.1523/JNEUROSCI.4623-06.2007Suche in Google Scholar PubMed PubMed Central

Michail, M. and Birchwood, M. (2009). Social anxiety disorder in first-episode psychosis: incidence, phenomenology and relationship with paranoia. Br. J. Psychiatry 195, 234–241.10.1192/bjp.bp.108.053124Suche in Google Scholar PubMed

Mohedano-Moriano, A., Pro-Sistiaga, P., Arroyo-Jimenez, M.M., Artacho-Pérula, E., Insausti, A.M., Marcos, P., Cebada-Sánchez, S., Martínez-Ruiz, J., Muñoz, M., Blaizot, X., et al. (2007). Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. J Anat. 211, 250–260.10.1111/j.1469-7580.2007.00764.xSuche in Google Scholar PubMed PubMed Central

Montgomery, S.M. and Buzsáki, G. (2007). Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl. Acad. Sci. USA 104, 14495–14500.10.1073/pnas.0701826104Suche in Google Scholar PubMed PubMed Central

Montgomery, S.M., Sirota, A., and Buzsáki, G. (2008). Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J. Neurosci. 28, 6731–6741.10.1523/JNEUROSCI.1227-08.2008Suche in Google Scholar

Morris, R.G., Moser, E.I., Riedel, G., Martin, S.J., Sandin, J., Day, M., and O’Carroll, C. (2003). Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. B 358, 773–786.10.1098/rstb.2002.1264Suche in Google Scholar

Naqvi, N.H. and Bechara, A. (2009). The hidden island of addiction: the insula. Trends Neurosci. 32, 56–67.10.1016/j.tins.2008.09.009Suche in Google Scholar

Nayani, T.H. and David, A.S. (1996). The auditory hallucination: a phenomenological survey. Psychol. Med. 26, 177–189.10.1017/S003329170003381XSuche in Google Scholar

Nuechterlein, K.H., Dawson, M.E., Gitlin, M., Ventura, J., Goldstein, M.J., Snyder, K.S., Yee, C.M., and Mintz, J. (1992). Developmental processes in schizophrenic disorders: longitudinal studies of vulnerability and stress. Schizophr. Bull. 18, 387–425.10.1093/schbul/18.3.387Suche in Google Scholar

Oertel, V., Rotarska-Jagiela, A., van de Ven, V.G., Haenschel, C., Maurer, K., and Linden, D.E. (2007). Visual hallucinations in schizophrenia investigated with functional magnetic resonance imaging. Psychiatry Res. 156, 269–273.10.1016/j.pscychresns.2007.09.004Suche in Google Scholar

O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109.10.1016/0014-4886(76)90055-8Suche in Google Scholar

Olypher, A.V., Klement, D., and Fenton, A.A. (2006). Cognitive disorganization in hippocampus: a physiological model of the disorganization in psychosis. J. Neurosci. 26, 158–168.10.1523/JNEUROSCI.2064-05.2006Suche in Google Scholar PubMed PubMed Central

Palva, S., Linkenkaer-Hansen, K., Näätänen, R., and Palva, J.M. (2005). Early neural correlates of conscious somatosensory perception. J. Neurosci. 25, 5248–5258.10.1523/JNEUROSCI.0141-05.2005Suche in Google Scholar PubMed PubMed Central

Pessoa, L., Kastner, S., and Ungerleider, L.G. (2003). Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J. Neurosci. 23, 3990–3998.10.1523/JNEUROSCI.23-10-03990.2003Suche in Google Scholar

Pessoa, L., Padmala, S., and Morland, T. (2005). Fate of unattended fearful faces in the amygdala is determined by both attentional resources and cognitive modulation. Neuroimage 28, 249–255.10.1016/j.neuroimage.2005.05.048Suche in Google Scholar

Petrulis, A., Alvarez, P., and Eichenbaum, H. (2005). Neural correlates of social odor recognition and the representation of individual distinctive social odors within entorhinal cortex and ventral subiculum. Neuroscience 130, 259–274.10.1016/j.neuroscience.2004.09.001Suche in Google Scholar

Peyron, R., Laurent, B., and García-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin. 30, 263–288.10.1016/S0987-7053(00)00227-6Suche in Google Scholar

Phan, K.L., Fitzgerald, D.A., Nathan, P.J., and Tancer, M.E. (2006). Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biol. Psychiatry 59, 424–429.10.1016/j.biopsych.2005.08.012Suche in Google Scholar

Pihlajamäki, M., Tanila, H., Könönen, M., Hänninen, T., Hämäläinen, A., Soininen, H., and Aronen, H.J. (2004). Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur. J. Neurosci. 19, 1939–1949.10.1111/j.1460-9568.2004.03282.xSuche in Google Scholar

Ploghaus, A., Becerra, L., Borras, C., and Borsook, D. (2003). Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends Cogn. Sci. 7, 197–200.10.1016/S1364-6613(03)00061-5Suche in Google Scholar

Prince, S.E., Daselaar, S.M., and Cabeza, R. (2005). Neural correlates of relational memory: successful encoding and retrieval of semantic and perceptual associations. J. Neurosci. 25, 1203–1210.10.1523/JNEUROSCI.2540-04.2005Suche in Google Scholar PubMed PubMed Central

Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., and Shulman, G.L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682.10.1073/pnas.98.2.676Suche in Google Scholar PubMed PubMed Central

Rainville, P., Duncan, G.H., Price, D.D., Carrier, B., and Bushnell, M.C. (1997). Pain affect encoded in the human anterior cingulate but not somatosensory cortex. Science 277, 989–971.10.1126/science.277.5328.968Suche in Google Scholar PubMed

Rizzolatti, G., Fogassi, L., and Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670.10.1038/35090060Suche in Google Scholar PubMed

Robertson, R.G., Rolls, E.T., and Georges-François, P. (1998). Spatial view cells in the primate hippocampus: effects of removal of view details. J. Neurophysiol. 79, 1145–1156.10.1152/jn.1998.79.3.1145Suche in Google Scholar PubMed

Rolls, E.T. (2007). An attractor network in the hippocampus: theory and neurophysiology. Learn. Mem. 14, 714–731.10.1101/lm.631207Suche in Google Scholar PubMed

Rolls, E.T. and Xiang, J.Z. (2005). Reward-spatial view representations and learning in the primate hippocampus. J. Neurosci. 25, 6167–6174.10.1523/JNEUROSCI.1481-05.2005Suche in Google Scholar PubMed PubMed Central

Rolls, E.T., Treves, A., Robertson, R.G., Georges-François, P., and Panzeri, S. (1998). Information about spatial view in an ensemble of primate hippocampal cells. J. Neurophysiol. 79, 1797–1813.10.1152/jn.1998.79.4.1797Suche in Google Scholar PubMed

Rolls, E.T., Xiang, J., and Franco, L. (2005). Object, space, and object-space representations in the primate hippocampus. J. Neurophysiol. 94, 833–844.10.1152/jn.01063.2004Suche in Google Scholar PubMed

Rosenkranz, J.A. and Johnston, D. (2006). Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J. Neurosci. 26, 3229–3244.10.1523/JNEUROSCI.4333-05.2006Suche in Google Scholar PubMed PubMed Central

Ross, R.S. and Eichenbaum, H. (2006). Dynamics of hippocampal and cortical activation during consolidation of a nonspatial memory. J. Neurosci. 26, 4852–4859.10.1523/JNEUROSCI.0659-06.2006Suche in Google Scholar PubMed PubMed Central

Schacter, D.L. and Addis, D.R. (2007). The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philos. Trans. R. Soc. Lond. B 362, 773–786.10.1098/rstb.2007.2087Suche in Google Scholar PubMed PubMed Central

Schopenhauer, A. (1844). The world as will and representation, translated by E. F. J. Payne. (1966) 2 vols. (New York: Dover).Suche in Google Scholar

Shadlen, M.N. and Newsome, W.T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936.10.1152/jn.2001.86.4.1916Suche in Google Scholar PubMed

Shannon, B.J. and Buckner, R.L. (2004). Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J. Neurosci. 24, 10084–10092.10.1523/JNEUROSCI.2625-04.2004Suche in Google Scholar PubMed PubMed Central

Shapiro, M.L. and Ferbinteanu, J. (2006). Relative spike timing in pairs of hippocampal neurons distinguishes the beginning and end of journeys. Proc. Natl. Acad. Sci. USA 103, 4287–4292.10.1073/pnas.0508688103Suche in Google Scholar PubMed PubMed Central

Shergill, S.S., Brammer, M.J., Williams, S.C., Murray, R.M., and McGuire, P.K. (2000). Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch. Gen. Psychiatry 57, 1033–1038.10.1001/archpsyc.57.11.1033Suche in Google Scholar PubMed

Singer, T. (2007). The neuronal basis of empathy and fairness. Novartis Foundation Symposium 278, 20–30.Suche in Google Scholar

Sokolov, E.N., Nezlina, N.I., Polyanskii, V.B., and Evtikhin, D.V. (2002). The orienting reflex: the “targeting reaction” and “searchlight of attention”. Neurosci. Behav. Physiol. 32, 347–362.10.1023/A:1015820025297Suche in Google Scholar

Spencer, K.M., Nestor, P.G., Niznikiewicz, M.A., Salisbury, D.F., Shenton, M.E., and McCarley, R.W. (2003). Abnormal neural synchrony in schizophrenia. J. Neurosci. 23, 7407–7411.10.1523/JNEUROSCI.23-19-07407.2003Suche in Google Scholar

Stein, M.B., Goldin, P.R., Sareen, J., Zorrilla, L.T., and Brown, G.G. (2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Arch. Gen. Psychiatry 59, 1027–34.10.1001/archpsyc.59.11.1027Suche in Google Scholar PubMed

Stein, M.B., Simmons, A.N., Feinstein, J.S., and Paulus, M.P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am. J. Psychiatry 164, 318–27.10.1176/ajp.2007.164.2.318Suche in Google Scholar PubMed

Straube, E. (1975). Experiments on perception in schizophrenia. [in German]. Arch. Psychiatr. Nervenkr. 220, 139–158.10.1007/BF00341647Suche in Google Scholar PubMed

Takashima, A., Nieuwenhuis, I.L., Rijpkema, M., Petersson, K.M., Jensen, O., and Fernández, G. (2007). Memory trace stabilization leads to large-scale changes in the retrieval network: a functional MRI study on associative memory. Learn. Mem. 14, 472–479.10.1101/lm.605607Suche in Google Scholar PubMed PubMed Central

VanRullen, R. and Koch, C. (2003). Is perception discrete or continuous? Trends Cogn. Sci. 7, 207–213.Suche in Google Scholar

Vertes, R.P. (2005). Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 15, 923–935.10.1002/hipo.20118Suche in Google Scholar PubMed

Vertes, R.P., Hoover, W.B., and Viana Di Prisco, G. (2004). Theta rhythm of the hippocampus: subcortical control and functional significance. Behav. Cogn. Neurosci. Rev. 3, 173–200.10.1177/1534582304273594Suche in Google Scholar PubMed

Vignal, J.P., Maillard, L., McGonigal, A., and Chauvel, P. (2007). The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain 130, 88–99.10.1093/brain/awl329Suche in Google Scholar

Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., and Buckner, R.L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531.10.1152/jn.00048.2006Suche in Google Scholar

Wager, T.D., Rilling, J.K., Smith, E.E., Sokolik, A., Casey, K.L., Davidson, R.J., Kosslyn, S.M., Rose, R.M., and Cohen, J.D. (2004). Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303, 1162–11627.10.1126/science.1093065Suche in Google Scholar

Weissman, D.H., Warner, L.M., and Woldorff, M.G. (2004). The neural mechanisms for minimizing cross-modal distraction. J. Neurosci. 24, 10941–10949.10.1523/JNEUROSCI.3669-04.2004Suche in Google Scholar

Weissman, D.H., Roberts, K.C., Visscher, K.M., and Woldorff, M.G. (2006). The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978.10.1038/nn1727Suche in Google Scholar

Winston, J.S., Strange, B.A., O’Doherty, J., and Dolan, R.J. (2002). Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nat. Neurosci. 5, 277–283.10.1038/nn816Suche in Google Scholar

Young, W.S., Li, J., Wersinger, S.R., and Palkovits, M. (2006). The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143, 1031–1039.10.1016/j.neuroscience.2006.08.040Suche in Google Scholar

Zeineh, M.M., Engel, S.A., Thompson, P.M., and Bookheimer, S.Y. (2003). Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science 299, 577–580.10.1126/science.1077775Suche in Google Scholar

Zeman, A. (2001). Consciousness. Brain 124, 1263–1289.10.1093/brain/124.7.1263Suche in Google Scholar

Zhang, Z.J., and Reynolds, G.P. (2002). A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr. Res. 55, 1–10.10.1016/S0920-9964(01)00188-8Suche in Google Scholar

Received: 2012-12-28
Accepted: 2013-2-18
Published Online: 2013-03-26
Published in Print: 2013-06-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2012-0088/html
Button zum nach oben scrollen