Abstract
Bismuth chloride oxide (BiOCl) is a typical V-VI-VII ternary oxide material, which is one of the widely studied metal oxides due to its unique surface, electronic and photocatalytic properties. However, the broad bandgap and the large number of photogenerated electron-hole pair complexes of BiOCl limit its photocatalytic efficiency. Since the photocatalytic performance of BiOCl is highly dependent on its exposed crystallographic facets, research attention has increasingly focused on the different structures and properties possessed by different crystallographic facets of BiOCl. This article reviews the basic principles of using different crystalline surfaces of BiOCl materials to enhance photocatalytic activity, summarizes the applications of BiOCl single-crystal catalysts and composite catalysts in the environmental field, and provides an outlook on the challenges and new research directions for future development in this emerging frontier area. It is hoped that the crystalline surface-related photocatalysis of BiOCl can be used to provide new guidance for the rational design of novel catalysts for various energy and environment-related applications.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21403053, 21706241, U1404503
Funding source: China Post-Doctoral Science Foundation
Award Identifier / Grant number: 2018M642791, 2020M672305
Funding source: Key Scientific and Technological Project of Henan Province
Award Identifier / Grant number: 202102210042
-
Author contributions: Linjing Hao: Validation, Resources, Conceptualization, Supervision, Writing – review & editing. Tingting Zhang, Haoran Sang: Resources, Conceptualization, Supervision. Suyu Jiang: Formal analysis, Supervision, review & editing. Jie Zhang: Formal analysis, Validation, Supervision, Resources, Writing – review & editing. Jing-He Yang: Formal analysis, Validation, Supervision, Resources, Writing – review & editing.
-
Research funding: This study is supported by the National Natural Science Foundation of China (Grant No. 21706241, U1404503, 21403053), China Post-Doctoral Science Foundation (2018M642791, 2020M672305), and Key Scientific and Technological Project of Henan Province (202102210042).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Biswas, A.; Das, R.; Dey, C.; Banerjee, R.; Poddar, P. Ligand-free one-step synthesis of {001} faceted semiconducting BiOCl single crystals and their photocatalytic activity. Cryst. Growth Des. 2014, 14(1), 236–239. https://doi.org/10.1021/cg4014366.Search in Google Scholar
Bao, L.; Yuan, Y. Highly dispersed BiOCl decahedra with a highly exposed (001) facet and exceptional photocatalytic performance. Dalton Trans. 2020, 49(33), 11536–11542. https://doi.org/10.1039/d0dt02372h.Search in Google Scholar PubMed
Bai, S.; Xiong, Y. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem. Commun. 2015, 51(51), 10261–10271. https://doi.org/10.1039/c5cc02704g.Search in Google Scholar PubMed
Bai, S.; Jiang, W.; Li, Z.; Xiong, Y. Surface and interface engineering in photocatalysis. CHEMNANOMAT 2015, 1(4), 223–239. https://doi.org/10.1002/cnma.201500069.Search in Google Scholar
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. https://doi.org/10.1016/j.nanoen.2018.08.058.Search in Google Scholar
Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4(1), 1600216. https://doi.org/10.1002/advs.201600216.Search in Google Scholar PubMed PubMed Central
Bai, L.; Ye, F.; Li, L.; Lu, J.; Zhong, S.; Bai, S. Facet engineered interface design of plasmonic metal and cocatalyst on BiOCl nanoplates for enhanced visible photocatalytic oxygen evolution. Small 2017, 13(38), 1701607. https://doi.org/10.1002/smll.201701607.Search in Google Scholar PubMed
Cao, S.; Guo, C.; Lv, Y.; Guo, Y.; Liu, Q. A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnology 2009, 20(27), 275702. https://doi.org/10.1088/0957-4484/20/27/275702.Search in Google Scholar PubMed
Cui, Z.; Mi, L.; Zeng, D. Oriented attachment growth of BiOCl nanosheets with exposed {1 1 0} facets and photocatalytic activity of the hierarchical nanostructures. J. Alloys Compd. 2013, 549, 70–76. https://doi.org/10.1016/j.jallcom.2012.09.075.Search in Google Scholar
Chen, H.; Yu, X.; Zhu, Y.; Fu, X.; Zhang, Y. Controlled synthesis of {001} facets-dominated dye-sensitized BiOCl with high photocatalytic efficiency under visible-light irradiation. J. Nanoparticle Res. 2016, 18(8), 225. https://doi.org/10.1007/s11051-016-3529-4.Search in Google Scholar
Chen, M.; Yu, S.; Zhang, X.; Wang, F.; Lin, Y.; Zhou, Y. Insights into the photosensitivity of BiOCl nanoplates with exposing {001} facets: the role of oxygen vacancy. Superlattice. Microst. 2016, 89, 275–281. https://doi.org/10.1016/j.spmi.2015.11.018.Search in Google Scholar
Chang, X.; Wang, S.; Qi, Q.; Gondal, M. A.; Rashid, S. G.; Yang, D.; Dastageer, M. A.; Shen, K.; Xu, Q.; Wang, P. Constrained growth of ultrasmall BiOCl nanodiscs with a low percentage of exposed {001} facets and their enhanced photoreactivity under visible light irradiation. Appl. Catal. B Environ. 2015, 176, 201–211. https://doi.org/10.1016/j.apcatb.2015.03.047.Search in Google Scholar
Chen, G.; Zhu, M.; Wei, X. Photocatalytic properties of attached BiOCl-(001) nanosheets onto AgBr colloidal spheres toward MO and RhB degradation under an LED irradiation. Mater. Lett. 2018, 212, 182–185. https://doi.org/10.1016/j.matlet.2017.10.094.Search in Google Scholar
Chen, Y.; Zhou, Y.; Dong, Q.; Ding, H. One-step in situ synthesis of BiOCl/(BiO)(2)CO3 composite photocatalysts with exposed high-energy {001} facets. CrystEngComm 2018, 20(48), 7838–7850. https://doi.org/10.1039/c8ce01608a.Search in Google Scholar
Cui, Y.; Ma, J.; Wu, M.; Wu, J.; Zhang, J.; Xu, Y.; Liu, Q.; Qian, G. Facet-dependent topo-heterostructure formed by BiOCl and ZnCr-LDH and its enhanced visible-light photocatalytic activity. Separ. Purif. Technol. 2021, 254, 117635. https://doi.org/10.1016/j.seppur.2020.117635.Search in Google Scholar
D’Arienzo, M.; Carbajo, J.; Bahamonde, A.; Crippa, M.; Polizzi, S.; Scotti, R.; Wahba, L.; Morazzoni, F. Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes. J. Am. Chem. Soc. 2011, 133(44), 17652–17661. https://doi.org/10.1021/ja204838s.Search in Google Scholar PubMed
Dandapat, A.; Gnayem, H.; Sasson, Y. The fabrication of BiOClxBr1-x/alumina composite films with highly exposed {001} facets and their superior photocatalytic activities. Chem. Commun. 2016, 52(10), 2161–2164. https://doi.org/10.1039/c5cc09158f.Search in Google Scholar PubMed
Ferreira, V. C.; Neves, M. C.; Hillman, A. R.; Monteiro, O. C. Novel one-pot synthesis and sensitisation of new BiOCl-Bi2S3 nanostructures from DES medium displaying high photocatalytic activity. RSC Adv. 2016, 6(81), 77329–77339. https://doi.org/10.1039/c6ra14474h.Search in Google Scholar
Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135(28), 10411–10417. https://doi.org/10.1021/ja402956f.Search in Google Scholar PubMed
Gao, M.; Zhang, D.; Pu, X.; Li, M.; Yu, Y. M.; Shim, J. J.; Cai, P.; Kim, S. I.; Seo, H. J. Combustion synthesis of BiOCl with tunable percentage of exposed {001} facets and enhanced photocatalytic properties. J. Am. Ceram. Soc. 2015, 98(5), 1515–1519. https://doi.org/10.1111/jace.13493.Search in Google Scholar
Guo, J.; Zhao, W.; Xiong, D.; Ye, Y.; Li, S.; Zhang, B. A hydrolysis synthesis route for (001)/(102) coexposed BiOCl nanosheets with high visible light-driven catalytic performance. New J. Chem. 2021, 45(42), 19996–20006. https://doi.org/10.1039/d1nj03961j.Search in Google Scholar
Guo, J.; Zhao, W.; Xiong, D.; Ye, Y.; Li, S.; Zhang, B. A hydrolysis synthesis route for (001)/(102) coexposed BiOCl nanosheets with high visible light-driven catalytic performance. New J. Chem. 2021, 45(42), 19996–20006. https://doi.org/10.1039/d1nj03961j.Search in Google Scholar
Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135(28), 10411–10417. https://doi.org/10.1021/ja402956f.Search in Google Scholar PubMed
Guan, M.; Zhang, X.; Bao, J.; Gong, X. Two-dimensional ultrathin BiOCl nanosheet/graphene heterojunction with enhanced photocatalytic activity. Nanotechnology 2020, 31(8), 085706. https://doi.org/10.1088/1361-6528/ab5535.Search in Google Scholar PubMed
Hu, X.; Xu, Y.; Zhu, H.; Hua, F.; Zhu, S. Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets. Mater. Sci. Semicond. Process. 2016, 41, 12–16. https://doi.org/10.1016/j.mssp.2015.08.016.Search in Google Scholar
Haider, Z.; Zheng, J. Y.; Kang, Y. S. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets. Phys. Chem. Chem. Phys. 2016, 18(29), 19595–19604. https://doi.org/10.1039/c6cp01740a.Search in Google Scholar PubMed
Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012, 12(12), 6464–6473. https://doi.org/10.1021/nl303961c.Search in Google Scholar PubMed
Huang, Y.; Zhang, X.; Zeng, J. Ternary heterojunctions catalyst of BiOCl nanosheets with the {001} facets compounded of Pt and reduced graphene oxide for enhancing photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32(3), 2667–2684. https://doi.org/10.1007/s10854-020-04758-w.Search in Google Scholar
Han, B.; Gao, X.; Shi, L.; Zheng, Y.; Hou, K.; Lv, J.; Guo, J.; Zhang, W.; Tang, Z. Geometry-modulated magnetoplasmonic optical activity of au nanorod-based nanostructures. Nano Lett. 2017, 17(10), 6083–6089. https://doi.org/10.1021/acs.nanolett.7b02583.Search in Google Scholar PubMed
Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134(10), 4473–4476. https://doi.org/10.1021/ja210484t.Search in Google Scholar PubMed
Jiang, Z.; Kuang, Q.; Xie, Z.; Zheng, L. Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 2010, 20(21), 3634–3645. https://doi.org/10.1002/adfm.201001243.Search in Google Scholar
Jiang, W.; Bai, S.; Wang, L.; Wang, X.; Yang, L.; Li, Y.; Liu, D.; Wang, X.; Li, Z.; Jiang, J.; Xiong, Y. Integration of multiple plasmonic and co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 2016, 12(12), 1640–1648. https://doi.org/10.1002/smll.201503552.Search in Google Scholar PubMed
Kusainova, A. M.; Zhou, W. Z.; Irvine, J.; Lightfoot, P. Layered intergrowth phases Bi4MO8X (X = Cl, M = Ta, and X = Br, M = Ta or Nb): structural and electrophysical characterization. J. Solid State Chem. 2002, 166(1), 148–157. https://doi.org/10.1006/jssc.2002.9572.Search in Google Scholar
Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133(41), 16414–16417. https://doi.org/10.1021/ja207826q.Search in Google Scholar PubMed
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38(1), 253–278. https://doi.org/10.1039/b800489g.Search in Google Scholar PubMed
Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135(14), 5375–5383. https://doi.org/10.1021/ja308723w.Search in Google Scholar PubMed
Li, H.; Shang, J.; Zhu, H.; Yang, Z.; Ai, Z.; Zhang, L. Oxygen vacancy structure associated photocatalytic water oxidation of BiOCl. ACS Catal. 2016, 6(12), 8276–8285. https://doi.org/10.1021/acscatal.6b02613.Search in Google Scholar
Li, Y.; Wang, Q.; Liu, B.; Zhang, J. The {001} facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation. Appl. Surf. Sci. 2015, 349, 957–969. https://doi.org/10.1016/j.apsusc.2015.05.100.Search in Google Scholar
Li, H.; Li, J.; Ai, Z.; Jia, F.; Zhang, L. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57(1), 122–138. https://doi.org/10.1002/anie.201705628.Search in Google Scholar PubMed
Li, H.; Shi, J.; Zhao, K.; Zhang, L. Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale 2014, 6(23), 14168–14173. https://doi.org/10.1039/c4nr04810e.Search in Google Scholar PubMed
Lu, J.; Chen, Y.; Li, L.; Cai, X.; Zhong, S.; Wu, L.; Chen, J.; Bai, S. Facet engineering on the interface of BiOCl-PbS heterostructures for enhanced broad-spectrum photocatalytic H-2 production. Chem. Eng. J. 2019, 362, 1–11. https://doi.org/10.1016/j.cej.2018.12.130.Search in Google Scholar
Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110(41), 20211–20216. https://doi.org/10.1021/jp063441z.Search in Google Scholar PubMed
Li, F.; Li, Y.; Chai, M.; Li, B.; Hao, Y.; Wang, X.; Liu, R. One-step construction of {001} facet-exposed BiOCl hybridized with Al2O3 for enhanced molecular oxygen activation. Catal. Sci. Technol. 2016, 6(22), 7985–7995. https://doi.org/10.1039/c6cy01306f.Search in Google Scholar
Liu, W.; Zhong, D.; Dai, Z.; Liu, Y.; Wang, J.; Wang, Z.; Pan, J. Synergetic utilization of photoabsorption and surface facet in crystalline/amorphous contacted BiOCl-Bi2S3 composite for photocatalytic degradation. J. Alloys Compd. 2019, 780, 907–916. https://doi.org/10.1016/j.jallcom.2018.12.003.Search in Google Scholar
Li, L.; Salvador, P. A.; Rohrer, G. S. Photocatalysts with internal electric fields. Nanoscale 2014, 6(1), 24–42. https://doi.org/10.1039/c3nr03998f.Search in Google Scholar PubMed
Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25(7), 998–1013. https://doi.org/10.1002/adfm.201401636.Search in Google Scholar
Liu, B.; Xu, W.; Sun, T.; Chen, M.; Tian, L.; Wang, J. Efficient visible light photocatalytic activity of CdS on (001) facets exposed to BiOCl. New J. Chem. 2014, 38(6), 2273–2277. https://doi.org/10.1039/c4nj00257a.Search in Google Scholar
Li, R.; Han, H.; Zhang, F.; Wang, D.; Li, C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ. Sci. 2014, 7(4), 1369–1376. https://doi.org/10.1039/c3ee43304h.Search in Google Scholar
Li, H.; Zhang, L. Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light. Nanoscale 2014, 6(14), 7805–7810. https://doi.org/10.1039/c4nr01315h.Search in Google Scholar PubMed
Li, Y.; Zhao, Y.; Wu, G.; Ma, H.; Zhao, J. Bi superlattice nanopolygons at BiOCl (001) nanosheet assembled architectures for visible-light photocatalysis. Mater. Res. Bull. 2018, 101, 39–47. https://doi.org/10.1016/j.materresbull.2017.12.041.Search in Google Scholar
Li, X.; Dai, H.; Deng, J.; Liu, Y.; Xie, S.; Zhao, Z.; Wang, Y.; Guo, G.; Arandiyan, H. Au/3DOM LaCoO3: high-performance catalysts for the oxidation of carbon monoxide and toluene. Chem. Eng. J. 2013, 228, 965–975. https://doi.org/10.1016/j.cej.2013.05.070.Search in Google Scholar
Liu, M. Y.; Zheng, L.; Lin, G. L.; Ni, L. F.; Song, X. C. Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: natural porous diatomite as photocatalyst support and dominant facets regulator. Adv. Powder Technol. 2020, 31(1), 339–350. https://doi.org/10.1016/j.apt.2019.10.026.Search in Google Scholar
Malakootian, M.; Shahamat, Y. D.; Mahdizadeh, H. Purification of diazinon pesticide by sequencing batch moving-bed biofilm reactor after ozonation/Mg-Al layered double hydroxides pre-treated effluent. Separ. Purif. Technol. 2020, 242, 116754. https://doi.org/10.1016/j.seppur.2020.116754.Search in Google Scholar
Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 2008, 112(14), 5275–5300. https://doi.org/10.1021/jp077275m.Search in Google Scholar
Ong, W.; Tan, L.; Chai, S.; Yong, S.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7(3), 690–719. https://doi.org/10.1002/cssc.201300924.Search in Google Scholar PubMed
Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20(1), 35–54. https://doi.org/10.1021/cm7024203.Search in Google Scholar
Peng, Y.; Mao, Y. G.; Kan, P. F. One dimensional hierarchical BiOCl microrods: their synthesis and their photocatalytic performance. CrystEngComm 2018, 20(48), 7809–7817. https://doi.org/10.1039/c8ce01481g.Search in Google Scholar
Peng, H.; Chan, C. K.; Meister, S.; Zhang, X. F.; Cui, Y. Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem. Mater. 2009, 21(2), 247–252. https://doi.org/10.1021/cm802041g.Search in Google Scholar
Peng, Y.; Mao, Y. G.; Kan, P. F.; Liu, J. Y.; Fang, Z. Controllable synthesis and photoreduction performance towards Cr(vi) of BiOCl microrods with exposed (110) crystal facets. New J. Chem. 2018, 42(20), 16911–16918. https://doi.org/10.1039/c8nj03323d.Search in Google Scholar
Peng, Y.; Wang, D.; Zhou, H.; Xu, A. Controlled synthesis of thin BiOCl nanosheets with exposed {001} facets and enhanced photocatalytic activities. CrystEngComm 2015, 17(20), 3845–3851. https://doi.org/10.1039/c5ce00289c.Search in Google Scholar
Pan, L.; Zou, J.; Wang, S.; Liu, X.; Zhang, X.; Wang, L. Morphology evolution of TiO2 facets and vital influences on photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4(3), 1650–1655. https://doi.org/10.1021/am201800j.Search in Google Scholar PubMed
Qi, Y. L.; Zheng, Y. F.; Yin, H. Y.; Song, X. C. Enhanced visible light photocatalytic activity of AgBr on {001} facets exposed to BiOCl. J. Alloys Compd. 2017, 712, 535–542. https://doi.org/10.1016/j.jallcom.2017.04.126.Search in Google Scholar
Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111(6SI), 3669–3712. https://doi.org/10.1021/cr100275d.Search in Google Scholar PubMed PubMed Central
Soltanzadeh, N.; Morsali, A. Sonochemical synthesis of a new nano-structures bismuth(III) supramolecular compound: new precursor for the preparation of bismuth(III) oxide nano-rods and bismuth(III) iodide nano-wires. Ultrason. Sonochem. 2010, 17(1), 139–144. https://doi.org/10.1016/j.ultsonch.2009.05.003.Search in Google Scholar PubMed
Shan, L.; Wang, G.; Liu, L.; Wu, Z. Band alignment and enhanced photocatalytic activation for alpha-Bi2O3/BiOCl (001) core-shell heterojunction. J. Mol. Catal. A Chem. 2015, 406, 145–151. https://doi.org/10.1016/j.molcata.2015.05.024.Search in Google Scholar
Shan, L.; Liu, Y.; Suriyaprakash, J.; Ma, C.; Wu, Z.; Dong, L.; Liu, L. Highly efficient photocatalytic activities, band alignment of BiVO4/BiOCl {001} prepared by in situ chemical transformation. J. Mol. Catal. A Chem. 2016, 411, 179–187. https://doi.org/10.1016/j.molcata.2015.10.032.Search in Google Scholar
Sun, L.; Xiang, L.; Zhao, X.; Jia, C.; Yang, J.; Jin, Z.; Cheng, X.; Fan, W. Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catal. 2015, 5(6), 3540–3551. https://doi.org/10.1021/cs501631n.Search in Google Scholar
Sun, H.; Tian, Z.; Zhou, G.; Zhang, J.; Li, P. Exploring the effects of crystal facet in Bi2WO6/BiOCl heterostructures on photocatalytic properties: a first-principles theoretical study. Appl. Surf. Sci. 2019, 469, 125–134. https://doi.org/10.1016/j.apsusc.2018.11.006.Search in Google Scholar
Song, G.; Wu, X.; Xin, F.; Yin, X. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Front. Chem. Sci. Eng. 2017, 11(2), 197–204. https://doi.org/10.1007/s11705-016-1606-y.Search in Google Scholar
Sun, D.; Yang, W.; Zhou, L.; Sun, W.; Li, Q.; Shang, J. K. The selective deposition of silver nanoparticles onto {101} facets of TiO2 nanocrystals with co-exposed {001}/{101} facets, and their enhanced photocatalytic reduction of aqueous nitrate under simulated solar illumination. Appl. Catal. B Environ. 2016, 182, 85–93. https://doi.org/10.1016/j.apcatb.2015.09.005.Search in Google Scholar
Sarina, S.; Waclawik, E. R.; Zhu, H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 2013, 15(7), 1814–1833. https://doi.org/10.1039/c3gc40450a.Search in Google Scholar
Tian, J.; Chen, Z.; Deng, X.; Sun, Q.; Sun, Z.; Li, W. Improving visible light driving degradation of norfloxacin over core-shell hierarchical BiOCl microspherical photocatalyst by synergistic effect of oxygen vacancy and nanostructure. Appl. Surf. Sci. 2018, 453, 373–382. https://doi.org/10.1016/j.apsusc.2018.04.255.Search in Google Scholar
Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5(10), 782–786. https://doi.org/10.1038/nmat1734.Search in Google Scholar PubMed
Tan, C.; Zhu, G.; Hojamberdiev, M.; Okada, K.; Liang, J.; Luo, X.; Liu, P.; Liu, Y. Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: efficient photodegradation of organic dyes under visible light. Appl. Catal. B Environ. 2014, 152, 425–436. https://doi.org/10.1016/j.apcatb.2014.01.044.Search in Google Scholar
Tang, L.; Chen, R.; Meng, X.; Lv, B.; Fan, F.; Ye, J.; Wang, X.; Zhou, Y.; Li, C.; Zou, Z. Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO2 into solar fuels. Chem. Commun. 2018, 54(40), 5126–5129. https://doi.org/10.1039/c8cc01873a.Search in Google Scholar PubMed
Tang, H.; Ju, T.; Dai, Y.; Wang, M.; Wang, M.; Ma, Y.; Zheng, G. Synthesis and photocatalytic performance of BiOCl/graphene composite with tight interfacial contact and highly exposed (001) facets. Appl. Organomet. Chem. 2021, 36, e6526. https://doi.org/10.1002/aoc.6526.Search in Google Scholar
Weng, S.; Chen, B.; Xie, L.; Zheng, Z.; Liu, P. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem. A 2013, 1(9), 3068–3075. https://doi.org/10.1039/c2ta01004f.Search in Google Scholar
Wang, D.; Gao, G.; Zhang, Y.; Zhou, L.; Xu, A.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4(24), 7780–7785. https://doi.org/10.1039/c2nr32533k.Search in Google Scholar PubMed
Wang, X.; Liu, X.; Liu, G.; Zhang, C.; Liu, G.; Xu, S.; Cui, P.; Li, D. Rapid synthesis of BiOCl graded microspheres with highly exposed (110) facets and oxygen vacancies at room temperature to enhance visible light photocatalytic activity. Catal. Commun. 2019, 130, 105769. https://doi.org/10.1016/j.catcom.2019.105769.Search in Google Scholar
Weng, S.; Hu, J.; Lu, M.; Ye, X.; Pei, Z.; Huang, M.; Xie, L.; Lin, S.; Liu, P. In situ photogenerated defects on surface-complex BiOCl (010) with high visible-light photocatalytic activity: a probe to disclose the charge transfer in BiOCl (010)/surface-complex system. Appl. Catal. B Environ. 2015, 163, 205–213. https://doi.org/10.1016/j.apcatb.2014.07.051.Search in Google Scholar
Wu, Z.; Li, Z.; Tian, Q.; Liu, J.; Zhang, S.; Xu, K.; Shen, J.; Zhang, S.; Wu, W. Protonated branched polyethyleneimine induces the shape evolution of BiOCl and exposed {010} facet of BiOCl nanosheets. Cryst. Growth Des. 2018, 18(9), 5479–5491. https://doi.org/10.1021/acs.cgd.8b00828.Search in Google Scholar
Weng, S.; Fang, Z.; Wang, Z.; Zheng, Z.; Feng, W.; Liu, P. Construction of teethlike homojunction BiOCl (001) nanosheets by selective etching and its high photocatalytic activity. ACS Appl. Mater. Interfaces 2014, 6(21), 18423–18428. https://doi.org/10.1021/am5052526.Search in Google Scholar PubMed
Wu, Z.; Li, Z.; Tian, Q.; Liu, J.; Zhang, S.; Xu, K.; Shen, J.; Zhang, S.; Wu, W. Protonated branched polyethyleneimine induces the shape evolution of BiOCl and exposed {010} facet of BiOCl nanosheets. Cryst. Growth Des. 2018, 18(9), 5479–5491. https://doi.org/10.1021/acs.cgd.8b00828.Search in Google Scholar
Wang, D.; Gao, G.; Zhang, Y.; Zhou, L.; Xu, A.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4(24), 7780–7785. https://doi.org/10.1039/c2nr32533k.Search in Google Scholar PubMed
Wang, X.; Li, T.; Yu, R.; Yu, H.; Yu, J. Highly efficient TiO2 single-crystal photocatalyst with spatially separated Ag and F-bi-cocatalysts: orientation transfer of photogenerated charges and their rapid interfacial reaction. J. Mater. Chem. A 2016, 4(22), 8682–8689. https://doi.org/10.1039/c6ta02039a.Search in Google Scholar
Wang, X.; Ni, Q.; Zeng, D.; Liao, G.; Wen, Y.; Shan, B.; Xie, C. BiOCl/TiO2 heterojunction network with high energy facet exposed for highly efficient photocatalytic degradation of benzene. Appl. Surf. Sci. 2017, 396, 590–598. https://doi.org/10.1016/j.apsusc.2016.10.201.Search in Google Scholar
Wang, F.; Wang, Y.; Feng, Y.; Zeng, Y.; Xie, Z.; Zhang, Q.; Su, Y.; Chen, P.; Liu, Y.; Yao, K.; Lv, W.; Liu, G. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl. Catal. B Environ. 2018, 221, 510–520. https://doi.org/10.1016/j.apcatb.2017.09.055.Search in Google Scholar
Wang, F.; Wang, Y.; Feng, Y.; Zeng, Y.; Xie, Z.; Zhang, Q.; Su, Y.; Chen, P.; Liu, Y.; Yao, K.; Lv, W.; Liu, G. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl. Catal. B Environ. 2018, 221, 510–520. https://doi.org/10.1016/j.apcatb.2017.09.055.Search in Google Scholar
Xu, Y.; Xu, S.; Wang, S.; Zhang, Y.; Li, G. Citric acid modulated electrochemical synthesis and photocatalytic behavior of BiOCl nanoplates with exposed {001} facets. Dalton Trans. 2014, 43(2), 479–485. https://doi.org/10.1039/c3dt52004h.Search in Google Scholar PubMed
Xu, Y.; Hu, X.; Zhu, H.; Zhang, J. Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities. J. Mater. Sci. 2016, 51(9), 4342–4348. https://doi.org/10.1007/s10853-016-9745-6.Search in Google Scholar
Xu, T.; Yang, M.; Chen, C.; Duan, R.; Shen, Q.; Sun, C. Photocatalytic activation of C-Br bond on facet-dependent BiOCl with oxygen vacancies. Appl. Surf. Sci. 2021, 548, 149243. https://doi.org/10.1016/j.apsusc.2021.149243.Search in Google Scholar
Xiaochao, Z.; Guoqi, L.; Caimei, F.; Guangyue, D.; Yawen, W.; Peide, H. Theoretical insights into the adsorption of monatomic Ag on the (2 times 2) BiOCl (0 0 1) surfaces. Comput. Mater. Sci. 2014, 95, 113–120. https://doi.org/10.1016/j.commatsci.2014.07.020.Search in Google Scholar
Xu, X.; Yan, Q.; Gu, X.; Luo, Y. The preparation and photocatalytic performance of BiOCl@Ag, a visible-light responsive catalyst. J. Mater. Sci. Mater. Electron. 2019, 30(9), 8892–8902. https://doi.org/10.1007/s10854-019-01217-z.Search in Google Scholar
Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47(24), 6951–6953. https://doi.org/10.1039/c1cc11015b.Search in Google Scholar PubMed
Yu, C.; Wei, L.; Chen, J.; Xie, Y.; Zhou, W.; Fan, Q. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace Narrow-Band-Gap Ag2CO3. Ind. Eng. Chem. Res. 2014, 53(14), 5759–5766. https://doi.org/10.1021/ie404283d.Search in Google Scholar
Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47(24), 6951–6953. https://doi.org/10.1039/c1cc11015b.Search in Google Scholar
Yan, J.; Jin, B.; Zhao, P.; Peng, R. Facile fabrication of BiOCl nanoplates with high exposure {001} facets for efficient photocatalytic degradation of nitro explosives. Inorg. Chem. Front. 2021, 8(3), 777–786. https://doi.org/10.1039/d0qi01218a.Search in Google Scholar
Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47(24), 6951–6953. https://doi.org/10.1039/c1cc11015b.Search in Google Scholar
Ye, L.; Mao, J.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Synthesis of anatase TiO2 nanocrystals with {101}, {001} or {010} single facets of 90% level exposure and liquid-phase photocatalytic reduction and oxidation activity orders. J. Mater. Chem. A 2013, 1(35), 10532–10537. https://doi.org/10.1039/c3ta11791j.Search in Google Scholar
Yaacobi-Gross, N.; Soreni-Harari, M.; Zimin, M.; Kababya, S.; Schmidt, A.; Tessler, N. Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat. Mater. 2011, 10(12), 974–979. https://doi.org/10.1038/NMAT3133.Search in Google Scholar
Yu, X.; Yang, J.; Ye, K.; Fu, X.; Zhu, Y.; Zhang, Y. Facile one-step synthesis of BiOCl/BiOI heterojunctions with exposed {001} facet for highly enhanced visible light photocatalytic performances. Inorg. Chem. Commun. 2016, 71, 45–49. https://doi.org/10.1016/j.inoche.2016.06.034.Search in Google Scholar
Yu, H.; Cao, C.; Wang, X.; Yu, J. Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles. J. Phys. Chem. C 2017, 121(24), 13191–13201. https://doi.org/10.1021/acs.jpcc.7b03213.Search in Google Scholar
Yu, C.; He, H.; Fan, Q.; Xie, W.; Liu, Z.; Ji, H. Novel B-doped BiOCl nanosheets with exposed (001) facets and photocatalytic mechanism of enhanced degradation efficiency for organic pollutants. Sci. Total Environ. 2019, 694, 133727. https://doi.org/10.1016/j.scitotenv.2019.133727.Search in Google Scholar PubMed
Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem., Int. Ed. 2008, 47(9), 1766–1769. https://doi.org/10.1002/anie.200704788.Search in Google Scholar PubMed
Zhang, X.; Liu, X.; Fan, C.; Wang, Y.; Wang, Y.; Liang, Z. A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis. Appl. Catal. B Environ. 2013, 132, 332–341. https://doi.org/10.1016/j.apcatb.2012.12.010.Search in Google Scholar
Zhang, L.; Niu, C.; Xie, G.; Wen, X.; Zhang, X.; Zeng, G. Controlled growth of BiOCl with large {010} facets for dye self-photosensitization photocatalytic fuel cells application. ACS Sustain. Chem. Eng. 2017, 5(6), 4619–4629. https://doi.org/10.1021/acssuschemeng.6b03150.Search in Google Scholar
Zhang, D.; Chen, L.; Xiao, C.; Feng, J.; Liao, L.; Wang, Z.; Wei, T. Facile synthesis of high {001} facets dominated BiOCl nanosheets and their selective dye-sensitized photocatalytic activity induced by visible light. J. Nanomater. 2016, 2016, 5697672. https://doi.org/10.1155/2016/5697672.Search in Google Scholar
Zhao, H.; Liu, X.; Dong, Y.; Xia, Y.; Wang, H.; Zhu, X. Fabrication of a Z-scheme {001}/{110} facet heterojunction in BiOCl to promote spatial charge separation. ACS Appl. Mater. Interfaces 2020, 12(28), 31532–31541. https://doi.org/10.1021/acsami.0c08687.Search in Google Scholar PubMed
Zou, Z.; Xu, H.; Li, D.; Sun, J.; Xia, D. Facile preparation and photocatalytic activity of oxygen vacancy rich BiOCl with {001} exposed reactive facets. Appl. Surf. Sci. 2019, 463, 1011–1018. https://doi.org/10.1016/j.apsusc.2018.09.025.Search in Google Scholar
Zeng, X.; Xiao, X.; Chen, J.; Wang, Y.; Wang, H. Understanding the effects of co-exposed facets on photocatalytic activities and fuel desulfurization performance in BiOCl singlet-crystalline sheets. J. Hazard. Mater. 2020, 391, 122198. https://doi.org/10.1016/j.jhazmat.2020.122198.Search in Google Scholar PubMed
Zhang, X.; Wang, X.; Wang, L.; Wang, W.; Long, L.; Li, W.; Yu, H. Synthesis of a highly efficient BiOCI single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Appl. Mater. Interfaces 2014, 6(10), 7766–7772. https://doi.org/10.1021/am5010392.Search in Google Scholar PubMed
Zhao, K.; Zhang, L.; Wang, J.; Li, Q.; He, W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135(42), 15750–15753. https://doi.org/10.1021/ja4092903.Search in Google Scholar PubMed
Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem., Int. Ed. 2008, 47(9), 1766–1769. https://doi.org/10.1002/anie.200704788.Search in Google Scholar PubMed
Zhou, Z.; Long, M.; Cai, W.; Cai, J. Synthesis and photocatalytic performance of the efficient visible light photocatalyst Ag-AgCl/BiVO4. J. Mol. Catal. A Chem. 2012, 353, 22–28. https://doi.org/10.1016/j.molcata.2011.10.025.Search in Google Scholar
Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26(29), 4920–4935. https://doi.org/10.1002/adma.201400288.Search in Google Scholar PubMed
Zhu, Z.; Xiang, M.; Li, P.; Shan, L.; Zhang, P. Surfactant-modified three-dimensional layered double hydroxide for the removal of methyl orange and rhodamine B: extended investigations in binary dye systems. J. Solid State Chem. 2020, 288, 121448. https://doi.org/10.1016/j.jssc.2020.121448.Search in Google Scholar
Zhang, Z.; Zhou, Y.; Yu, S.; Chen, M.; Wang, F. Ag-BiOCl nanocomposites prepared by the oxygen vacancy induced photodeposition method with improved visible light photocatalytic activity. Mater. Lett. 2015, 150, 97–100. https://doi.org/10.1016/j.matlet.2015.03.011.Search in Google Scholar
Zhang, Z.; Zhou, Y.; Yu, S.; Chen, M.; Wang, F. Ag-BiOCl nanocomposites prepared by the oxygen vacancy induced photodeposition method with improved visible light photocatalytic activity. Mater. Lett. 2015, 150, 97–100. https://doi.org/10.1016/j.matlet.2015.03.011.Search in Google Scholar
Zhang, D.; Tan, G.; Wang, M.; Li, B.; Dang, M.; Ren, H.; Xia, A. The enhanced photocatalytic activity of Ag-OVs-(001) BiOCl by separating secondary excitons under double SPR effects. Appl. Surf. Sci. 2020, 526, 146689. https://doi.org/10.1016/j.apsusc.2020.146689.Search in Google Scholar
Zhang, L.; Wang, W.; Sun, S.; Jiang, D.; Gao, E. Selective transport of electron and hole among {001} and {110} facets of BiOCl for pure water splitting. Appl. Catal. B Environ. 2015, 162, 470–474. https://doi.org/10.1016/j.apcatb.2014.07.024.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review
- Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation
- Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)
- Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior
- Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production
Articles in the same Issue
- Frontmatter
- Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review
- Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation
- Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)
- Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior
- Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production