Home Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation
Article
Licensed
Unlicensed Requires Authentication

Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation

  • Linjing Hao , Tingting Zhang , Haoran Sang , Suyu Jiang , Jie Zhang EMAIL logo and Jinghe Yang EMAIL logo
Published/Copyright: June 24, 2022

Abstract

Bismuth chloride oxide (BiOCl) is a typical V-VI-VII ternary oxide material, which is one of the widely studied metal oxides due to its unique surface, electronic and photocatalytic properties. However, the broad bandgap and the large number of photogenerated electron-hole pair complexes of BiOCl limit its photocatalytic efficiency. Since the photocatalytic performance of BiOCl is highly dependent on its exposed crystallographic facets, research attention has increasingly focused on the different structures and properties possessed by different crystallographic facets of BiOCl. This article reviews the basic principles of using different crystalline surfaces of BiOCl materials to enhance photocatalytic activity, summarizes the applications of BiOCl single-crystal catalysts and composite catalysts in the environmental field, and provides an outlook on the challenges and new research directions for future development in this emerging frontier area. It is hoped that the crystalline surface-related photocatalysis of BiOCl can be used to provide new guidance for the rational design of novel catalysts for various energy and environment-related applications.


Corresponding authors: Jie Zhang, School of Ecology and Environment, Zhengzhou University, Henan 450001, P. R. China; International Joint Laboratory of Environment and Resources of Henan Province, Henan 450001, P. R. China; and Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Henan 450001, P. R. China, E-mail: ; and Jinghe Yang, School of Chemical Engineering, Zhengzhou University, Henan 450001, P. R. China, E-mail:

Award Identifier / Grant number: 21403053, 21706241, U1404503

Award Identifier / Grant number: 2018M642791, 2020M672305

Award Identifier / Grant number: 202102210042

  1. Author contributions: Linjing Hao: Validation, Resources, Conceptualization, Supervision, Writing – review & editing. Tingting Zhang, Haoran Sang: Resources, Conceptualization, Supervision. Suyu Jiang: Formal analysis, Supervision, review & editing. Jie Zhang: Formal analysis, Validation, Supervision, Resources, Writing – review & editing. Jing-He Yang: Formal analysis, Validation, Supervision, Resources, Writing – review & editing.

  2. Research funding: This study is supported by the National Natural Science Foundation of China (Grant No. 21706241, U1404503, 21403053), China Post-Doctoral Science Foundation (2018M642791, 2020M672305), and Key Scientific and Technological Project of Henan Province (202102210042).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Biswas, A.; Das, R.; Dey, C.; Banerjee, R.; Poddar, P. Ligand-free one-step synthesis of {001} faceted semiconducting BiOCl single crystals and their photocatalytic activity. Cryst. Growth Des. 2014, 14(1), 236–239. https://doi.org/10.1021/cg4014366.Search in Google Scholar

Bao, L.; Yuan, Y. Highly dispersed BiOCl decahedra with a highly exposed (001) facet and exceptional photocatalytic performance. Dalton Trans. 2020, 49(33), 11536–11542. https://doi.org/10.1039/d0dt02372h.Search in Google Scholar PubMed

Bai, S.; Xiong, Y. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem. Commun. 2015, 51(51), 10261–10271. https://doi.org/10.1039/c5cc02704g.Search in Google Scholar PubMed

Bai, S.; Jiang, W.; Li, Z.; Xiong, Y. Surface and interface engineering in photocatalysis. CHEMNANOMAT 2015, 1(4), 223–239. https://doi.org/10.1002/cnma.201500069.Search in Google Scholar

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. https://doi.org/10.1016/j.nanoen.2018.08.058.Search in Google Scholar

Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4(1), 1600216. https://doi.org/10.1002/advs.201600216.Search in Google Scholar PubMed PubMed Central

Bai, L.; Ye, F.; Li, L.; Lu, J.; Zhong, S.; Bai, S. Facet engineered interface design of plasmonic metal and cocatalyst on BiOCl nanoplates for enhanced visible photocatalytic oxygen evolution. Small 2017, 13(38), 1701607. https://doi.org/10.1002/smll.201701607.Search in Google Scholar PubMed

Cao, S.; Guo, C.; Lv, Y.; Guo, Y.; Liu, Q. A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnology 2009, 20(27), 275702. https://doi.org/10.1088/0957-4484/20/27/275702.Search in Google Scholar PubMed

Cui, Z.; Mi, L.; Zeng, D. Oriented attachment growth of BiOCl nanosheets with exposed {1 1 0} facets and photocatalytic activity of the hierarchical nanostructures. J. Alloys Compd. 2013, 549, 70–76. https://doi.org/10.1016/j.jallcom.2012.09.075.Search in Google Scholar

Chen, H.; Yu, X.; Zhu, Y.; Fu, X.; Zhang, Y. Controlled synthesis of {001} facets-dominated dye-sensitized BiOCl with high photocatalytic efficiency under visible-light irradiation. J. Nanoparticle Res. 2016, 18(8), 225. https://doi.org/10.1007/s11051-016-3529-4.Search in Google Scholar

Chen, M.; Yu, S.; Zhang, X.; Wang, F.; Lin, Y.; Zhou, Y. Insights into the photosensitivity of BiOCl nanoplates with exposing {001} facets: the role of oxygen vacancy. Superlattice. Microst. 2016, 89, 275–281. https://doi.org/10.1016/j.spmi.2015.11.018.Search in Google Scholar

Chang, X.; Wang, S.; Qi, Q.; Gondal, M. A.; Rashid, S. G.; Yang, D.; Dastageer, M. A.; Shen, K.; Xu, Q.; Wang, P. Constrained growth of ultrasmall BiOCl nanodiscs with a low percentage of exposed {001} facets and their enhanced photoreactivity under visible light irradiation. Appl. Catal. B Environ. 2015, 176, 201–211. https://doi.org/10.1016/j.apcatb.2015.03.047.Search in Google Scholar

Chen, G.; Zhu, M.; Wei, X. Photocatalytic properties of attached BiOCl-(001) nanosheets onto AgBr colloidal spheres toward MO and RhB degradation under an LED irradiation. Mater. Lett. 2018, 212, 182–185. https://doi.org/10.1016/j.matlet.2017.10.094.Search in Google Scholar

Chen, Y.; Zhou, Y.; Dong, Q.; Ding, H. One-step in situ synthesis of BiOCl/(BiO)(2)CO3 composite photocatalysts with exposed high-energy {001} facets. CrystEngComm 2018, 20(48), 7838–7850. https://doi.org/10.1039/c8ce01608a.Search in Google Scholar

Cui, Y.; Ma, J.; Wu, M.; Wu, J.; Zhang, J.; Xu, Y.; Liu, Q.; Qian, G. Facet-dependent topo-heterostructure formed by BiOCl and ZnCr-LDH and its enhanced visible-light photocatalytic activity. Separ. Purif. Technol. 2021, 254, 117635. https://doi.org/10.1016/j.seppur.2020.117635.Search in Google Scholar

D’Arienzo, M.; Carbajo, J.; Bahamonde, A.; Crippa, M.; Polizzi, S.; Scotti, R.; Wahba, L.; Morazzoni, F. Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes. J. Am. Chem. Soc. 2011, 133(44), 17652–17661. https://doi.org/10.1021/ja204838s.Search in Google Scholar PubMed

Dandapat, A.; Gnayem, H.; Sasson, Y. The fabrication of BiOClxBr1-x/alumina composite films with highly exposed {001} facets and their superior photocatalytic activities. Chem. Commun. 2016, 52(10), 2161–2164. https://doi.org/10.1039/c5cc09158f.Search in Google Scholar PubMed

Ferreira, V. C.; Neves, M. C.; Hillman, A. R.; Monteiro, O. C. Novel one-pot synthesis and sensitisation of new BiOCl-Bi2S3 nanostructures from DES medium displaying high photocatalytic activity. RSC Adv. 2016, 6(81), 77329–77339. https://doi.org/10.1039/c6ra14474h.Search in Google Scholar

Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135(28), 10411–10417. https://doi.org/10.1021/ja402956f.Search in Google Scholar PubMed

Gao, M.; Zhang, D.; Pu, X.; Li, M.; Yu, Y. M.; Shim, J. J.; Cai, P.; Kim, S. I.; Seo, H. J. Combustion synthesis of BiOCl with tunable percentage of exposed {001} facets and enhanced photocatalytic properties. J. Am. Ceram. Soc. 2015, 98(5), 1515–1519. https://doi.org/10.1111/jace.13493.Search in Google Scholar

Guo, J.; Zhao, W.; Xiong, D.; Ye, Y.; Li, S.; Zhang, B. A hydrolysis synthesis route for (001)/(102) coexposed BiOCl nanosheets with high visible light-driven catalytic performance. New J. Chem. 2021, 45(42), 19996–20006. https://doi.org/10.1039/d1nj03961j.Search in Google Scholar

Guo, J.; Zhao, W.; Xiong, D.; Ye, Y.; Li, S.; Zhang, B. A hydrolysis synthesis route for (001)/(102) coexposed BiOCl nanosheets with high visible light-driven catalytic performance. New J. Chem. 2021, 45(42), 19996–20006. https://doi.org/10.1039/d1nj03961j.Search in Google Scholar

Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135(28), 10411–10417. https://doi.org/10.1021/ja402956f.Search in Google Scholar PubMed

Guan, M.; Zhang, X.; Bao, J.; Gong, X. Two-dimensional ultrathin BiOCl nanosheet/graphene heterojunction with enhanced photocatalytic activity. Nanotechnology 2020, 31(8), 085706. https://doi.org/10.1088/1361-6528/ab5535.Search in Google Scholar PubMed

Hu, X.; Xu, Y.; Zhu, H.; Hua, F.; Zhu, S. Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets. Mater. Sci. Semicond. Process. 2016, 41, 12–16. https://doi.org/10.1016/j.mssp.2015.08.016.Search in Google Scholar

Haider, Z.; Zheng, J. Y.; Kang, Y. S. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets. Phys. Chem. Chem. Phys. 2016, 18(29), 19595–19604. https://doi.org/10.1039/c6cp01740a.Search in Google Scholar PubMed

Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012, 12(12), 6464–6473. https://doi.org/10.1021/nl303961c.Search in Google Scholar PubMed

Huang, Y.; Zhang, X.; Zeng, J. Ternary heterojunctions catalyst of BiOCl nanosheets with the {001} facets compounded of Pt and reduced graphene oxide for enhancing photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32(3), 2667–2684. https://doi.org/10.1007/s10854-020-04758-w.Search in Google Scholar

Han, B.; Gao, X.; Shi, L.; Zheng, Y.; Hou, K.; Lv, J.; Guo, J.; Zhang, W.; Tang, Z. Geometry-modulated magnetoplasmonic optical activity of au nanorod-based nanostructures. Nano Lett. 2017, 17(10), 6083–6089. https://doi.org/10.1021/acs.nanolett.7b02583.Search in Google Scholar PubMed

Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134(10), 4473–4476. https://doi.org/10.1021/ja210484t.Search in Google Scholar PubMed

Jiang, Z.; Kuang, Q.; Xie, Z.; Zheng, L. Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 2010, 20(21), 3634–3645. https://doi.org/10.1002/adfm.201001243.Search in Google Scholar

Jiang, W.; Bai, S.; Wang, L.; Wang, X.; Yang, L.; Li, Y.; Liu, D.; Wang, X.; Li, Z.; Jiang, J.; Xiong, Y. Integration of multiple plasmonic and co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 2016, 12(12), 1640–1648. https://doi.org/10.1002/smll.201503552.Search in Google Scholar PubMed

Kusainova, A. M.; Zhou, W. Z.; Irvine, J.; Lightfoot, P. Layered intergrowth phases Bi4MO8X (X = Cl, M = Ta, and X = Br, M = Ta or Nb): structural and electrophysical characterization. J. Solid State Chem. 2002, 166(1), 148–157. https://doi.org/10.1006/jssc.2002.9572.Search in Google Scholar

Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133(41), 16414–16417. https://doi.org/10.1021/ja207826q.Search in Google Scholar PubMed

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38(1), 253–278. https://doi.org/10.1039/b800489g.Search in Google Scholar PubMed

Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135(14), 5375–5383. https://doi.org/10.1021/ja308723w.Search in Google Scholar PubMed

Li, H.; Shang, J.; Zhu, H.; Yang, Z.; Ai, Z.; Zhang, L. Oxygen vacancy structure associated photocatalytic water oxidation of BiOCl. ACS Catal. 2016, 6(12), 8276–8285. https://doi.org/10.1021/acscatal.6b02613.Search in Google Scholar

Li, Y.; Wang, Q.; Liu, B.; Zhang, J. The {001} facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation. Appl. Surf. Sci. 2015, 349, 957–969. https://doi.org/10.1016/j.apsusc.2015.05.100.Search in Google Scholar

Li, H.; Li, J.; Ai, Z.; Jia, F.; Zhang, L. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57(1), 122–138. https://doi.org/10.1002/anie.201705628.Search in Google Scholar PubMed

Li, H.; Shi, J.; Zhao, K.; Zhang, L. Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale 2014, 6(23), 14168–14173. https://doi.org/10.1039/c4nr04810e.Search in Google Scholar PubMed

Lu, J.; Chen, Y.; Li, L.; Cai, X.; Zhong, S.; Wu, L.; Chen, J.; Bai, S. Facet engineering on the interface of BiOCl-PbS heterostructures for enhanced broad-spectrum photocatalytic H-2 production. Chem. Eng. J. 2019, 362, 1–11. https://doi.org/10.1016/j.cej.2018.12.130.Search in Google Scholar

Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110(41), 20211–20216. https://doi.org/10.1021/jp063441z.Search in Google Scholar PubMed

Li, F.; Li, Y.; Chai, M.; Li, B.; Hao, Y.; Wang, X.; Liu, R. One-step construction of {001} facet-exposed BiOCl hybridized with Al2O3 for enhanced molecular oxygen activation. Catal. Sci. Technol. 2016, 6(22), 7985–7995. https://doi.org/10.1039/c6cy01306f.Search in Google Scholar

Liu, W.; Zhong, D.; Dai, Z.; Liu, Y.; Wang, J.; Wang, Z.; Pan, J. Synergetic utilization of photoabsorption and surface facet in crystalline/amorphous contacted BiOCl-Bi2S3 composite for photocatalytic degradation. J. Alloys Compd. 2019, 780, 907–916. https://doi.org/10.1016/j.jallcom.2018.12.003.Search in Google Scholar

Li, L.; Salvador, P. A.; Rohrer, G. S. Photocatalysts with internal electric fields. Nanoscale 2014, 6(1), 24–42. https://doi.org/10.1039/c3nr03998f.Search in Google Scholar PubMed

Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25(7), 998–1013. https://doi.org/10.1002/adfm.201401636.Search in Google Scholar

Liu, B.; Xu, W.; Sun, T.; Chen, M.; Tian, L.; Wang, J. Efficient visible light photocatalytic activity of CdS on (001) facets exposed to BiOCl. New J. Chem. 2014, 38(6), 2273–2277. https://doi.org/10.1039/c4nj00257a.Search in Google Scholar

Li, R.; Han, H.; Zhang, F.; Wang, D.; Li, C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ. Sci. 2014, 7(4), 1369–1376. https://doi.org/10.1039/c3ee43304h.Search in Google Scholar

Li, H.; Zhang, L. Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light. Nanoscale 2014, 6(14), 7805–7810. https://doi.org/10.1039/c4nr01315h.Search in Google Scholar PubMed

Li, Y.; Zhao, Y.; Wu, G.; Ma, H.; Zhao, J. Bi superlattice nanopolygons at BiOCl (001) nanosheet assembled architectures for visible-light photocatalysis. Mater. Res. Bull. 2018, 101, 39–47. https://doi.org/10.1016/j.materresbull.2017.12.041.Search in Google Scholar

Li, X.; Dai, H.; Deng, J.; Liu, Y.; Xie, S.; Zhao, Z.; Wang, Y.; Guo, G.; Arandiyan, H. Au/3DOM LaCoO3: high-performance catalysts for the oxidation of carbon monoxide and toluene. Chem. Eng. J. 2013, 228, 965–975. https://doi.org/10.1016/j.cej.2013.05.070.Search in Google Scholar

Liu, M. Y.; Zheng, L.; Lin, G. L.; Ni, L. F.; Song, X. C. Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: natural porous diatomite as photocatalyst support and dominant facets regulator. Adv. Powder Technol. 2020, 31(1), 339–350. https://doi.org/10.1016/j.apt.2019.10.026.Search in Google Scholar

Malakootian, M.; Shahamat, Y. D.; Mahdizadeh, H. Purification of diazinon pesticide by sequencing batch moving-bed biofilm reactor after ozonation/Mg-Al layered double hydroxides pre-treated effluent. Separ. Purif. Technol. 2020, 242, 116754. https://doi.org/10.1016/j.seppur.2020.116754.Search in Google Scholar

Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 2008, 112(14), 5275–5300. https://doi.org/10.1021/jp077275m.Search in Google Scholar

Ong, W.; Tan, L.; Chai, S.; Yong, S.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7(3), 690–719. https://doi.org/10.1002/cssc.201300924.Search in Google Scholar PubMed

Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20(1), 35–54. https://doi.org/10.1021/cm7024203.Search in Google Scholar

Peng, Y.; Mao, Y. G.; Kan, P. F. One dimensional hierarchical BiOCl microrods: their synthesis and their photocatalytic performance. CrystEngComm 2018, 20(48), 7809–7817. https://doi.org/10.1039/c8ce01481g.Search in Google Scholar

Peng, H.; Chan, C. K.; Meister, S.; Zhang, X. F.; Cui, Y. Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem. Mater. 2009, 21(2), 247–252. https://doi.org/10.1021/cm802041g.Search in Google Scholar

Peng, Y.; Mao, Y. G.; Kan, P. F.; Liu, J. Y.; Fang, Z. Controllable synthesis and photoreduction performance towards Cr(vi) of BiOCl microrods with exposed (110) crystal facets. New J. Chem. 2018, 42(20), 16911–16918. https://doi.org/10.1039/c8nj03323d.Search in Google Scholar

Peng, Y.; Wang, D.; Zhou, H.; Xu, A. Controlled synthesis of thin BiOCl nanosheets with exposed {001} facets and enhanced photocatalytic activities. CrystEngComm 2015, 17(20), 3845–3851. https://doi.org/10.1039/c5ce00289c.Search in Google Scholar

Pan, L.; Zou, J.; Wang, S.; Liu, X.; Zhang, X.; Wang, L. Morphology evolution of TiO2 facets and vital influences on photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4(3), 1650–1655. https://doi.org/10.1021/am201800j.Search in Google Scholar PubMed

Qi, Y. L.; Zheng, Y. F.; Yin, H. Y.; Song, X. C. Enhanced visible light photocatalytic activity of AgBr on {001} facets exposed to BiOCl. J. Alloys Compd. 2017, 712, 535–542. https://doi.org/10.1016/j.jallcom.2017.04.126.Search in Google Scholar

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111(6SI), 3669–3712. https://doi.org/10.1021/cr100275d.Search in Google Scholar PubMed PubMed Central

Soltanzadeh, N.; Morsali, A. Sonochemical synthesis of a new nano-structures bismuth(III) supramolecular compound: new precursor for the preparation of bismuth(III) oxide nano-rods and bismuth(III) iodide nano-wires. Ultrason. Sonochem. 2010, 17(1), 139–144. https://doi.org/10.1016/j.ultsonch.2009.05.003.Search in Google Scholar PubMed

Shan, L.; Wang, G.; Liu, L.; Wu, Z. Band alignment and enhanced photocatalytic activation for alpha-Bi2O3/BiOCl (001) core-shell heterojunction. J. Mol. Catal. A Chem. 2015, 406, 145–151. https://doi.org/10.1016/j.molcata.2015.05.024.Search in Google Scholar

Shan, L.; Liu, Y.; Suriyaprakash, J.; Ma, C.; Wu, Z.; Dong, L.; Liu, L. Highly efficient photocatalytic activities, band alignment of BiVO4/BiOCl {001} prepared by in situ chemical transformation. J. Mol. Catal. A Chem. 2016, 411, 179–187. https://doi.org/10.1016/j.molcata.2015.10.032.Search in Google Scholar

Sun, L.; Xiang, L.; Zhao, X.; Jia, C.; Yang, J.; Jin, Z.; Cheng, X.; Fan, W. Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catal. 2015, 5(6), 3540–3551. https://doi.org/10.1021/cs501631n.Search in Google Scholar

Sun, H.; Tian, Z.; Zhou, G.; Zhang, J.; Li, P. Exploring the effects of crystal facet in Bi2WO6/BiOCl heterostructures on photocatalytic properties: a first-principles theoretical study. Appl. Surf. Sci. 2019, 469, 125–134. https://doi.org/10.1016/j.apsusc.2018.11.006.Search in Google Scholar

Song, G.; Wu, X.; Xin, F.; Yin, X. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Front. Chem. Sci. Eng. 2017, 11(2), 197–204. https://doi.org/10.1007/s11705-016-1606-y.Search in Google Scholar

Sun, D.; Yang, W.; Zhou, L.; Sun, W.; Li, Q.; Shang, J. K. The selective deposition of silver nanoparticles onto {101} facets of TiO2 nanocrystals with co-exposed {001}/{101} facets, and their enhanced photocatalytic reduction of aqueous nitrate under simulated solar illumination. Appl. Catal. B Environ. 2016, 182, 85–93. https://doi.org/10.1016/j.apcatb.2015.09.005.Search in Google Scholar

Sarina, S.; Waclawik, E. R.; Zhu, H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 2013, 15(7), 1814–1833. https://doi.org/10.1039/c3gc40450a.Search in Google Scholar

Tian, J.; Chen, Z.; Deng, X.; Sun, Q.; Sun, Z.; Li, W. Improving visible light driving degradation of norfloxacin over core-shell hierarchical BiOCl microspherical photocatalyst by synergistic effect of oxygen vacancy and nanostructure. Appl. Surf. Sci. 2018, 453, 373–382. https://doi.org/10.1016/j.apsusc.2018.04.255.Search in Google Scholar

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5(10), 782–786. https://doi.org/10.1038/nmat1734.Search in Google Scholar PubMed

Tan, C.; Zhu, G.; Hojamberdiev, M.; Okada, K.; Liang, J.; Luo, X.; Liu, P.; Liu, Y. Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: efficient photodegradation of organic dyes under visible light. Appl. Catal. B Environ. 2014, 152, 425–436. https://doi.org/10.1016/j.apcatb.2014.01.044.Search in Google Scholar

Tang, L.; Chen, R.; Meng, X.; Lv, B.; Fan, F.; Ye, J.; Wang, X.; Zhou, Y.; Li, C.; Zou, Z. Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO2 into solar fuels. Chem. Commun. 2018, 54(40), 5126–5129. https://doi.org/10.1039/c8cc01873a.Search in Google Scholar PubMed

Tang, H.; Ju, T.; Dai, Y.; Wang, M.; Wang, M.; Ma, Y.; Zheng, G. Synthesis and photocatalytic performance of BiOCl/graphene composite with tight interfacial contact and highly exposed (001) facets. Appl. Organomet. Chem. 2021, 36, e6526. https://doi.org/10.1002/aoc.6526.Search in Google Scholar

Weng, S.; Chen, B.; Xie, L.; Zheng, Z.; Liu, P. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem. A 2013, 1(9), 3068–3075. https://doi.org/10.1039/c2ta01004f.Search in Google Scholar

Wang, D.; Gao, G.; Zhang, Y.; Zhou, L.; Xu, A.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4(24), 7780–7785. https://doi.org/10.1039/c2nr32533k.Search in Google Scholar PubMed

Wang, X.; Liu, X.; Liu, G.; Zhang, C.; Liu, G.; Xu, S.; Cui, P.; Li, D. Rapid synthesis of BiOCl graded microspheres with highly exposed (110) facets and oxygen vacancies at room temperature to enhance visible light photocatalytic activity. Catal. Commun. 2019, 130, 105769. https://doi.org/10.1016/j.catcom.2019.105769.Search in Google Scholar

Weng, S.; Hu, J.; Lu, M.; Ye, X.; Pei, Z.; Huang, M.; Xie, L.; Lin, S.; Liu, P. In situ photogenerated defects on surface-complex BiOCl (010) with high visible-light photocatalytic activity: a probe to disclose the charge transfer in BiOCl (010)/surface-complex system. Appl. Catal. B Environ. 2015, 163, 205–213. https://doi.org/10.1016/j.apcatb.2014.07.051.Search in Google Scholar

Wu, Z.; Li, Z.; Tian, Q.; Liu, J.; Zhang, S.; Xu, K.; Shen, J.; Zhang, S.; Wu, W. Protonated branched polyethyleneimine induces the shape evolution of BiOCl and exposed {010} facet of BiOCl nanosheets. Cryst. Growth Des. 2018, 18(9), 5479–5491. https://doi.org/10.1021/acs.cgd.8b00828.Search in Google Scholar

Weng, S.; Fang, Z.; Wang, Z.; Zheng, Z.; Feng, W.; Liu, P. Construction of teethlike homojunction BiOCl (001) nanosheets by selective etching and its high photocatalytic activity. ACS Appl. Mater. Interfaces 2014, 6(21), 18423–18428. https://doi.org/10.1021/am5052526.Search in Google Scholar PubMed

Wu, Z.; Li, Z.; Tian, Q.; Liu, J.; Zhang, S.; Xu, K.; Shen, J.; Zhang, S.; Wu, W. Protonated branched polyethyleneimine induces the shape evolution of BiOCl and exposed {010} facet of BiOCl nanosheets. Cryst. Growth Des. 2018, 18(9), 5479–5491. https://doi.org/10.1021/acs.cgd.8b00828.Search in Google Scholar

Wang, D.; Gao, G.; Zhang, Y.; Zhou, L.; Xu, A.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4(24), 7780–7785. https://doi.org/10.1039/c2nr32533k.Search in Google Scholar PubMed

Wang, X.; Li, T.; Yu, R.; Yu, H.; Yu, J. Highly efficient TiO2 single-crystal photocatalyst with spatially separated Ag and F-bi-cocatalysts: orientation transfer of photogenerated charges and their rapid interfacial reaction. J. Mater. Chem. A 2016, 4(22), 8682–8689. https://doi.org/10.1039/c6ta02039a.Search in Google Scholar

Wang, X.; Ni, Q.; Zeng, D.; Liao, G.; Wen, Y.; Shan, B.; Xie, C. BiOCl/TiO2 heterojunction network with high energy facet exposed for highly efficient photocatalytic degradation of benzene. Appl. Surf. Sci. 2017, 396, 590–598. https://doi.org/10.1016/j.apsusc.2016.10.201.Search in Google Scholar

Wang, F.; Wang, Y.; Feng, Y.; Zeng, Y.; Xie, Z.; Zhang, Q.; Su, Y.; Chen, P.; Liu, Y.; Yao, K.; Lv, W.; Liu, G. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl. Catal. B Environ. 2018, 221, 510–520. https://doi.org/10.1016/j.apcatb.2017.09.055.Search in Google Scholar

Wang, F.; Wang, Y.; Feng, Y.; Zeng, Y.; Xie, Z.; Zhang, Q.; Su, Y.; Chen, P.; Liu, Y.; Yao, K.; Lv, W.; Liu, G. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl. Catal. B Environ. 2018, 221, 510–520. https://doi.org/10.1016/j.apcatb.2017.09.055.Search in Google Scholar

Xu, Y.; Xu, S.; Wang, S.; Zhang, Y.; Li, G. Citric acid modulated electrochemical synthesis and photocatalytic behavior of BiOCl nanoplates with exposed {001} facets. Dalton Trans. 2014, 43(2), 479–485. https://doi.org/10.1039/c3dt52004h.Search in Google Scholar PubMed

Xu, Y.; Hu, X.; Zhu, H.; Zhang, J. Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities. J. Mater. Sci. 2016, 51(9), 4342–4348. https://doi.org/10.1007/s10853-016-9745-6.Search in Google Scholar

Xu, T.; Yang, M.; Chen, C.; Duan, R.; Shen, Q.; Sun, C. Photocatalytic activation of C-Br bond on facet-dependent BiOCl with oxygen vacancies. Appl. Surf. Sci. 2021, 548, 149243. https://doi.org/10.1016/j.apsusc.2021.149243.Search in Google Scholar

Xiaochao, Z.; Guoqi, L.; Caimei, F.; Guangyue, D.; Yawen, W.; Peide, H. Theoretical insights into the adsorption of monatomic Ag on the (2 times 2) BiOCl (0 0 1) surfaces. Comput. Mater. Sci. 2014, 95, 113–120. https://doi.org/10.1016/j.commatsci.2014.07.020.Search in Google Scholar

Xu, X.; Yan, Q.; Gu, X.; Luo, Y. The preparation and photocatalytic performance of BiOCl@Ag, a visible-light responsive catalyst. J. Mater. Sci. Mater. Electron. 2019, 30(9), 8892–8902. https://doi.org/10.1007/s10854-019-01217-z.Search in Google Scholar

Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47(24), 6951–6953. https://doi.org/10.1039/c1cc11015b.Search in Google Scholar PubMed

Yu, C.; Wei, L.; Chen, J.; Xie, Y.; Zhou, W.; Fan, Q. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace Narrow-Band-Gap Ag2CO3. Ind. Eng. Chem. Res. 2014, 53(14), 5759–5766. https://doi.org/10.1021/ie404283d.Search in Google Scholar

Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47(24), 6951–6953. https://doi.org/10.1039/c1cc11015b.Search in Google Scholar

Yan, J.; Jin, B.; Zhao, P.; Peng, R. Facile fabrication of BiOCl nanoplates with high exposure {001} facets for efficient photocatalytic degradation of nitro explosives. Inorg. Chem. Front. 2021, 8(3), 777–786. https://doi.org/10.1039/d0qi01218a.Search in Google Scholar

Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47(24), 6951–6953. https://doi.org/10.1039/c1cc11015b.Search in Google Scholar

Ye, L.; Mao, J.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Synthesis of anatase TiO2 nanocrystals with {101}, {001} or {010} single facets of 90% level exposure and liquid-phase photocatalytic reduction and oxidation activity orders. J. Mater. Chem. A 2013, 1(35), 10532–10537. https://doi.org/10.1039/c3ta11791j.Search in Google Scholar

Yaacobi-Gross, N.; Soreni-Harari, M.; Zimin, M.; Kababya, S.; Schmidt, A.; Tessler, N. Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat. Mater. 2011, 10(12), 974–979. https://doi.org/10.1038/NMAT3133.Search in Google Scholar

Yu, X.; Yang, J.; Ye, K.; Fu, X.; Zhu, Y.; Zhang, Y. Facile one-step synthesis of BiOCl/BiOI heterojunctions with exposed {001} facet for highly enhanced visible light photocatalytic performances. Inorg. Chem. Commun. 2016, 71, 45–49. https://doi.org/10.1016/j.inoche.2016.06.034.Search in Google Scholar

Yu, H.; Cao, C.; Wang, X.; Yu, J. Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles. J. Phys. Chem. C 2017, 121(24), 13191–13201. https://doi.org/10.1021/acs.jpcc.7b03213.Search in Google Scholar

Yu, C.; He, H.; Fan, Q.; Xie, W.; Liu, Z.; Ji, H. Novel B-doped BiOCl nanosheets with exposed (001) facets and photocatalytic mechanism of enhanced degradation efficiency for organic pollutants. Sci. Total Environ. 2019, 694, 133727. https://doi.org/10.1016/j.scitotenv.2019.133727.Search in Google Scholar PubMed

Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem., Int. Ed. 2008, 47(9), 1766–1769. https://doi.org/10.1002/anie.200704788.Search in Google Scholar PubMed

Zhang, X.; Liu, X.; Fan, C.; Wang, Y.; Wang, Y.; Liang, Z. A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis. Appl. Catal. B Environ. 2013, 132, 332–341. https://doi.org/10.1016/j.apcatb.2012.12.010.Search in Google Scholar

Zhang, L.; Niu, C.; Xie, G.; Wen, X.; Zhang, X.; Zeng, G. Controlled growth of BiOCl with large {010} facets for dye self-photosensitization photocatalytic fuel cells application. ACS Sustain. Chem. Eng. 2017, 5(6), 4619–4629. https://doi.org/10.1021/acssuschemeng.6b03150.Search in Google Scholar

Zhang, D.; Chen, L.; Xiao, C.; Feng, J.; Liao, L.; Wang, Z.; Wei, T. Facile synthesis of high {001} facets dominated BiOCl nanosheets and their selective dye-sensitized photocatalytic activity induced by visible light. J. Nanomater. 2016, 2016, 5697672. https://doi.org/10.1155/2016/5697672.Search in Google Scholar

Zhao, H.; Liu, X.; Dong, Y.; Xia, Y.; Wang, H.; Zhu, X. Fabrication of a Z-scheme {001}/{110} facet heterojunction in BiOCl to promote spatial charge separation. ACS Appl. Mater. Interfaces 2020, 12(28), 31532–31541. https://doi.org/10.1021/acsami.0c08687.Search in Google Scholar PubMed

Zou, Z.; Xu, H.; Li, D.; Sun, J.; Xia, D. Facile preparation and photocatalytic activity of oxygen vacancy rich BiOCl with {001} exposed reactive facets. Appl. Surf. Sci. 2019, 463, 1011–1018. https://doi.org/10.1016/j.apsusc.2018.09.025.Search in Google Scholar

Zeng, X.; Xiao, X.; Chen, J.; Wang, Y.; Wang, H. Understanding the effects of co-exposed facets on photocatalytic activities and fuel desulfurization performance in BiOCl singlet-crystalline sheets. J. Hazard. Mater. 2020, 391, 122198. https://doi.org/10.1016/j.jhazmat.2020.122198.Search in Google Scholar PubMed

Zhang, X.; Wang, X.; Wang, L.; Wang, W.; Long, L.; Li, W.; Yu, H. Synthesis of a highly efficient BiOCI single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Appl. Mater. Interfaces 2014, 6(10), 7766–7772. https://doi.org/10.1021/am5010392.Search in Google Scholar PubMed

Zhao, K.; Zhang, L.; Wang, J.; Li, Q.; He, W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135(42), 15750–15753. https://doi.org/10.1021/ja4092903.Search in Google Scholar PubMed

Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem., Int. Ed. 2008, 47(9), 1766–1769. https://doi.org/10.1002/anie.200704788.Search in Google Scholar PubMed

Zhou, Z.; Long, M.; Cai, W.; Cai, J. Synthesis and photocatalytic performance of the efficient visible light photocatalyst Ag-AgCl/BiVO4. J. Mol. Catal. A Chem. 2012, 353, 22–28. https://doi.org/10.1016/j.molcata.2011.10.025.Search in Google Scholar

Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26(29), 4920–4935. https://doi.org/10.1002/adma.201400288.Search in Google Scholar PubMed

Zhu, Z.; Xiang, M.; Li, P.; Shan, L.; Zhang, P. Surfactant-modified three-dimensional layered double hydroxide for the removal of methyl orange and rhodamine B: extended investigations in binary dye systems. J. Solid State Chem. 2020, 288, 121448. https://doi.org/10.1016/j.jssc.2020.121448.Search in Google Scholar

Zhang, Z.; Zhou, Y.; Yu, S.; Chen, M.; Wang, F. Ag-BiOCl nanocomposites prepared by the oxygen vacancy induced photodeposition method with improved visible light photocatalytic activity. Mater. Lett. 2015, 150, 97–100. https://doi.org/10.1016/j.matlet.2015.03.011.Search in Google Scholar

Zhang, Z.; Zhou, Y.; Yu, S.; Chen, M.; Wang, F. Ag-BiOCl nanocomposites prepared by the oxygen vacancy induced photodeposition method with improved visible light photocatalytic activity. Mater. Lett. 2015, 150, 97–100. https://doi.org/10.1016/j.matlet.2015.03.011.Search in Google Scholar

Zhang, D.; Tan, G.; Wang, M.; Li, B.; Dang, M.; Ren, H.; Xia, A. The enhanced photocatalytic activity of Ag-OVs-(001) BiOCl by separating secondary excitons under double SPR effects. Appl. Surf. Sci. 2020, 526, 146689. https://doi.org/10.1016/j.apsusc.2020.146689.Search in Google Scholar

Zhang, L.; Wang, W.; Sun, S.; Jiang, D.; Gao, E. Selective transport of electron and hole among {001} and {110} facets of BiOCl for pure water splitting. Appl. Catal. B Environ. 2015, 162, 470–474. https://doi.org/10.1016/j.apcatb.2014.07.024.Search in Google Scholar

Received: 2022-04-28
Accepted: 2022-06-08
Published Online: 2022-06-24
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0015/html
Scroll to top button