Home Physical Sciences Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review
Article
Licensed
Unlicensed Requires Authentication

Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review

  • Gabriela Soriano-Giles , Edwin A. Giles-Mazón , Nazario Lopez , Eric Reinheimer , Victor Varela-Guerrero and María F. Ballesteros-Rivas EMAIL logo
Published/Copyright: June 3, 2022

Abstract

Metal-Organic Frameworks (MOFs) are a class of crystalline materials that, thanks to their large surface area and high porosity, allow them to be used in various areas of knowledge. This diversity of applications is due to the metal ions and the organic binders that compose them, but it is also important to highlight the ability of MOFs to function as hosts for a great variety of molecules of very different sizes and chemical properties. The first existing approaches for incorporating biomolecules in MOFs are discussed: pore encapsulation, surface binding, covalent binding, and in-situ encapsulation. Next, we discuss the obstacles of designing MOFs for effective gene delivery and how to enhance the gene delivery using different strategies.


Corresponding author: María F. Ballesteros-Rivas, Universidad Autónoma del Estado de México, Facultad de Química, Paseo Colón S/N, Residencial Colón, 50120 Toluca de Lerdo, México; and Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco km 14.5, 50200 Toluca de Lerdo, México, E-mail:

Award Identifier / Grant number: 6278/2020CIB

Acknowledgments

The authors thank Karen Elizabeth Soriano Giles and Valeria Armendariz Cabral for graphic assistance. GSG thanks CONACYT for the support provided with the grant number (CVU)177341. EAGM thanks CONACYT for the support provided with the grant number (CVU)1004064.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by Universidad Autónoma del Estado de México (6278/2020CIB).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdelhamid, H. Biointerface between ZIF-8 and biomolecules and their applications. Biointerface Res. Appl. Chem. 2021a, 11, 8283–8297.10.33263/BRIAC111.82838297Search in Google Scholar

Abdelhamid, H. Zeolitic imidazolate frameworks (ZIF-8) for biomedical applications: a review. Curr. Med. Chem. 2021b, 28, 7023–7075; https://doi.org/10.2174/0929867328666210608143703.Search in Google Scholar PubMed

Abdelhamid, H. N.; Dowaidar, M.; Hällbrink, M.; Langel, Ü. Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks. Microporous Mesoporous Mater. 2020a, 300, 110173; https://doi.org/10.1016/j.micromeso.2020.110173.Search in Google Scholar

Abdelhamid, H. N.; Dowaidar, M.; Hällbrink, M.; Langel, Ü. Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks. Microporous Mesoporous Mater. 2020b, 300, 110173; https://doi.org/10.1016/j.micromeso.2020.110173.Search in Google Scholar

Abdelhamid, H. N.; Dowaidar, M.; Langel, Ü. Carbonized chitosan encapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticles for gene delivery. Microporous Mesoporous Mater. 2020c, 302, 110200; https://doi.org/10.1016/j.micromeso.2020.110200.Search in Google Scholar

Alsaiari, S. K.; Patil, S.; Alyami, M.; Alamoudi, K. O.; Aleisa, F. A.; Merzaban, J. S.; Li, M.; Khashab, N. M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 2018, 140(1), 143–146; https://doi.org/10.1021/jacs.7b11754.Search in Google Scholar PubMed

Alyami, M. Z.; Alsaiari, S. K.; Li, Y.; Qutub, S. S.; Aleisa, F. A.; Sougrat, R.; Merzaban, J. S.; Khashab, N. M. Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. 2020, 142(4), 1715–1720; https://doi.org/10.1021/jacs.9b11638.Search in Google Scholar PubMed

An, H.; Li, M.; Gao, J.; Zhang, Z.; Ma, S.; Chen, Y. Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev. 2019, 384, 90–106; https://doi.org/10.1016/j.ccr.2019.01.001.Search in Google Scholar

Anguela, X.; High, K. Entering the modern era of gene therapy. Annu. Rev. Med. 2019, 70, 273–288; https://doi.org/10.1146/annurev-med-012017-043332.Search in Google Scholar PubMed

Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M. F.; Zakhama, A.; Couvreur, P.; Serre, C.; Horcajada, P. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem. Sci. 2013, 4(4), 1597–1607; https://doi.org/10.1039/c3sc22116d.Search in Google Scholar

Bhardwaj, T. A review on immobilization techniques of biosensors. Int. J. Eng. Res. Technol. 2014, 3, 294–298.Search in Google Scholar

Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33(9), 941–951; https://doi.org/10.1038/nbt.3330.Search in Google Scholar

Cai, H.; Huang, Y.-L.; Li, D. Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coord. Chem. Rev. 2019, 378, 207–221; https://doi.org/10.1016/j.ccr.2017.12.003.Search in Google Scholar

Cai, M.; Chen, G.; Qin, L.; Qu, C.; Dong, X.; Ni, J.; Yin, X. Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer. Pharmaceutics 2020, 12(3), 232; https://doi.org/10.3390/pharmaceutics12030232.Search in Google Scholar

Cai, X.; Xie, Z.; Li, D.; Kassymova, M.; Zang, S.-Q.; Jiang, H.-L. Nano-sized metal-organic frameworks: synthesis and applications. Coord. Chem. Rev. 2020, 417, 213366; https://doi.org/10.1016/j.ccr.2020.213366.Search in Google Scholar

Cochran, K. W.; Doull, J.; Mazur, M.; Dubois, K. Acute toxicity of zirconium, columbium, strontium, lanthanum, cesium, tantalum and yttrium. Arch. Ind. Hyg. Occup. Med. 1950, 1(6), 637–650.Search in Google Scholar

Collard, W. T.; Yang, Y.; Kwok, K. Y.; Park, Y.; Rice, K. G. Biodistribution, metabolism, and in vivo gene expression of low molecular weight glycopeptide polyethylene glycol peptide DNA co-condensates. J. Pharmaceut. Sci. 2000, 89(4), 499–512; https://doi.org/10.1002/(sici)1520-6017(200004)89:4<499::aid-jps7>3.0.co;2-v.10.1002/(SICI)1520-6017(200004)89:4<499::AID-JPS7>3.0.CO;2-VSearch in Google Scholar

Cutler, J. I.; Auyeung, E.; Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 2012, 134(3), 1376–1391; https://doi.org/10.1021/ja209351u.Search in Google Scholar

Chen, D.; Yang, D.; Dougherty, C. A.; Lu, W.; Wu, H.; He, X.; Cai, T.; Van Dort, M. E.; Ross, B. D.; Hong, H. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal–organic frameworks nanomaterials. ACS Nano 2017, 11(4), 4315–4327; https://doi.org/10.1021/acsnano.7b01530.Search in Google Scholar

Chen, L.; Zheng, H.; Zhu, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G.; Chen, Z.-N. Metal–organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA. Analyst 2013, 138(12), 3490–3493; https://doi.org/10.1039/c3an00426k.Search in Google Scholar

Chen, X.; Zhuang, Y.; Rampal, N.; Hewitt, R.; Divitini, G.; O’Keefe, C. A.; Liu, X.; Whitaker, D. J.; Wills, J. W.; Jugdaohsingh, R.; Powell, J. J.; Yu, H.; Grey, C. P.; Scherman, O. A.; Fairen-Jimenez, D. Formulation of metal–organic framework-based drug carriers by controlled coordination of methoxy PEG phosphate: boosting colloidal stability and redispersibility. J. Am. Chem. Soc. 2021, 143(34), 13557–13572; https://doi.org/10.1021/jacs.1c03943.Search in Google Scholar

Dash, P.; Read, M.; Fisher, K.; Howard, K.; Wolfert, M.; Oupicky, D.; Subr, V.; Strohalm, J.; Ulbrich, K.; Seymour, L. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J. Biol. Chem. 2000, 275, 3793–3802; https://doi.org/10.1074/jbc.275.6.3793.Search in Google Scholar

Davis, M. E. Non-viral gene delivery systems. Curr. Opin. Biotechnol. 2002, 13(2), 128–131; https://doi.org/10.1016/s0958-1669(02)00294-x.Search in Google Scholar PubMed

Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44(10), 957–968; https://doi.org/10.1021/ar200028a.Search in Google Scholar PubMed PubMed Central

Dizaj, S. M.; Jafari, S.; Khosroushahi, A. Y. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res. Lett. 2014, 9(1), 252; https://doi.org/10.1186/1556-276x-9-252.Search in Google Scholar

Dong, S.; Chen, Q.; Li, W.; Jiang, Z.; Ma, J.; Gao, H. A dendritic catiomer with an MOF motif for the construction of safe and efficient gene delivery systems. J. Mater. Chem. B 2017, 5(42), 8322–8329; https://doi.org/10.1039/c7tb01966a.Search in Google Scholar PubMed

Duan, W.; Zhao, Z.; An, H.; Zhang, Z.; Cheng, P.; Chen, Y.; Huang, H. State-of-the-art and prospects of biomolecules: incorporation in functional metal–organic frameworks. Top. Curr. Chem. 2019, 377(6), 34; https://doi.org/10.1007/s41061-019-0258-z.Search in Google Scholar PubMed

Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16(1), 63–72; https://doi.org/10.1016/j.copbio.2004.11.003.Search in Google Scholar PubMed

García-Rendón, A.; Garibay-Escobar, A.; Guzmán, R.; Tejeda-Mansir, A. Chapter 6 – plasmid-DNA lipid nanovaccines: an innovative approach for a better world health. Lipid Nanocarriers Drug Target. 2018, 231–267; https://doi.org/10.1016/b978-0-12-813687-4.00006-2.Search in Google Scholar

Giles-Mazón, E. A.; Germán-Ramos, I.; Romero-Romero, F.; Reinheimer, E.; Toscano, R. A.; Lopez, N.; Barrera-Díaz, C. E.; Varela-Guerrero, V.; Ballesteros-Rivas, M. F. Synthesis and characterization of a bio-MOF based on mixed adeninate/tricarboxylate ligands and zinc ions. Inorg. Chim. Acta. 2018, 469, 306–311; https://doi.org/10.1016/j.ica.2017.09.047.Search in Google Scholar

Godbey, W. T.; Mikos, A. G. Recent progress in gene delivery using non-viral transfer complexes. J. Contr. Release 2001, 72(1), 115–125; https://doi.org/10.1016/s0168-3659(01)00267-x.Search in Google Scholar PubMed

Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263(5153), 1600–1603; https://doi.org/10.1126/science.8128245.Search in Google Scholar PubMed

Hardee, C. L.; Arévalo-Soliz, L. M.; Hornstein, B. D.; Zechiedrich, L. Advances in non-viral DNA vectors for gene therapy. Genes 2017, 8(2), 65.10.3390/genes8020065Search in Google Scholar PubMed PubMed Central

Hidalgo, T.; Alonso-Nocelo, M.; Bouzo, B. L.; Reimondez-Troitiño, S.; Abuin-Redondo, C.; de la Fuente, M.; Horcajada, P. Biocompatible iron(iii) carboxylate metal–organic frameworks as promising RNA nanocarriers. Nanoscale 2020, 12(8), 4839–4845; https://doi.org/10.1039/c9nr08127e.Search in Google Scholar PubMed

Hidalgo, T.; Giménez-Marqués, M.; Bellido, E.; Avila, J.; Asensio, M. C.; Salles, F.; Lozano, M. V.; Guillevic, M.; Simón-Vázquez, R.; González-Fernández, A.; Serre, C.; Alonso, M. J.; Horcajada, P. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci. Rep. 2017, 7(1), 43099; https://doi.org/10.1038/srep43099.Search in Google Scholar PubMed PubMed Central

Hoop, M.; Walde, C. F.; Riccò, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X.-Z.; deMello, A. J.; Doonan, C. J.; Falcaro, P.; Nelson, B. J.; Puigmartí-Luis, J.; Pané, S. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13–21; https://doi.org/10.1016/j.apmt.2017.12.014.Search in Google Scholar

Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9(2), 172–178; https://doi.org/10.1038/nmat2608.Search in Google Scholar PubMed

Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112(2), 1232–1268; https://doi.org/10.1021/cr200256v.Search in Google Scholar PubMed

Hwang, E. T.; Gu, M. B. Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 2013, 13(1), 49–61; https://doi.org/10.1002/elsc.201100225.Search in Google Scholar

Ibrahim, M.; Sabouni, R.; Husseini, G. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem. 2017, 24, 193–214; https://doi.org/10.2174/0929867323666160926151216.Search in Google Scholar PubMed

Ikezoe, Y.; Washino, G.; Uemura, T.; Kitagawa, S.; Matsui, H. Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 2012, 11(12), 1081–1085; https://doi.org/10.1038/nmat3461.Search in Google Scholar PubMed PubMed Central

Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (London, Engl.) 2011, 6(4), 715–728; https://doi.org/10.2217/nnm.11.19.Search in Google Scholar PubMed PubMed Central

Kenry; Lim, C. T. Nanofiber technology: current status and emerging developments. Prog. Polym. Sci. 2017, 70, 1–17; https://doi.org/10.1016/j.progpolymsci.2017.03.002.Search in Google Scholar

Khalil, A. M. The genome editing revolution: review. J. Genet. Eng. Biotechnol. 2020, 18(1), 68; https://doi.org/10.1186/s43141-020-00078-y.Search in Google Scholar PubMed PubMed Central

Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 2019, 12(7), 908–931; https://doi.org/10.1016/j.arabjc.2017.05.011.Search in Google Scholar

Kircheis, R.; Blessing, T.; Brunner, S.; Wightman, L.; Wagner, E. Tumor targeting with surface-shielded ligand–polycation DNA complexes. J. Contr. Release 2001, 72(1), 165–170; https://doi.org/10.1016/s0168-3659(01)00272-3.Search in Google Scholar PubMed

Li, L.; Han, S.; Zhao, S.; Li, X.; Liu, B.; Liu, Y. Chitosan modified metal–organic frameworks as a promising carrier for oral drug delivery. RSC Adv. 2020, 10(73), 45130–45138; https://doi.org/10.1039/d0ra08459j.Search in Google Scholar PubMed PubMed Central

Li, P.; Modica, J. A.; Howarth, A. J.; Vargas L, E.; Moghadam, P. Z.; Snurr, R. Q.; Mrksich, M.; Hupp, J. T.; Farha, O. K. Toward design rules for enzyme immobilization in hierarchical mesoporous metal-organic frameworks. Chem. 2016a, 1(1), 154–169; https://doi.org/10.1016/j.chempr.2016.05.001.Search in Google Scholar

Li, P.; Moon, S.-Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal–organic framework engenders thermal and long-term stability. J. Am. Chem. Soc. 2016b, 138(26), 8052–8055; https://doi.org/10.1021/jacs.6b03673.Search in Google Scholar PubMed

Li, Q.; Dong, H.; Yang, G.; Song, Y.; Mou, Y.; Ni, Y. Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front. Oncol. 2020, 10, 212; https://doi.org/10.3389/fonc.2020.00212.Search in Google Scholar PubMed PubMed Central

Li, S.-Y.; Xie, B.-R.; Cheng, H.; Li, C.-X.; Zhang, M.-K.; Qiu, W.-X.; Liu, W.-L.; Wang, X.-S.; Zhang, X.-Z. A biomimetic theranostic O2-meter for cancer targeted photodynamic therapy and phosphorescence imaging. Biomaterials 2018, 151, 1–12; https://doi.org/10.1016/j.biomaterials.2017.10.021.Search in Google Scholar PubMed

Li, Y.; Zhang, K.; Liu, P.; Chen, M.; Zhong, Y. L.; Ye, Q.; Wei, M.; Zhao, H.; Tang, Z. Encapsulation of plasmid DNA by nanoscale metal–organic frameworks for efficient gene transportation and expression. Adv. Mater. 2019, 31, 1901570; https://doi.org/10.1002/adma.201901570.Search in Google Scholar PubMed

Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 2017, 46(11), 3386–3401; https://doi.org/10.1039/c7cs00058h.Search in Google Scholar PubMed

Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6(1), 7240; https://doi.org/10.1038/ncomms8240.Search in Google Scholar PubMed PubMed Central

Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro, P. Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv. Mater. 2016, 28(36), 7910–7914; https://doi.org/10.1002/adma.201602335.Search in Google Scholar PubMed

Lin, G.; Zhang, Y.; Zhang, L.; Wang, J.; Tian, Y.; Cai, W.; Tang, S.; Chu, C.; Zhou, J.; Mi, P.; Chen, X.; Liu, G. Metal-organic frameworks nanoswitch: toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020, 13(1), 238–245; https://doi.org/10.1007/s12274-019-2606-2.Search in Google Scholar

Liu, B.; Hu, F.; Zhang, J.; Wang, C.; Li, L. A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug–gene combinations. Angew. Chem. Int. Ed. 2019, 58(26), 8804–8808; https://doi.org/10.1002/ange.201903417.Search in Google Scholar

Liu, J.; Guo, Z.; Liang, K. Biocatalytic metal-organic framework-based artificial cells. Adv. Funct. Mater. 2019, 29(45), 1905321; https://doi.org/10.1002/adfm.201905321.Search in Google Scholar

Mao, H.-Q.; Roy, K.; Troung-Le, V. L.; Janes, K. A.; Lin, K. Y.; Wang, Y.; August, J. T.; Leong, K. W. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Contr. Release 2001, 70(3), 399–421; https://doi.org/10.1016/s0168-3659(00)00361-8.Search in Google Scholar PubMed

Mehta, N.; Robbins, D. A.; Yiu, G. Ocular inflammation and treatment emergent adverse events in retinal gene therapy. Int. Ophthalmol. Clin. 2021, 61(3), 151–177; https://doi.org/10.1097/iio.0000000000000366.Search in Google Scholar

Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid–metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136(20), 7261–7264; https://doi.org/10.1021/ja503215w.Search in Google Scholar PubMed

Muñoz, A.; Costa, M. Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity. Toxicol. Appl. Pharmacol. 2012, 260(1), 1–16; https://doi.org/10.1016/j.taap.2011.12.014.Search in Google Scholar PubMed PubMed Central

Nadar, S. S.; Rathod, V. K. Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzym. Microb. Technol. 2018, 108, 11–20; https://doi.org/10.1016/j.enzmictec.2017.08.008.Search in Google Scholar PubMed

Neri-Hipólito, J.; Lopez, N.; Reinheimer, E. W.; Mas-Hernández, E.; Barrera-Díaz, C. E.; Varela-Guerrero, V.; Ballesteros-Rivas, M. F. Dopamine (DA) detection in nanomolar concentration by 2,3-diaminophenazine (DAP) released from (DAP)@BioMOF-1 films. Polyhedron 2019, 169, 123–128; https://doi.org/10.1016/j.poly.2019.05.015.Search in Google Scholar

Nimesh, S. 5 – theory and limitations to gene therapy. In Gene Therapy; Nimesh, S., Ed. Woodhead Publishing: Cambridge, United Kingdom, 2013; pp. 89–111.10.1533/9781908818645.89Search in Google Scholar

Pan, Q.; Chen, T.-T.; Nie, C.; Yi, J.; Liu, C.; Hu, Y.; Chu, X. In situ synthesis of ultrathin ZIF-8 film coated MSNs for co-delivering Bcl-2 siRNA and doxorubicin to enhance chemothera-peutic efficacy in drug-resistant cancer cells. ACS Appl. Mater. Interfaces 2018, 10, 33070–33077; https://doi.org/10.1021/acsami.8b13393.Search in Google Scholar PubMed

Peng, S.; Bie, B.; Sun, Y.; Liu, M.; Cong, H.; Zhou, W.; Xia, Y.; Tang, H.; Deng, H.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9(1), 1293; https://doi.org/10.1038/s41467-018-03650-w.Search in Google Scholar PubMed PubMed Central

Poddar, A.; Conesa, J. J.; Liang, K.; Dhakal, S.; Reineck, P.; Bryant, G.; Pereiro, E.; Ricco, R.; Amenitsch, H.; Doonan, C.; Mulet, X.; Doherty, C. M.; Falcaro, P.; Shukla, R. Encapsulation, visualization and expression of genes with biomimetically mineralized zeolitic imidazolate framework-8 (ZIF-8). Small 2019, 15(36), 1902268; https://doi.org/10.1002/smll.201902268.Search in Google Scholar PubMed

Poddar, A.; Pyreddy, S.; Carraro, F.; Dhakal, S.; Rassell, A.; Field, M. R.; Reddy, T. S.; Falcaro, P.; Doherty, C. M.; Shukla, R. ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer. Chem. Commun. 2020, 56(98), 15406–15409; https://doi.org/10.1039/d0cc06241c.Search in Google Scholar PubMed

Pun, S. H.; Davis, M. E. Development of a nonviral gene delivery vehicle for systemic application. Bioconjugate Chem. 2002, 13(3), 630–639; https://doi.org/10.1021/bc0155768.Search in Google Scholar PubMed

Qiu, G.-H.; Weng, Z.-H.; Hu, P.-P.; Duan, W.-J.; Xie, B.-P.; Sun, B.; Tang, X.-Y.; Chen, J.-X. Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal–organic framework. Talanta 2018, 180, 396–402; https://doi.org/10.1016/j.talanta.2017.12.045.Search in Google Scholar PubMed

Rabiee, N.; Bagherzadeh, M.; Heidarian Haris, M.; Ghadiri, A. M.; Matloubi Moghaddam, F.; Fatahi, Y.; Dinarvand, R.; Jarahiyan, A.; Ahmadi, S.; Shokouhimehr, M. Polymer-coated NH2-UiO-66 for the codelivery of DOX/pCRISPR. ACS Appl. Mater. Interfaces 2021, 13(9), 10796–10811; https://doi.org/10.1021/acsami.1c01460.Search in Google Scholar PubMed

Ramón-Azcón, J.; Ahadian, S.; Obregon, R.; Shiku, H.; Ramalingam, M.; Matsue, T. Applications of carbon nanotubes in stem cell research. J. Biomed. Nanotechnol. 2014, 10, 2539–2561; https://doi.org/10.1166/jbn.2014.1899.Search in Google Scholar PubMed

Ringaci, A.; Yaremenko, A. V.; Shevchenko, K. G.; Zvereva, S. D.; Nikitin, M. P. Metal-organic frameworks for simultaneous gene and small molecule delivery in vitro and in vivo. Chem. Eng. J. 2021, 418, 129386; https://doi.org/10.1016/j.cej.2021.129386.Search in Google Scholar

Shen, M.; Forghani, F.; Kong, X.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Antibacterial applications of metal–organic frameworks and their composites. Compr. Rev. Food Sci. Food Saf. 2020, 19(4), 1397–1419; https://doi.org/10.1111/1541-4337.12515.Search in Google Scholar PubMed

Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, 1707365; https://doi.org/10.1002/adma.201707365.Search in Google Scholar PubMed

Somanathan, S.; Calcedo, R.; Wilson, J. Adenovirus-antibody complexes contributed to lethal systemic inflammation in a gene therapy trial. Mol. Ther. 2020, 28, 784–793; https://doi.org/10.1016/j.ymthe.2020.01.006.Search in Google Scholar PubMed PubMed Central

Sources, S. O. o. t. P. o. F. A. a. N.; (ANS), a. t. F. Manganese ascorbate, manganese aspartate, manganese bisglycinate and manganese pidolate as sources of manganese added for nutritional purposes to food supplements. Eur. Food Saf. Auth. 2009, 1114, 1–23.Search in Google Scholar

Stewart, M. P.; Sharei, A.; Ding, X.; Sahay, G.; Langer, R.; Jensen, K. F. In vitro and ex vivo strategies for intracellular delivery. Nature 2016, 538(7624), 183–192; https://doi.org/10.1038/nature19764.Search in Google Scholar PubMed

Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51; https://doi.org/10.1016/j.addr.2015.09.012.Search in Google Scholar PubMed PubMed Central

Sun, C.-Y.; Qin, C.; Wang, X.-L.; Su, Z.-M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 2013, 10(1), 89–101; https://doi.org/10.1517/17425247.2013.741583.Search in Google Scholar PubMed

Sun, H.; Li, Y.; Yu, S.; Liu, J. Metal-organic frameworks (MOFs) for biopreservation: from biomacromolecules, living organisms to biological devices. Nano Today 2020, 35, 100985; https://doi.org/10.1016/j.nantod.2020.100985.Search in Google Scholar

Sun, P.; Li, Z.; Wang, J.; Gao, H.; Yang, X.; Wu, S.; Liu, D.; Chen, Q. Transcellular delivery of messenger RNA payloads by a cationic supramolecular MOF platform. Chem. Commun. 2018, 54(80), 11304–11307; https://doi.org/10.1039/c8cc07047d.Search in Google Scholar PubMed

Sun, R. W.-Y.; Zhang, M.; Li, D.; Zhang, Z.-F.; Cai, H.; Li, M.; Xian, Y.-J.; Ng, S. W.; Wong, A. S.-T. Dinuclear gold(I) pyrrolidinedithiocarbamato complex: cytotoxic and antimigratory activities on cancer cells and the use of metal–organic framework. Chem. Eur J. 2015, 21(51), 18534–18538; https://doi.org/10.1002/chem.201503656.Search in Google Scholar PubMed

Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P. Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B 2014, 2(3), 262–271; https://doi.org/10.1039/c3tb20832j.Search in Google Scholar PubMed

Teplensky, M. H.; Fantham, M.; Poudel, C.; Hockings, C.; Lu, M.; Guna, A.; Aragones-Anglada, M.; Moghadam, P. Z.; Li, P.; Farha, O. K.; Bernaldo de Quirós Fernández, S.; Richards, F. M.; Jodrell, D. I.; Kaminski Schierle, G.; Kaminski, C. F.; Fairen-Jimenez, D. A highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem 2019, 5(11), 2926–2941; https://doi.org/10.1016/j.chempr.2019.08.015.Search in Google Scholar

Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Contr. Release 2011, 151(3), 220–228; https://doi.org/10.1016/j.jconrel.2010.11.004.Search in Google Scholar PubMed

Wang, H.; Chen, Y.; Wang, H.; Liu, X.; Zhou, X.; Wang, F. DNAzyme-loaded metal–organic frameworks (MOFs) for self-sufficient gene therapy. Angew. Chem. Int. Ed. 2019, 58(22), 7380–7384; https://doi.org/10.1002/ange.201902714.Search in Google Scholar

Wang, S.; McGuirk, C. M.; Ross, M. B.; Wang, S.; Chen, P.; Xing, H.; Liu, Y.; Mirkin, C. A. General and direct method for preparing oligonucleotide-functionalized metal–organic framework nanoparticles. J. Am. Chem. Soc. 2017, 139(29), 9827–9830; https://doi.org/10.1021/jacs.7b05633.Search in Google Scholar PubMed PubMed Central

Wang, Y.; Shahi, P. K.; Xie, R.; Zhang, H.; Abdeen, A. A.; Yodsanit, N.; Ma, Z.; Saha, K.; Pattnaik, B. R.; Gong, S. A pH-responsive silica–metal–organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. J. Contr. Release 2020, 324, 194–203; https://doi.org/10.1016/j.jconrel.2020.04.052.Search in Google Scholar PubMed PubMed Central

Wei, Y.-B.; Wang, M.-J.; Luo, D.; Huang, Y.-L.; Xie, M.; Lu, W.; Shu, X.; Li, D. Ultrasensitive and highly selective detection of formaldehyde via an adenine-based biological metal–organic framework. Mater. Chem. Front. 2021, 5(5), 2416–2424; https://doi.org/10.1039/d0qm01097a.Search in Google Scholar

Yang, J.; Yang, Y.-W. Metal–organic frameworks for biomedical applications. Small 2020, 16(10), 1906846.10.1002/smll.201906846Search in Google Scholar PubMed

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15(8), 541–555; https://doi.org/10.1038/nrg3763.Search in Google Scholar PubMed

Zarghampoor, F.; Azarpira, N.; Khatami, S. R.; Behzad-Behbahani, A.; Foroughmand, A. M. Improved translation efficiency of therapeutic mRNA. Gene 2019, 707, 231–238; https://doi.org/10.1016/j.gene.2019.05.008.Search in Google Scholar PubMed

Zhang, H.; Chen, W.; Gong, K.; Chen, J. Nanoscale zeolitic imidazolate framework-8 as efficient vehicles for enhanced delivery of CpG oligodeoxynucleotides. ACS Appl. Mater. Interfaces 2017a, 9(37), 31519–31525; https://doi.org/10.1021/acsami.7b09583.Search in Google Scholar PubMed

Zhang, H.; Jiang, W.; Liu, R.; Zhang, J.; Zhang, D.; Li, Z.; Luan, Y. Rational design of metal organic framework nanocarrier-based codelivery system of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl. Mater. Interfaces 2017b, 9(23), 19687–19697; https://doi.org/10.1021/acsami.7b05142.Search in Google Scholar PubMed

Zhao, H.; Li, T.; Yao, C.; Gu, Z.; Liu, C.; Li, J.; Yang, D. Dual roles of metal–organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13(5), 6034–6042; https://doi.org/10.1021/acsami.0c21006.Search in Google Scholar PubMed

Zhao, J.; Lu, D.; Moya, S.; Yan, H.; Qiu, M.; Chen, J.; Wang, X.; Li, Y.; Pan, H.; Chen, G.; Wang, G. Bispecific T-cell engager (BiTE) immunotherapy of ovarian cancer based on MIL-88A MOF/MC gene delivery system. Appl. Mater. Today 2020, 20, 100701; https://doi.org/10.1016/j.apmt.2020.100701.Search in Google Scholar

Zhao, M.; Wu, C.-D. Biomimetic activation of molecular oxygen with a combined metalloporphyrinic framework and co-catalyst platform. ChemCatChem 2017, 9(7), 1192–1196; https://doi.org/10.1002/cctc.201601606.Search in Google Scholar

Zhuang, J.; Gong, H.; Zhou, J.; Zhang, Q.; Gao, W.; Fang, R. H.; Zhang, L. Targeted gene silencing in vivo by platelet membrane–coated metal-organic framework nanoparticles. Sci. Adv. 2020, 6(13), eaaz6108; https://doi.org/10.1126/sciadv.aaz6108.Search in Google Scholar PubMed PubMed Central

Received: 2022-02-10
Accepted: 2022-05-16
Published Online: 2022-06-03
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0004/html
Scroll to top button